uboot/drivers/mtd/ubi/build.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2007
   4 *
   5 * SPDX-License-Identifier:     GPL-2.0+
   6 *
   7 * Author: Artem Bityutskiy (Битюцкий Артём),
   8 *         Frank Haverkamp
   9 */
  10
  11/*
  12 * This file includes UBI initialization and building of UBI devices.
  13 *
  14 * When UBI is initialized, it attaches all the MTD devices specified as the
  15 * module load parameters or the kernel boot parameters. If MTD devices were
  16 * specified, UBI does not attach any MTD device, but it is possible to do
  17 * later using the "UBI control device".
  18 */
  19
  20#ifndef __UBOOT__
  21#include <linux/module.h>
  22#include <linux/moduleparam.h>
  23#include <linux/stringify.h>
  24#include <linux/namei.h>
  25#include <linux/stat.h>
  26#include <linux/miscdevice.h>
  27#include <linux/log2.h>
  28#include <linux/kthread.h>
  29#include <linux/kernel.h>
  30#include <linux/slab.h>
  31#include <linux/major.h>
  32#else
  33#include <linux/compat.h>
  34#endif
  35#include <linux/err.h>
  36#include <ubi_uboot.h>
  37#include <linux/mtd/partitions.h>
  38
  39#include "ubi.h"
  40
  41/* Maximum length of the 'mtd=' parameter */
  42#define MTD_PARAM_LEN_MAX 64
  43
  44/* Maximum number of comma-separated items in the 'mtd=' parameter */
  45#define MTD_PARAM_MAX_COUNT 4
  46
  47/* Maximum value for the number of bad PEBs per 1024 PEBs */
  48#define MAX_MTD_UBI_BEB_LIMIT 768
  49
  50#ifdef CONFIG_MTD_UBI_MODULE
  51#define ubi_is_module() 1
  52#else
  53#define ubi_is_module() 0
  54#endif
  55
  56#if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
  57#error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
  58#endif
  59
  60/**
  61 * struct mtd_dev_param - MTD device parameter description data structure.
  62 * @name: MTD character device node path, MTD device name, or MTD device number
  63 *        string
  64 * @vid_hdr_offs: VID header offset
  65 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
  66 */
  67struct mtd_dev_param {
  68        char name[MTD_PARAM_LEN_MAX];
  69        int ubi_num;
  70        int vid_hdr_offs;
  71        int max_beb_per1024;
  72};
  73
  74/* Numbers of elements set in the @mtd_dev_param array */
  75static int __initdata mtd_devs;
  76
  77/* MTD devices specification parameters */
  78static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
  79#ifndef __UBOOT__
  80#ifdef CONFIG_MTD_UBI_FASTMAP
  81/* UBI module parameter to enable fastmap automatically on non-fastmap images */
  82static bool fm_autoconvert;
  83#endif
  84#else
  85#ifdef CONFIG_MTD_UBI_FASTMAP
  86#if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT)
  87#define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0
  88#endif
  89static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT;
  90#endif
  91#endif
  92/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
  93struct class *ubi_class;
  94
  95/* Slab cache for wear-leveling entries */
  96struct kmem_cache *ubi_wl_entry_slab;
  97
  98#ifndef __UBOOT__
  99/* UBI control character device */
 100static struct miscdevice ubi_ctrl_cdev = {
 101        .minor = MISC_DYNAMIC_MINOR,
 102        .name = "ubi_ctrl",
 103        .fops = &ubi_ctrl_cdev_operations,
 104};
 105#endif
 106
 107/* All UBI devices in system */
 108#ifndef __UBOOT__
 109static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
 110#else
 111struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
 112#endif
 113
 114#ifndef __UBOOT__
 115/* Serializes UBI devices creations and removals */
 116DEFINE_MUTEX(ubi_devices_mutex);
 117
 118/* Protects @ubi_devices and @ubi->ref_count */
 119static DEFINE_SPINLOCK(ubi_devices_lock);
 120
 121/* "Show" method for files in '/<sysfs>/class/ubi/' */
 122static ssize_t ubi_version_show(struct class *class,
 123                                struct class_attribute *attr, char *buf)
 124{
 125        return sprintf(buf, "%d\n", UBI_VERSION);
 126}
 127
 128/* UBI version attribute ('/<sysfs>/class/ubi/version') */
 129static struct class_attribute ubi_version =
 130        __ATTR(version, S_IRUGO, ubi_version_show, NULL);
 131
 132static ssize_t dev_attribute_show(struct device *dev,
 133                                  struct device_attribute *attr, char *buf);
 134
 135/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
 136static struct device_attribute dev_eraseblock_size =
 137        __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
 138static struct device_attribute dev_avail_eraseblocks =
 139        __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 140static struct device_attribute dev_total_eraseblocks =
 141        __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 142static struct device_attribute dev_volumes_count =
 143        __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
 144static struct device_attribute dev_max_ec =
 145        __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
 146static struct device_attribute dev_reserved_for_bad =
 147        __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
 148static struct device_attribute dev_bad_peb_count =
 149        __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
 150static struct device_attribute dev_max_vol_count =
 151        __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
 152static struct device_attribute dev_min_io_size =
 153        __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
 154static struct device_attribute dev_bgt_enabled =
 155        __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
 156static struct device_attribute dev_mtd_num =
 157        __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
 158#endif
 159
 160/**
 161 * ubi_volume_notify - send a volume change notification.
 162 * @ubi: UBI device description object
 163 * @vol: volume description object of the changed volume
 164 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 165 *
 166 * This is a helper function which notifies all subscribers about a volume
 167 * change event (creation, removal, re-sizing, re-naming, updating). Returns
 168 * zero in case of success and a negative error code in case of failure.
 169 */
 170int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
 171{
 172        struct ubi_notification nt;
 173
 174        ubi_do_get_device_info(ubi, &nt.di);
 175        ubi_do_get_volume_info(ubi, vol, &nt.vi);
 176
 177#ifdef CONFIG_MTD_UBI_FASTMAP
 178        switch (ntype) {
 179        case UBI_VOLUME_ADDED:
 180        case UBI_VOLUME_REMOVED:
 181        case UBI_VOLUME_RESIZED:
 182        case UBI_VOLUME_RENAMED:
 183                if (ubi_update_fastmap(ubi)) {
 184                        ubi_err("Unable to update fastmap!");
 185                        ubi_ro_mode(ubi);
 186                }
 187        }
 188#endif
 189        return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
 190}
 191
 192/**
 193 * ubi_notify_all - send a notification to all volumes.
 194 * @ubi: UBI device description object
 195 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 196 * @nb: the notifier to call
 197 *
 198 * This function walks all volumes of UBI device @ubi and sends the @ntype
 199 * notification for each volume. If @nb is %NULL, then all registered notifiers
 200 * are called, otherwise only the @nb notifier is called. Returns the number of
 201 * sent notifications.
 202 */
 203int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
 204{
 205        struct ubi_notification nt;
 206        int i, count = 0;
 207#ifndef __UBOOT__
 208        int ret;
 209#endif
 210
 211        ubi_do_get_device_info(ubi, &nt.di);
 212
 213        mutex_lock(&ubi->device_mutex);
 214        for (i = 0; i < ubi->vtbl_slots; i++) {
 215                /*
 216                 * Since the @ubi->device is locked, and we are not going to
 217                 * change @ubi->volumes, we do not have to lock
 218                 * @ubi->volumes_lock.
 219                 */
 220                if (!ubi->volumes[i])
 221                        continue;
 222
 223                ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
 224#ifndef __UBOOT__
 225                if (nb)
 226                        nb->notifier_call(nb, ntype, &nt);
 227                else
 228                        ret = blocking_notifier_call_chain(&ubi_notifiers, ntype,
 229                                                     &nt);
 230#endif
 231                count += 1;
 232        }
 233        mutex_unlock(&ubi->device_mutex);
 234
 235        return count;
 236}
 237
 238/**
 239 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
 240 * @nb: the notifier to call
 241 *
 242 * This function walks all UBI devices and volumes and sends the
 243 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
 244 * registered notifiers are called, otherwise only the @nb notifier is called.
 245 * Returns the number of sent notifications.
 246 */
 247int ubi_enumerate_volumes(struct notifier_block *nb)
 248{
 249        int i, count = 0;
 250
 251        /*
 252         * Since the @ubi_devices_mutex is locked, and we are not going to
 253         * change @ubi_devices, we do not have to lock @ubi_devices_lock.
 254         */
 255        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 256                struct ubi_device *ubi = ubi_devices[i];
 257
 258                if (!ubi)
 259                        continue;
 260                count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
 261        }
 262
 263        return count;
 264}
 265
 266/**
 267 * ubi_get_device - get UBI device.
 268 * @ubi_num: UBI device number
 269 *
 270 * This function returns UBI device description object for UBI device number
 271 * @ubi_num, or %NULL if the device does not exist. This function increases the
 272 * device reference count to prevent removal of the device. In other words, the
 273 * device cannot be removed if its reference count is not zero.
 274 */
 275struct ubi_device *ubi_get_device(int ubi_num)
 276{
 277        struct ubi_device *ubi;
 278
 279        spin_lock(&ubi_devices_lock);
 280        ubi = ubi_devices[ubi_num];
 281        if (ubi) {
 282                ubi_assert(ubi->ref_count >= 0);
 283                ubi->ref_count += 1;
 284                get_device(&ubi->dev);
 285        }
 286        spin_unlock(&ubi_devices_lock);
 287
 288        return ubi;
 289}
 290
 291/**
 292 * ubi_put_device - drop an UBI device reference.
 293 * @ubi: UBI device description object
 294 */
 295void ubi_put_device(struct ubi_device *ubi)
 296{
 297        spin_lock(&ubi_devices_lock);
 298        ubi->ref_count -= 1;
 299        put_device(&ubi->dev);
 300        spin_unlock(&ubi_devices_lock);
 301}
 302
 303/**
 304 * ubi_get_by_major - get UBI device by character device major number.
 305 * @major: major number
 306 *
 307 * This function is similar to 'ubi_get_device()', but it searches the device
 308 * by its major number.
 309 */
 310struct ubi_device *ubi_get_by_major(int major)
 311{
 312        int i;
 313        struct ubi_device *ubi;
 314
 315        spin_lock(&ubi_devices_lock);
 316        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 317                ubi = ubi_devices[i];
 318                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 319                        ubi_assert(ubi->ref_count >= 0);
 320                        ubi->ref_count += 1;
 321                        get_device(&ubi->dev);
 322                        spin_unlock(&ubi_devices_lock);
 323                        return ubi;
 324                }
 325        }
 326        spin_unlock(&ubi_devices_lock);
 327
 328        return NULL;
 329}
 330
 331/**
 332 * ubi_major2num - get UBI device number by character device major number.
 333 * @major: major number
 334 *
 335 * This function searches UBI device number object by its major number. If UBI
 336 * device was not found, this function returns -ENODEV, otherwise the UBI device
 337 * number is returned.
 338 */
 339int ubi_major2num(int major)
 340{
 341        int i, ubi_num = -ENODEV;
 342
 343        spin_lock(&ubi_devices_lock);
 344        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 345                struct ubi_device *ubi = ubi_devices[i];
 346
 347                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 348                        ubi_num = ubi->ubi_num;
 349                        break;
 350                }
 351        }
 352        spin_unlock(&ubi_devices_lock);
 353
 354        return ubi_num;
 355}
 356
 357#ifndef __UBOOT__
 358/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
 359static ssize_t dev_attribute_show(struct device *dev,
 360                                  struct device_attribute *attr, char *buf)
 361{
 362        ssize_t ret;
 363        struct ubi_device *ubi;
 364
 365        /*
 366         * The below code looks weird, but it actually makes sense. We get the
 367         * UBI device reference from the contained 'struct ubi_device'. But it
 368         * is unclear if the device was removed or not yet. Indeed, if the
 369         * device was removed before we increased its reference count,
 370         * 'ubi_get_device()' will return -ENODEV and we fail.
 371         *
 372         * Remember, 'struct ubi_device' is freed in the release function, so
 373         * we still can use 'ubi->ubi_num'.
 374         */
 375        ubi = container_of(dev, struct ubi_device, dev);
 376        ubi = ubi_get_device(ubi->ubi_num);
 377        if (!ubi)
 378                return -ENODEV;
 379
 380        if (attr == &dev_eraseblock_size)
 381                ret = sprintf(buf, "%d\n", ubi->leb_size);
 382        else if (attr == &dev_avail_eraseblocks)
 383                ret = sprintf(buf, "%d\n", ubi->avail_pebs);
 384        else if (attr == &dev_total_eraseblocks)
 385                ret = sprintf(buf, "%d\n", ubi->good_peb_count);
 386        else if (attr == &dev_volumes_count)
 387                ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
 388        else if (attr == &dev_max_ec)
 389                ret = sprintf(buf, "%d\n", ubi->max_ec);
 390        else if (attr == &dev_reserved_for_bad)
 391                ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
 392        else if (attr == &dev_bad_peb_count)
 393                ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
 394        else if (attr == &dev_max_vol_count)
 395                ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
 396        else if (attr == &dev_min_io_size)
 397                ret = sprintf(buf, "%d\n", ubi->min_io_size);
 398        else if (attr == &dev_bgt_enabled)
 399                ret = sprintf(buf, "%d\n", ubi->thread_enabled);
 400        else if (attr == &dev_mtd_num)
 401                ret = sprintf(buf, "%d\n", ubi->mtd->index);
 402        else
 403                ret = -EINVAL;
 404
 405        ubi_put_device(ubi);
 406        return ret;
 407}
 408
 409static void dev_release(struct device *dev)
 410{
 411        struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
 412
 413        kfree(ubi);
 414}
 415
 416/**
 417 * ubi_sysfs_init - initialize sysfs for an UBI device.
 418 * @ubi: UBI device description object
 419 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
 420 *       taken
 421 *
 422 * This function returns zero in case of success and a negative error code in
 423 * case of failure.
 424 */
 425static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
 426{
 427        int err;
 428
 429        ubi->dev.release = dev_release;
 430        ubi->dev.devt = ubi->cdev.dev;
 431        ubi->dev.class = ubi_class;
 432        dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
 433        err = device_register(&ubi->dev);
 434        if (err)
 435                return err;
 436
 437        *ref = 1;
 438        err = device_create_file(&ubi->dev, &dev_eraseblock_size);
 439        if (err)
 440                return err;
 441        err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
 442        if (err)
 443                return err;
 444        err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
 445        if (err)
 446                return err;
 447        err = device_create_file(&ubi->dev, &dev_volumes_count);
 448        if (err)
 449                return err;
 450        err = device_create_file(&ubi->dev, &dev_max_ec);
 451        if (err)
 452                return err;
 453        err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
 454        if (err)
 455                return err;
 456        err = device_create_file(&ubi->dev, &dev_bad_peb_count);
 457        if (err)
 458                return err;
 459        err = device_create_file(&ubi->dev, &dev_max_vol_count);
 460        if (err)
 461                return err;
 462        err = device_create_file(&ubi->dev, &dev_min_io_size);
 463        if (err)
 464                return err;
 465        err = device_create_file(&ubi->dev, &dev_bgt_enabled);
 466        if (err)
 467                return err;
 468        err = device_create_file(&ubi->dev, &dev_mtd_num);
 469        return err;
 470}
 471
 472/**
 473 * ubi_sysfs_close - close sysfs for an UBI device.
 474 * @ubi: UBI device description object
 475 */
 476static void ubi_sysfs_close(struct ubi_device *ubi)
 477{
 478        device_remove_file(&ubi->dev, &dev_mtd_num);
 479        device_remove_file(&ubi->dev, &dev_bgt_enabled);
 480        device_remove_file(&ubi->dev, &dev_min_io_size);
 481        device_remove_file(&ubi->dev, &dev_max_vol_count);
 482        device_remove_file(&ubi->dev, &dev_bad_peb_count);
 483        device_remove_file(&ubi->dev, &dev_reserved_for_bad);
 484        device_remove_file(&ubi->dev, &dev_max_ec);
 485        device_remove_file(&ubi->dev, &dev_volumes_count);
 486        device_remove_file(&ubi->dev, &dev_total_eraseblocks);
 487        device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
 488        device_remove_file(&ubi->dev, &dev_eraseblock_size);
 489        device_unregister(&ubi->dev);
 490}
 491#endif
 492
 493/**
 494 * kill_volumes - destroy all user volumes.
 495 * @ubi: UBI device description object
 496 */
 497static void kill_volumes(struct ubi_device *ubi)
 498{
 499        int i;
 500
 501        for (i = 0; i < ubi->vtbl_slots; i++)
 502                if (ubi->volumes[i])
 503                        ubi_free_volume(ubi, ubi->volumes[i]);
 504}
 505
 506/**
 507 * uif_init - initialize user interfaces for an UBI device.
 508 * @ubi: UBI device description object
 509 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
 510 *       taken, otherwise set to %0
 511 *
 512 * This function initializes various user interfaces for an UBI device. If the
 513 * initialization fails at an early stage, this function frees all the
 514 * resources it allocated, returns an error, and @ref is set to %0. However,
 515 * if the initialization fails after the UBI device was registered in the
 516 * driver core subsystem, this function takes a reference to @ubi->dev, because
 517 * otherwise the release function ('dev_release()') would free whole @ubi
 518 * object. The @ref argument is set to %1 in this case. The caller has to put
 519 * this reference.
 520 *
 521 * This function returns zero in case of success and a negative error code in
 522 * case of failure.
 523 */
 524static int uif_init(struct ubi_device *ubi, int *ref)
 525{
 526        int i, err;
 527#ifndef __UBOOT__
 528        dev_t dev;
 529#endif
 530
 531        *ref = 0;
 532        sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
 533
 534        /*
 535         * Major numbers for the UBI character devices are allocated
 536         * dynamically. Major numbers of volume character devices are
 537         * equivalent to ones of the corresponding UBI character device. Minor
 538         * numbers of UBI character devices are 0, while minor numbers of
 539         * volume character devices start from 1. Thus, we allocate one major
 540         * number and ubi->vtbl_slots + 1 minor numbers.
 541         */
 542        err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
 543        if (err) {
 544                ubi_err("cannot register UBI character devices");
 545                return err;
 546        }
 547
 548        ubi_assert(MINOR(dev) == 0);
 549        cdev_init(&ubi->cdev, &ubi_cdev_operations);
 550        dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
 551        ubi->cdev.owner = THIS_MODULE;
 552
 553        err = cdev_add(&ubi->cdev, dev, 1);
 554        if (err) {
 555                ubi_err("cannot add character device");
 556                goto out_unreg;
 557        }
 558
 559        err = ubi_sysfs_init(ubi, ref);
 560        if (err)
 561                goto out_sysfs;
 562
 563        for (i = 0; i < ubi->vtbl_slots; i++)
 564                if (ubi->volumes[i]) {
 565                        err = ubi_add_volume(ubi, ubi->volumes[i]);
 566                        if (err) {
 567                                ubi_err("cannot add volume %d", i);
 568                                goto out_volumes;
 569                        }
 570                }
 571
 572        return 0;
 573
 574out_volumes:
 575        kill_volumes(ubi);
 576out_sysfs:
 577        if (*ref)
 578                get_device(&ubi->dev);
 579        ubi_sysfs_close(ubi);
 580        cdev_del(&ubi->cdev);
 581out_unreg:
 582        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 583        ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
 584        return err;
 585}
 586
 587/**
 588 * uif_close - close user interfaces for an UBI device.
 589 * @ubi: UBI device description object
 590 *
 591 * Note, since this function un-registers UBI volume device objects (@vol->dev),
 592 * the memory allocated voe the volumes is freed as well (in the release
 593 * function).
 594 */
 595static void uif_close(struct ubi_device *ubi)
 596{
 597        kill_volumes(ubi);
 598        ubi_sysfs_close(ubi);
 599        cdev_del(&ubi->cdev);
 600        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 601}
 602
 603/**
 604 * ubi_free_internal_volumes - free internal volumes.
 605 * @ubi: UBI device description object
 606 */
 607void ubi_free_internal_volumes(struct ubi_device *ubi)
 608{
 609        int i;
 610
 611        for (i = ubi->vtbl_slots;
 612             i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 613                kfree(ubi->volumes[i]->eba_tbl);
 614                kfree(ubi->volumes[i]);
 615        }
 616}
 617
 618static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
 619{
 620        int limit, device_pebs;
 621        uint64_t device_size;
 622
 623        if (!max_beb_per1024)
 624                return 0;
 625
 626        /*
 627         * Here we are using size of the entire flash chip and
 628         * not just the MTD partition size because the maximum
 629         * number of bad eraseblocks is a percentage of the
 630         * whole device and bad eraseblocks are not fairly
 631         * distributed over the flash chip. So the worst case
 632         * is that all the bad eraseblocks of the chip are in
 633         * the MTD partition we are attaching (ubi->mtd).
 634         */
 635        device_size = mtd_get_device_size(ubi->mtd);
 636        device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
 637        limit = mult_frac(device_pebs, max_beb_per1024, 1024);
 638
 639        /* Round it up */
 640        if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
 641                limit += 1;
 642
 643        return limit;
 644}
 645
 646/**
 647 * io_init - initialize I/O sub-system for a given UBI device.
 648 * @ubi: UBI device description object
 649 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 650 *
 651 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
 652 * assumed:
 653 *   o EC header is always at offset zero - this cannot be changed;
 654 *   o VID header starts just after the EC header at the closest address
 655 *     aligned to @io->hdrs_min_io_size;
 656 *   o data starts just after the VID header at the closest address aligned to
 657 *     @io->min_io_size
 658 *
 659 * This function returns zero in case of success and a negative error code in
 660 * case of failure.
 661 */
 662static int io_init(struct ubi_device *ubi, int max_beb_per1024)
 663{
 664        dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
 665        dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
 666
 667        if (ubi->mtd->numeraseregions != 0) {
 668                /*
 669                 * Some flashes have several erase regions. Different regions
 670                 * may have different eraseblock size and other
 671                 * characteristics. It looks like mostly multi-region flashes
 672                 * have one "main" region and one or more small regions to
 673                 * store boot loader code or boot parameters or whatever. I
 674                 * guess we should just pick the largest region. But this is
 675                 * not implemented.
 676                 */
 677                ubi_err("multiple regions, not implemented");
 678                return -EINVAL;
 679        }
 680
 681        if (ubi->vid_hdr_offset < 0)
 682                return -EINVAL;
 683
 684        /*
 685         * Note, in this implementation we support MTD devices with 0x7FFFFFFF
 686         * physical eraseblocks maximum.
 687         */
 688
 689        ubi->peb_size   = ubi->mtd->erasesize;
 690        ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
 691        ubi->flash_size = ubi->mtd->size;
 692
 693        if (mtd_can_have_bb(ubi->mtd)) {
 694                ubi->bad_allowed = 1;
 695                ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
 696        }
 697
 698        if (ubi->mtd->type == MTD_NORFLASH) {
 699                ubi_assert(ubi->mtd->writesize == 1);
 700                ubi->nor_flash = 1;
 701        }
 702
 703        ubi->min_io_size = ubi->mtd->writesize;
 704        ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
 705
 706        /*
 707         * Make sure minimal I/O unit is power of 2. Note, there is no
 708         * fundamental reason for this assumption. It is just an optimization
 709         * which allows us to avoid costly division operations.
 710         */
 711        if (!is_power_of_2(ubi->min_io_size)) {
 712                ubi_err("min. I/O unit (%d) is not power of 2",
 713                        ubi->min_io_size);
 714                return -EINVAL;
 715        }
 716
 717        ubi_assert(ubi->hdrs_min_io_size > 0);
 718        ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
 719        ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
 720
 721        ubi->max_write_size = ubi->mtd->writebufsize;
 722        /*
 723         * Maximum write size has to be greater or equivalent to min. I/O
 724         * size, and be multiple of min. I/O size.
 725         */
 726        if (ubi->max_write_size < ubi->min_io_size ||
 727            ubi->max_write_size % ubi->min_io_size ||
 728            !is_power_of_2(ubi->max_write_size)) {
 729                ubi_err("bad write buffer size %d for %d min. I/O unit",
 730                        ubi->max_write_size, ubi->min_io_size);
 731                return -EINVAL;
 732        }
 733
 734        /* Calculate default aligned sizes of EC and VID headers */
 735        ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
 736        ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
 737
 738        dbg_gen("min_io_size      %d", ubi->min_io_size);
 739        dbg_gen("max_write_size   %d", ubi->max_write_size);
 740        dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
 741        dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
 742        dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
 743
 744        if (ubi->vid_hdr_offset == 0)
 745                /* Default offset */
 746                ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
 747                                      ubi->ec_hdr_alsize;
 748        else {
 749                ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
 750                                                ~(ubi->hdrs_min_io_size - 1);
 751                ubi->vid_hdr_shift = ubi->vid_hdr_offset -
 752                                                ubi->vid_hdr_aloffset;
 753        }
 754
 755        /* Similar for the data offset */
 756        ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
 757        ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
 758
 759        dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
 760        dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
 761        dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
 762        dbg_gen("leb_start        %d", ubi->leb_start);
 763
 764        /* The shift must be aligned to 32-bit boundary */
 765        if (ubi->vid_hdr_shift % 4) {
 766                ubi_err("unaligned VID header shift %d",
 767                        ubi->vid_hdr_shift);
 768                return -EINVAL;
 769        }
 770
 771        /* Check sanity */
 772        if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
 773            ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
 774            ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
 775            ubi->leb_start & (ubi->min_io_size - 1)) {
 776                ubi_err("bad VID header (%d) or data offsets (%d)",
 777                        ubi->vid_hdr_offset, ubi->leb_start);
 778                return -EINVAL;
 779        }
 780
 781        /*
 782         * Set maximum amount of physical erroneous eraseblocks to be 10%.
 783         * Erroneous PEB are those which have read errors.
 784         */
 785        ubi->max_erroneous = ubi->peb_count / 10;
 786        if (ubi->max_erroneous < 16)
 787                ubi->max_erroneous = 16;
 788        dbg_gen("max_erroneous    %d", ubi->max_erroneous);
 789
 790        /*
 791         * It may happen that EC and VID headers are situated in one minimal
 792         * I/O unit. In this case we can only accept this UBI image in
 793         * read-only mode.
 794         */
 795        if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
 796                ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
 797                ubi->ro_mode = 1;
 798        }
 799
 800        ubi->leb_size = ubi->peb_size - ubi->leb_start;
 801
 802        if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
 803                ubi_msg("MTD device %d is write-protected, attach in read-only mode",
 804                        ubi->mtd->index);
 805                ubi->ro_mode = 1;
 806        }
 807
 808        /*
 809         * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
 810         * unfortunately, MTD does not provide this information. We should loop
 811         * over all physical eraseblocks and invoke mtd->block_is_bad() for
 812         * each physical eraseblock. So, we leave @ubi->bad_peb_count
 813         * uninitialized so far.
 814         */
 815
 816        return 0;
 817}
 818
 819/**
 820 * autoresize - re-size the volume which has the "auto-resize" flag set.
 821 * @ubi: UBI device description object
 822 * @vol_id: ID of the volume to re-size
 823 *
 824 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
 825 * the volume table to the largest possible size. See comments in ubi-header.h
 826 * for more description of the flag. Returns zero in case of success and a
 827 * negative error code in case of failure.
 828 */
 829static int autoresize(struct ubi_device *ubi, int vol_id)
 830{
 831        struct ubi_volume_desc desc;
 832        struct ubi_volume *vol = ubi->volumes[vol_id];
 833        int err, old_reserved_pebs = vol->reserved_pebs;
 834
 835        if (ubi->ro_mode) {
 836                ubi_warn("skip auto-resize because of R/O mode");
 837                return 0;
 838        }
 839
 840        /*
 841         * Clear the auto-resize flag in the volume in-memory copy of the
 842         * volume table, and 'ubi_resize_volume()' will propagate this change
 843         * to the flash.
 844         */
 845        ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
 846
 847        if (ubi->avail_pebs == 0) {
 848                struct ubi_vtbl_record vtbl_rec;
 849
 850                /*
 851                 * No available PEBs to re-size the volume, clear the flag on
 852                 * flash and exit.
 853                 */
 854                vtbl_rec = ubi->vtbl[vol_id];
 855                err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
 856                if (err)
 857                        ubi_err("cannot clean auto-resize flag for volume %d",
 858                                vol_id);
 859        } else {
 860                desc.vol = vol;
 861                err = ubi_resize_volume(&desc,
 862                                        old_reserved_pebs + ubi->avail_pebs);
 863                if (err)
 864                        ubi_err("cannot auto-resize volume %d", vol_id);
 865        }
 866
 867        if (err)
 868                return err;
 869
 870        ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
 871                vol->name, old_reserved_pebs, vol->reserved_pebs);
 872        return 0;
 873}
 874
 875/**
 876 * ubi_attach_mtd_dev - attach an MTD device.
 877 * @mtd: MTD device description object
 878 * @ubi_num: number to assign to the new UBI device
 879 * @vid_hdr_offset: VID header offset
 880 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 881 *
 882 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
 883 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
 884 * which case this function finds a vacant device number and assigns it
 885 * automatically. Returns the new UBI device number in case of success and a
 886 * negative error code in case of failure.
 887 *
 888 * Note, the invocations of this function has to be serialized by the
 889 * @ubi_devices_mutex.
 890 */
 891int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
 892                       int vid_hdr_offset, int max_beb_per1024)
 893{
 894        struct ubi_device *ubi;
 895        int i, err, ref = 0;
 896
 897        if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
 898                return -EINVAL;
 899
 900        if (!max_beb_per1024)
 901                max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
 902
 903        /*
 904         * Check if we already have the same MTD device attached.
 905         *
 906         * Note, this function assumes that UBI devices creations and deletions
 907         * are serialized, so it does not take the &ubi_devices_lock.
 908         */
 909        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 910                ubi = ubi_devices[i];
 911                if (ubi && mtd->index == ubi->mtd->index) {
 912                        ubi_err("mtd%d is already attached to ubi%d",
 913                                mtd->index, i);
 914                        return -EEXIST;
 915                }
 916        }
 917
 918        /*
 919         * Make sure this MTD device is not emulated on top of an UBI volume
 920         * already. Well, generally this recursion works fine, but there are
 921         * different problems like the UBI module takes a reference to itself
 922         * by attaching (and thus, opening) the emulated MTD device. This
 923         * results in inability to unload the module. And in general it makes
 924         * no sense to attach emulated MTD devices, so we prohibit this.
 925         */
 926        if (mtd->type == MTD_UBIVOLUME) {
 927                ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI",
 928                        mtd->index);
 929                return -EINVAL;
 930        }
 931
 932        if (ubi_num == UBI_DEV_NUM_AUTO) {
 933                /* Search for an empty slot in the @ubi_devices array */
 934                for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
 935                        if (!ubi_devices[ubi_num])
 936                                break;
 937                if (ubi_num == UBI_MAX_DEVICES) {
 938                        ubi_err("only %d UBI devices may be created",
 939                                UBI_MAX_DEVICES);
 940                        return -ENFILE;
 941                }
 942        } else {
 943                if (ubi_num >= UBI_MAX_DEVICES)
 944                        return -EINVAL;
 945
 946                /* Make sure ubi_num is not busy */
 947                if (ubi_devices[ubi_num]) {
 948                        ubi_err("ubi%d already exists", ubi_num);
 949                        return -EEXIST;
 950                }
 951        }
 952
 953        ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
 954        if (!ubi)
 955                return -ENOMEM;
 956
 957        ubi->mtd = mtd;
 958        ubi->ubi_num = ubi_num;
 959        ubi->vid_hdr_offset = vid_hdr_offset;
 960        ubi->autoresize_vol_id = -1;
 961
 962#ifdef CONFIG_MTD_UBI_FASTMAP
 963        ubi->fm_pool.used = ubi->fm_pool.size = 0;
 964        ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
 965
 966        /*
 967         * fm_pool.max_size is 5% of the total number of PEBs but it's also
 968         * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
 969         */
 970        ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
 971                ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
 972        if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
 973                ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;
 974
 975        ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE;
 976        ubi->fm_disabled = !fm_autoconvert;
 977
 978        if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
 979            <= UBI_FM_MAX_START) {
 980                ubi_err("More than %i PEBs are needed for fastmap, sorry.",
 981                        UBI_FM_MAX_START);
 982                ubi->fm_disabled = 1;
 983        }
 984
 985        ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size);
 986        ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
 987#else
 988        ubi->fm_disabled = 1;
 989#endif
 990        mutex_init(&ubi->buf_mutex);
 991        mutex_init(&ubi->ckvol_mutex);
 992        mutex_init(&ubi->device_mutex);
 993        spin_lock_init(&ubi->volumes_lock);
 994        mutex_init(&ubi->fm_mutex);
 995        init_rwsem(&ubi->fm_sem);
 996
 997        ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
 998
 999        err = io_init(ubi, max_beb_per1024);
1000        if (err)
1001                goto out_free;
1002
1003        err = -ENOMEM;
1004        ubi->peb_buf = vmalloc(ubi->peb_size);
1005        if (!ubi->peb_buf)
1006                goto out_free;
1007
1008#ifdef CONFIG_MTD_UBI_FASTMAP
1009        ubi->fm_size = ubi_calc_fm_size(ubi);
1010        ubi->fm_buf = vzalloc(ubi->fm_size);
1011        if (!ubi->fm_buf)
1012                goto out_free;
1013#endif
1014        err = ubi_attach(ubi, 0);
1015        if (err) {
1016                ubi_err("failed to attach mtd%d, error %d", mtd->index, err);
1017                goto out_free;
1018        }
1019
1020        if (ubi->autoresize_vol_id != -1) {
1021                err = autoresize(ubi, ubi->autoresize_vol_id);
1022                if (err)
1023                        goto out_detach;
1024        }
1025
1026        err = uif_init(ubi, &ref);
1027        if (err)
1028                goto out_detach;
1029
1030        err = ubi_debugfs_init_dev(ubi);
1031        if (err)
1032                goto out_uif;
1033
1034        ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1035        if (IS_ERR(ubi->bgt_thread)) {
1036                err = PTR_ERR(ubi->bgt_thread);
1037                ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
1038                        err);
1039                goto out_debugfs;
1040        }
1041
1042        ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d",
1043                mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num);
1044        ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1045                ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1046        ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d",
1047                ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1048        ubi_msg("VID header offset: %d (aligned %d), data offset: %d",
1049                ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1050        ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1051                ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1052        ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d",
1053                ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1054                ubi->vtbl_slots);
1055        ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1056                ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1057                ubi->image_seq);
1058        ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1059                ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1060
1061        /*
1062         * The below lock makes sure we do not race with 'ubi_thread()' which
1063         * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1064         */
1065        spin_lock(&ubi->wl_lock);
1066        ubi->thread_enabled = 1;
1067        wake_up_process(ubi->bgt_thread);
1068        spin_unlock(&ubi->wl_lock);
1069
1070        ubi_devices[ubi_num] = ubi;
1071        ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1072        return ubi_num;
1073
1074out_debugfs:
1075        ubi_debugfs_exit_dev(ubi);
1076out_uif:
1077        get_device(&ubi->dev);
1078        ubi_assert(ref);
1079        uif_close(ubi);
1080out_detach:
1081        ubi_wl_close(ubi);
1082        ubi_free_internal_volumes(ubi);
1083        vfree(ubi->vtbl);
1084out_free:
1085        vfree(ubi->peb_buf);
1086        vfree(ubi->fm_buf);
1087        if (ref)
1088                put_device(&ubi->dev);
1089        else
1090                kfree(ubi);
1091        return err;
1092}
1093
1094/**
1095 * ubi_detach_mtd_dev - detach an MTD device.
1096 * @ubi_num: UBI device number to detach from
1097 * @anyway: detach MTD even if device reference count is not zero
1098 *
1099 * This function destroys an UBI device number @ubi_num and detaches the
1100 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1101 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1102 * exist.
1103 *
1104 * Note, the invocations of this function has to be serialized by the
1105 * @ubi_devices_mutex.
1106 */
1107int ubi_detach_mtd_dev(int ubi_num, int anyway)
1108{
1109        struct ubi_device *ubi;
1110
1111        if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1112                return -EINVAL;
1113
1114        ubi = ubi_get_device(ubi_num);
1115        if (!ubi)
1116                return -EINVAL;
1117
1118        spin_lock(&ubi_devices_lock);
1119        put_device(&ubi->dev);
1120        ubi->ref_count -= 1;
1121        if (ubi->ref_count) {
1122                if (!anyway) {
1123                        spin_unlock(&ubi_devices_lock);
1124                        return -EBUSY;
1125                }
1126                /* This may only happen if there is a bug */
1127                ubi_err("%s reference count %d, destroy anyway",
1128                        ubi->ubi_name, ubi->ref_count);
1129        }
1130        ubi_devices[ubi_num] = NULL;
1131        spin_unlock(&ubi_devices_lock);
1132
1133        ubi_assert(ubi_num == ubi->ubi_num);
1134        ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1135        ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1136#ifdef CONFIG_MTD_UBI_FASTMAP
1137        /* If we don't write a new fastmap at detach time we lose all
1138         * EC updates that have been made since the last written fastmap. */
1139        ubi_update_fastmap(ubi);
1140#endif
1141        /*
1142         * Before freeing anything, we have to stop the background thread to
1143         * prevent it from doing anything on this device while we are freeing.
1144         */
1145        if (ubi->bgt_thread)
1146                kthread_stop(ubi->bgt_thread);
1147
1148        /*
1149         * Get a reference to the device in order to prevent 'dev_release()'
1150         * from freeing the @ubi object.
1151         */
1152        get_device(&ubi->dev);
1153
1154        ubi_debugfs_exit_dev(ubi);
1155        uif_close(ubi);
1156
1157        ubi_wl_close(ubi);
1158        ubi_free_internal_volumes(ubi);
1159        vfree(ubi->vtbl);
1160        put_mtd_device(ubi->mtd);
1161        vfree(ubi->peb_buf);
1162        vfree(ubi->fm_buf);
1163        ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1164        put_device(&ubi->dev);
1165        return 0;
1166}
1167
1168#ifndef __UBOOT__
1169/**
1170 * open_mtd_by_chdev - open an MTD device by its character device node path.
1171 * @mtd_dev: MTD character device node path
1172 *
1173 * This helper function opens an MTD device by its character node device path.
1174 * Returns MTD device description object in case of success and a negative
1175 * error code in case of failure.
1176 */
1177static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1178{
1179        int err, major, minor, mode;
1180        struct path path;
1181
1182        /* Probably this is an MTD character device node path */
1183        err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1184        if (err)
1185                return ERR_PTR(err);
1186
1187        /* MTD device number is defined by the major / minor numbers */
1188        major = imajor(path.dentry->d_inode);
1189        minor = iminor(path.dentry->d_inode);
1190        mode = path.dentry->d_inode->i_mode;
1191        path_put(&path);
1192        if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1193                return ERR_PTR(-EINVAL);
1194
1195        if (minor & 1)
1196                /*
1197                 * Just do not think the "/dev/mtdrX" devices support is need,
1198                 * so do not support them to avoid doing extra work.
1199                 */
1200                return ERR_PTR(-EINVAL);
1201
1202        return get_mtd_device(NULL, minor / 2);
1203}
1204#endif
1205
1206/**
1207 * open_mtd_device - open MTD device by name, character device path, or number.
1208 * @mtd_dev: name, character device node path, or MTD device device number
1209 *
1210 * This function tries to open and MTD device described by @mtd_dev string,
1211 * which is first treated as ASCII MTD device number, and if it is not true, it
1212 * is treated as MTD device name, and if that is also not true, it is treated
1213 * as MTD character device node path. Returns MTD device description object in
1214 * case of success and a negative error code in case of failure.
1215 */
1216static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1217{
1218        struct mtd_info *mtd;
1219        int mtd_num;
1220        char *endp;
1221
1222        mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1223        if (*endp != '\0' || mtd_dev == endp) {
1224                /*
1225                 * This does not look like an ASCII integer, probably this is
1226                 * MTD device name.
1227                 */
1228                mtd = get_mtd_device_nm(mtd_dev);
1229#ifndef __UBOOT__
1230                if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1231                        /* Probably this is an MTD character device node path */
1232                        mtd = open_mtd_by_chdev(mtd_dev);
1233#endif
1234        } else
1235                mtd = get_mtd_device(NULL, mtd_num);
1236
1237        return mtd;
1238}
1239
1240#ifndef __UBOOT__
1241static int __init ubi_init(void)
1242#else
1243int ubi_init(void)
1244#endif
1245{
1246        int err, i, k;
1247
1248        /* Ensure that EC and VID headers have correct size */
1249        BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1250        BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1251
1252        if (mtd_devs > UBI_MAX_DEVICES) {
1253                ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1254                return -EINVAL;
1255        }
1256
1257        /* Create base sysfs directory and sysfs files */
1258        ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1259        if (IS_ERR(ubi_class)) {
1260                err = PTR_ERR(ubi_class);
1261                ubi_err("cannot create UBI class");
1262                goto out;
1263        }
1264
1265        err = class_create_file(ubi_class, &ubi_version);
1266        if (err) {
1267                ubi_err("cannot create sysfs file");
1268                goto out_class;
1269        }
1270
1271        err = misc_register(&ubi_ctrl_cdev);
1272        if (err) {
1273                ubi_err("cannot register device");
1274                goto out_version;
1275        }
1276
1277        ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1278                                              sizeof(struct ubi_wl_entry),
1279                                              0, 0, NULL);
1280        if (!ubi_wl_entry_slab) {
1281                err = -ENOMEM;
1282                goto out_dev_unreg;
1283        }
1284
1285        err = ubi_debugfs_init();
1286        if (err)
1287                goto out_slab;
1288
1289
1290        /* Attach MTD devices */
1291        for (i = 0; i < mtd_devs; i++) {
1292                struct mtd_dev_param *p = &mtd_dev_param[i];
1293                struct mtd_info *mtd;
1294
1295                cond_resched();
1296
1297                mtd = open_mtd_device(p->name);
1298                if (IS_ERR(mtd)) {
1299                        err = PTR_ERR(mtd);
1300                        ubi_err("cannot open mtd %s, error %d", p->name, err);
1301                        /* See comment below re-ubi_is_module(). */
1302                        if (ubi_is_module())
1303                                goto out_detach;
1304                        continue;
1305                }
1306
1307                mutex_lock(&ubi_devices_mutex);
1308                err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1309                                         p->vid_hdr_offs, p->max_beb_per1024);
1310                mutex_unlock(&ubi_devices_mutex);
1311                if (err < 0) {
1312                        ubi_err("cannot attach mtd%d", mtd->index);
1313                        put_mtd_device(mtd);
1314
1315                        /*
1316                         * Originally UBI stopped initializing on any error.
1317                         * However, later on it was found out that this
1318                         * behavior is not very good when UBI is compiled into
1319                         * the kernel and the MTD devices to attach are passed
1320                         * through the command line. Indeed, UBI failure
1321                         * stopped whole boot sequence.
1322                         *
1323                         * To fix this, we changed the behavior for the
1324                         * non-module case, but preserved the old behavior for
1325                         * the module case, just for compatibility. This is a
1326                         * little inconsistent, though.
1327                         */
1328                        if (ubi_is_module())
1329                                goto out_detach;
1330                }
1331        }
1332
1333        err = ubiblock_init();
1334        if (err) {
1335                ubi_err("block: cannot initialize, error %d", err);
1336
1337                /* See comment above re-ubi_is_module(). */
1338                if (ubi_is_module())
1339                        goto out_detach;
1340        }
1341
1342        return 0;
1343
1344out_detach:
1345        for (k = 0; k < i; k++)
1346                if (ubi_devices[k]) {
1347                        mutex_lock(&ubi_devices_mutex);
1348                        ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1349                        mutex_unlock(&ubi_devices_mutex);
1350                }
1351        ubi_debugfs_exit();
1352out_slab:
1353        kmem_cache_destroy(ubi_wl_entry_slab);
1354out_dev_unreg:
1355        misc_deregister(&ubi_ctrl_cdev);
1356out_version:
1357        class_remove_file(ubi_class, &ubi_version);
1358out_class:
1359        class_destroy(ubi_class);
1360out:
1361#ifdef __UBOOT__
1362        /* Reset any globals that the driver depends on being zeroed */
1363        mtd_devs = 0;
1364#endif
1365        ubi_err("cannot initialize UBI, error %d", err);
1366        return err;
1367}
1368late_initcall(ubi_init);
1369
1370#ifndef __UBOOT__
1371static void __exit ubi_exit(void)
1372#else
1373void ubi_exit(void)
1374#endif
1375{
1376        int i;
1377
1378        ubiblock_exit();
1379
1380        for (i = 0; i < UBI_MAX_DEVICES; i++)
1381                if (ubi_devices[i]) {
1382                        mutex_lock(&ubi_devices_mutex);
1383                        ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1384                        mutex_unlock(&ubi_devices_mutex);
1385                }
1386        ubi_debugfs_exit();
1387        kmem_cache_destroy(ubi_wl_entry_slab);
1388        misc_deregister(&ubi_ctrl_cdev);
1389        class_remove_file(ubi_class, &ubi_version);
1390        class_destroy(ubi_class);
1391#ifdef __UBOOT__
1392        /* Reset any globals that the driver depends on being zeroed */
1393        mtd_devs = 0;
1394#endif
1395}
1396module_exit(ubi_exit);
1397
1398/**
1399 * bytes_str_to_int - convert a number of bytes string into an integer.
1400 * @str: the string to convert
1401 *
1402 * This function returns positive resulting integer in case of success and a
1403 * negative error code in case of failure.
1404 */
1405static int __init bytes_str_to_int(const char *str)
1406{
1407        char *endp;
1408        unsigned long result;
1409
1410        result = simple_strtoul(str, &endp, 0);
1411        if (str == endp || result >= INT_MAX) {
1412                ubi_err("incorrect bytes count: \"%s\"\n", str);
1413                return -EINVAL;
1414        }
1415
1416        switch (*endp) {
1417        case 'G':
1418                result *= 1024;
1419        case 'M':
1420                result *= 1024;
1421        case 'K':
1422                result *= 1024;
1423                if (endp[1] == 'i' && endp[2] == 'B')
1424                        endp += 2;
1425        case '\0':
1426                break;
1427        default:
1428                ubi_err("incorrect bytes count: \"%s\"\n", str);
1429                return -EINVAL;
1430        }
1431
1432        return result;
1433}
1434
1435int kstrtoint(const char *s, unsigned int base, int *res)
1436{
1437        unsigned long long tmp;
1438
1439        tmp = simple_strtoull(s, NULL, base);
1440        if (tmp != (unsigned long long)(int)tmp)
1441                return -ERANGE;
1442
1443        return (int)tmp;
1444}
1445
1446/**
1447 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1448 * @val: the parameter value to parse
1449 * @kp: not used
1450 *
1451 * This function returns zero in case of success and a negative error code in
1452 * case of error.
1453 */
1454#ifndef __UBOOT__
1455static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1456#else
1457int ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1458#endif
1459{
1460        int i, len;
1461        struct mtd_dev_param *p;
1462        char buf[MTD_PARAM_LEN_MAX];
1463        char *pbuf = &buf[0];
1464        char *tokens[MTD_PARAM_MAX_COUNT], *token;
1465
1466        if (!val)
1467                return -EINVAL;
1468
1469        if (mtd_devs == UBI_MAX_DEVICES) {
1470                ubi_err("too many parameters, max. is %d\n",
1471                        UBI_MAX_DEVICES);
1472                return -EINVAL;
1473        }
1474
1475        len = strnlen(val, MTD_PARAM_LEN_MAX);
1476        if (len == MTD_PARAM_LEN_MAX) {
1477                ubi_err("parameter \"%s\" is too long, max. is %d\n",
1478                        val, MTD_PARAM_LEN_MAX);
1479                return -EINVAL;
1480        }
1481
1482        if (len == 0) {
1483                pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1484                return 0;
1485        }
1486
1487        strcpy(buf, val);
1488
1489        /* Get rid of the final newline */
1490        if (buf[len - 1] == '\n')
1491                buf[len - 1] = '\0';
1492
1493        for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1494                tokens[i] = strsep(&pbuf, ",");
1495
1496        if (pbuf) {
1497                ubi_err("too many arguments at \"%s\"\n", val);
1498                return -EINVAL;
1499        }
1500
1501        p = &mtd_dev_param[mtd_devs];
1502        strcpy(&p->name[0], tokens[0]);
1503
1504        token = tokens[1];
1505        if (token) {
1506                p->vid_hdr_offs = bytes_str_to_int(token);
1507
1508                if (p->vid_hdr_offs < 0)
1509                        return p->vid_hdr_offs;
1510        }
1511
1512        token = tokens[2];
1513        if (token) {
1514                int err = kstrtoint(token, 10, &p->max_beb_per1024);
1515
1516                if (err) {
1517                        ubi_err("bad value for max_beb_per1024 parameter: %s",
1518                                token);
1519                        return -EINVAL;
1520                }
1521        }
1522
1523        token = tokens[3];
1524        if (token) {
1525                int err = kstrtoint(token, 10, &p->ubi_num);
1526
1527                if (err) {
1528                        ubi_err("bad value for ubi_num parameter: %s", token);
1529                        return -EINVAL;
1530                }
1531        } else
1532                p->ubi_num = UBI_DEV_NUM_AUTO;
1533
1534        mtd_devs += 1;
1535        return 0;
1536}
1537
1538module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1539MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1540                      "Multiple \"mtd\" parameters may be specified.\n"
1541                      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1542                      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1543                      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1544                      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1545                      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1546                      "\n"
1547                      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1548                      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1549                      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1550                      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1551                      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1552#ifdef CONFIG_MTD_UBI_FASTMAP
1553module_param(fm_autoconvert, bool, 0644);
1554MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1555#endif
1556MODULE_VERSION(__stringify(UBI_VERSION));
1557MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1558MODULE_AUTHOR("Artem Bityutskiy");
1559MODULE_LICENSE("GPL");
1560