uboot/fs/ubifs/debug.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * SPDX-License-Identifier:     GPL-2.0+
   7 *
   8 * Authors: Artem Bityutskiy (Битюцкий Артём)
   9 *          Adrian Hunter
  10 */
  11
  12/*
  13 * This file implements most of the debugging stuff which is compiled in only
  14 * when it is enabled. But some debugging check functions are implemented in
  15 * corresponding subsystem, just because they are closely related and utilize
  16 * various local functions of those subsystems.
  17 */
  18
  19#ifndef __UBOOT__
  20#include <linux/module.h>
  21#include <linux/debugfs.h>
  22#include <linux/math64.h>
  23#include <linux/uaccess.h>
  24#include <linux/random.h>
  25#else
  26#include <linux/compat.h>
  27#include <linux/err.h>
  28#endif
  29#include "ubifs.h"
  30
  31#ifndef __UBOOT__
  32static DEFINE_SPINLOCK(dbg_lock);
  33#endif
  34
  35static const char *get_key_fmt(int fmt)
  36{
  37        switch (fmt) {
  38        case UBIFS_SIMPLE_KEY_FMT:
  39                return "simple";
  40        default:
  41                return "unknown/invalid format";
  42        }
  43}
  44
  45static const char *get_key_hash(int hash)
  46{
  47        switch (hash) {
  48        case UBIFS_KEY_HASH_R5:
  49                return "R5";
  50        case UBIFS_KEY_HASH_TEST:
  51                return "test";
  52        default:
  53                return "unknown/invalid name hash";
  54        }
  55}
  56
  57static const char *get_key_type(int type)
  58{
  59        switch (type) {
  60        case UBIFS_INO_KEY:
  61                return "inode";
  62        case UBIFS_DENT_KEY:
  63                return "direntry";
  64        case UBIFS_XENT_KEY:
  65                return "xentry";
  66        case UBIFS_DATA_KEY:
  67                return "data";
  68        case UBIFS_TRUN_KEY:
  69                return "truncate";
  70        default:
  71                return "unknown/invalid key";
  72        }
  73}
  74
  75#ifndef __UBOOT__
  76static const char *get_dent_type(int type)
  77{
  78        switch (type) {
  79        case UBIFS_ITYPE_REG:
  80                return "file";
  81        case UBIFS_ITYPE_DIR:
  82                return "dir";
  83        case UBIFS_ITYPE_LNK:
  84                return "symlink";
  85        case UBIFS_ITYPE_BLK:
  86                return "blkdev";
  87        case UBIFS_ITYPE_CHR:
  88                return "char dev";
  89        case UBIFS_ITYPE_FIFO:
  90                return "fifo";
  91        case UBIFS_ITYPE_SOCK:
  92                return "socket";
  93        default:
  94                return "unknown/invalid type";
  95        }
  96}
  97#endif
  98
  99const char *dbg_snprintf_key(const struct ubifs_info *c,
 100                             const union ubifs_key *key, char *buffer, int len)
 101{
 102        char *p = buffer;
 103        int type = key_type(c, key);
 104
 105        if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 106                switch (type) {
 107                case UBIFS_INO_KEY:
 108                        len -= snprintf(p, len, "(%lu, %s)",
 109                                        (unsigned long)key_inum(c, key),
 110                                        get_key_type(type));
 111                        break;
 112                case UBIFS_DENT_KEY:
 113                case UBIFS_XENT_KEY:
 114                        len -= snprintf(p, len, "(%lu, %s, %#08x)",
 115                                        (unsigned long)key_inum(c, key),
 116                                        get_key_type(type), key_hash(c, key));
 117                        break;
 118                case UBIFS_DATA_KEY:
 119                        len -= snprintf(p, len, "(%lu, %s, %u)",
 120                                        (unsigned long)key_inum(c, key),
 121                                        get_key_type(type), key_block(c, key));
 122                        break;
 123                case UBIFS_TRUN_KEY:
 124                        len -= snprintf(p, len, "(%lu, %s)",
 125                                        (unsigned long)key_inum(c, key),
 126                                        get_key_type(type));
 127                        break;
 128                default:
 129                        len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 130                                        key->u32[0], key->u32[1]);
 131                }
 132        } else
 133                len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 134        ubifs_assert(len > 0);
 135        return p;
 136}
 137
 138const char *dbg_ntype(int type)
 139{
 140        switch (type) {
 141        case UBIFS_PAD_NODE:
 142                return "padding node";
 143        case UBIFS_SB_NODE:
 144                return "superblock node";
 145        case UBIFS_MST_NODE:
 146                return "master node";
 147        case UBIFS_REF_NODE:
 148                return "reference node";
 149        case UBIFS_INO_NODE:
 150                return "inode node";
 151        case UBIFS_DENT_NODE:
 152                return "direntry node";
 153        case UBIFS_XENT_NODE:
 154                return "xentry node";
 155        case UBIFS_DATA_NODE:
 156                return "data node";
 157        case UBIFS_TRUN_NODE:
 158                return "truncate node";
 159        case UBIFS_IDX_NODE:
 160                return "indexing node";
 161        case UBIFS_CS_NODE:
 162                return "commit start node";
 163        case UBIFS_ORPH_NODE:
 164                return "orphan node";
 165        default:
 166                return "unknown node";
 167        }
 168}
 169
 170static const char *dbg_gtype(int type)
 171{
 172        switch (type) {
 173        case UBIFS_NO_NODE_GROUP:
 174                return "no node group";
 175        case UBIFS_IN_NODE_GROUP:
 176                return "in node group";
 177        case UBIFS_LAST_OF_NODE_GROUP:
 178                return "last of node group";
 179        default:
 180                return "unknown";
 181        }
 182}
 183
 184const char *dbg_cstate(int cmt_state)
 185{
 186        switch (cmt_state) {
 187        case COMMIT_RESTING:
 188                return "commit resting";
 189        case COMMIT_BACKGROUND:
 190                return "background commit requested";
 191        case COMMIT_REQUIRED:
 192                return "commit required";
 193        case COMMIT_RUNNING_BACKGROUND:
 194                return "BACKGROUND commit running";
 195        case COMMIT_RUNNING_REQUIRED:
 196                return "commit running and required";
 197        case COMMIT_BROKEN:
 198                return "broken commit";
 199        default:
 200                return "unknown commit state";
 201        }
 202}
 203
 204const char *dbg_jhead(int jhead)
 205{
 206        switch (jhead) {
 207        case GCHD:
 208                return "0 (GC)";
 209        case BASEHD:
 210                return "1 (base)";
 211        case DATAHD:
 212                return "2 (data)";
 213        default:
 214                return "unknown journal head";
 215        }
 216}
 217
 218static void dump_ch(const struct ubifs_ch *ch)
 219{
 220        pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 221        pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 222        pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 223               dbg_ntype(ch->node_type));
 224        pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 225               dbg_gtype(ch->group_type));
 226        pr_err("\tsqnum          %llu\n",
 227               (unsigned long long)le64_to_cpu(ch->sqnum));
 228        pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 229}
 230
 231void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 232{
 233#ifndef __UBOOT__
 234        const struct ubifs_inode *ui = ubifs_inode(inode);
 235        struct qstr nm = { .name = NULL };
 236        union ubifs_key key;
 237        struct ubifs_dent_node *dent, *pdent = NULL;
 238        int count = 2;
 239
 240        pr_err("Dump in-memory inode:");
 241        pr_err("\tinode          %lu\n", inode->i_ino);
 242        pr_err("\tsize           %llu\n",
 243               (unsigned long long)i_size_read(inode));
 244        pr_err("\tnlink          %u\n", inode->i_nlink);
 245        pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 246        pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 247        pr_err("\tatime          %u.%u\n",
 248               (unsigned int)inode->i_atime.tv_sec,
 249               (unsigned int)inode->i_atime.tv_nsec);
 250        pr_err("\tmtime          %u.%u\n",
 251               (unsigned int)inode->i_mtime.tv_sec,
 252               (unsigned int)inode->i_mtime.tv_nsec);
 253        pr_err("\tctime          %u.%u\n",
 254               (unsigned int)inode->i_ctime.tv_sec,
 255               (unsigned int)inode->i_ctime.tv_nsec);
 256        pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 257        pr_err("\txattr_size     %u\n", ui->xattr_size);
 258        pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 259        pr_err("\txattr_names    %u\n", ui->xattr_names);
 260        pr_err("\tdirty          %u\n", ui->dirty);
 261        pr_err("\txattr          %u\n", ui->xattr);
 262        pr_err("\tbulk_read      %u\n", ui->xattr);
 263        pr_err("\tsynced_i_size  %llu\n",
 264               (unsigned long long)ui->synced_i_size);
 265        pr_err("\tui_size        %llu\n",
 266               (unsigned long long)ui->ui_size);
 267        pr_err("\tflags          %d\n", ui->flags);
 268        pr_err("\tcompr_type     %d\n", ui->compr_type);
 269        pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 270        pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 271        pr_err("\tdata_len       %d\n", ui->data_len);
 272
 273        if (!S_ISDIR(inode->i_mode))
 274                return;
 275
 276        pr_err("List of directory entries:\n");
 277        ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 278
 279        lowest_dent_key(c, &key, inode->i_ino);
 280        while (1) {
 281                dent = ubifs_tnc_next_ent(c, &key, &nm);
 282                if (IS_ERR(dent)) {
 283                        if (PTR_ERR(dent) != -ENOENT)
 284                                pr_err("error %ld\n", PTR_ERR(dent));
 285                        break;
 286                }
 287
 288                pr_err("\t%d: %s (%s)\n",
 289                       count++, dent->name, get_dent_type(dent->type));
 290
 291                nm.name = dent->name;
 292                nm.len = le16_to_cpu(dent->nlen);
 293                kfree(pdent);
 294                pdent = dent;
 295                key_read(c, &dent->key, &key);
 296        }
 297        kfree(pdent);
 298#endif
 299}
 300
 301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 302{
 303        int i, n;
 304        union ubifs_key key;
 305        const struct ubifs_ch *ch = node;
 306        char key_buf[DBG_KEY_BUF_LEN];
 307
 308        /* If the magic is incorrect, just hexdump the first bytes */
 309        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 310                pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 311                print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 312                               (void *)node, UBIFS_CH_SZ, 1);
 313                return;
 314        }
 315
 316        spin_lock(&dbg_lock);
 317        dump_ch(node);
 318
 319        switch (ch->node_type) {
 320        case UBIFS_PAD_NODE:
 321        {
 322                const struct ubifs_pad_node *pad = node;
 323
 324                pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 325                break;
 326        }
 327        case UBIFS_SB_NODE:
 328        {
 329                const struct ubifs_sb_node *sup = node;
 330                unsigned int sup_flags = le32_to_cpu(sup->flags);
 331
 332                pr_err("\tkey_hash       %d (%s)\n",
 333                       (int)sup->key_hash, get_key_hash(sup->key_hash));
 334                pr_err("\tkey_fmt        %d (%s)\n",
 335                       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 336                pr_err("\tflags          %#x\n", sup_flags);
 337                pr_err("\t  big_lpt      %u\n",
 338                       !!(sup_flags & UBIFS_FLG_BIGLPT));
 339                pr_err("\t  space_fixup  %u\n",
 340                       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 341                pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 342                pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 343                pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 344                pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 345                pr_err("\tmax_bud_bytes  %llu\n",
 346                       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 347                pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 348                pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 349                pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 350                pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 351                pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 352                pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 353                pr_err("\tdefault_compr  %u\n",
 354                       (int)le16_to_cpu(sup->default_compr));
 355                pr_err("\trp_size        %llu\n",
 356                       (unsigned long long)le64_to_cpu(sup->rp_size));
 357                pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 358                pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 359                pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 360                pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 361                pr_err("\tUUID           %pUB\n", sup->uuid);
 362                break;
 363        }
 364        case UBIFS_MST_NODE:
 365        {
 366                const struct ubifs_mst_node *mst = node;
 367
 368                pr_err("\thighest_inum   %llu\n",
 369                       (unsigned long long)le64_to_cpu(mst->highest_inum));
 370                pr_err("\tcommit number  %llu\n",
 371                       (unsigned long long)le64_to_cpu(mst->cmt_no));
 372                pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 373                pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 374                pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 375                pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 376                pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 377                pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 378                pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 379                pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 380                pr_err("\tindex_size     %llu\n",
 381                       (unsigned long long)le64_to_cpu(mst->index_size));
 382                pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 383                pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 384                pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 385                pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 386                pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 387                pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 388                pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 389                pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 390                pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 391                pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 392                pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 393                pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 394                pr_err("\ttotal_free     %llu\n",
 395                       (unsigned long long)le64_to_cpu(mst->total_free));
 396                pr_err("\ttotal_dirty    %llu\n",
 397                       (unsigned long long)le64_to_cpu(mst->total_dirty));
 398                pr_err("\ttotal_used     %llu\n",
 399                       (unsigned long long)le64_to_cpu(mst->total_used));
 400                pr_err("\ttotal_dead     %llu\n",
 401                       (unsigned long long)le64_to_cpu(mst->total_dead));
 402                pr_err("\ttotal_dark     %llu\n",
 403                       (unsigned long long)le64_to_cpu(mst->total_dark));
 404                break;
 405        }
 406        case UBIFS_REF_NODE:
 407        {
 408                const struct ubifs_ref_node *ref = node;
 409
 410                pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 411                pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 412                pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 413                break;
 414        }
 415        case UBIFS_INO_NODE:
 416        {
 417                const struct ubifs_ino_node *ino = node;
 418
 419                key_read(c, &ino->key, &key);
 420                pr_err("\tkey            %s\n",
 421                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 422                pr_err("\tcreat_sqnum    %llu\n",
 423                       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 424                pr_err("\tsize           %llu\n",
 425                       (unsigned long long)le64_to_cpu(ino->size));
 426                pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 427                pr_err("\tatime          %lld.%u\n",
 428                       (long long)le64_to_cpu(ino->atime_sec),
 429                       le32_to_cpu(ino->atime_nsec));
 430                pr_err("\tmtime          %lld.%u\n",
 431                       (long long)le64_to_cpu(ino->mtime_sec),
 432                       le32_to_cpu(ino->mtime_nsec));
 433                pr_err("\tctime          %lld.%u\n",
 434                       (long long)le64_to_cpu(ino->ctime_sec),
 435                       le32_to_cpu(ino->ctime_nsec));
 436                pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 437                pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 438                pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 439                pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 440                pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 441                pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 442                pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 443                pr_err("\tcompr_type     %#x\n",
 444                       (int)le16_to_cpu(ino->compr_type));
 445                pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 446                break;
 447        }
 448        case UBIFS_DENT_NODE:
 449        case UBIFS_XENT_NODE:
 450        {
 451                const struct ubifs_dent_node *dent = node;
 452                int nlen = le16_to_cpu(dent->nlen);
 453
 454                key_read(c, &dent->key, &key);
 455                pr_err("\tkey            %s\n",
 456                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 457                pr_err("\tinum           %llu\n",
 458                       (unsigned long long)le64_to_cpu(dent->inum));
 459                pr_err("\ttype           %d\n", (int)dent->type);
 460                pr_err("\tnlen           %d\n", nlen);
 461                pr_err("\tname           ");
 462
 463                if (nlen > UBIFS_MAX_NLEN)
 464                        pr_err("(bad name length, not printing, bad or corrupted node)");
 465                else {
 466                        for (i = 0; i < nlen && dent->name[i]; i++)
 467                                pr_cont("%c", dent->name[i]);
 468                }
 469                pr_cont("\n");
 470
 471                break;
 472        }
 473        case UBIFS_DATA_NODE:
 474        {
 475                const struct ubifs_data_node *dn = node;
 476                int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 477
 478                key_read(c, &dn->key, &key);
 479                pr_err("\tkey            %s\n",
 480                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 481                pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 482                pr_err("\tcompr_typ      %d\n",
 483                       (int)le16_to_cpu(dn->compr_type));
 484                pr_err("\tdata size      %d\n", dlen);
 485                pr_err("\tdata:\n");
 486                print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 487                               (void *)&dn->data, dlen, 0);
 488                break;
 489        }
 490        case UBIFS_TRUN_NODE:
 491        {
 492                const struct ubifs_trun_node *trun = node;
 493
 494                pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 495                pr_err("\told_size       %llu\n",
 496                       (unsigned long long)le64_to_cpu(trun->old_size));
 497                pr_err("\tnew_size       %llu\n",
 498                       (unsigned long long)le64_to_cpu(trun->new_size));
 499                break;
 500        }
 501        case UBIFS_IDX_NODE:
 502        {
 503                const struct ubifs_idx_node *idx = node;
 504
 505                n = le16_to_cpu(idx->child_cnt);
 506                pr_err("\tchild_cnt      %d\n", n);
 507                pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 508                pr_err("\tBranches:\n");
 509
 510                for (i = 0; i < n && i < c->fanout - 1; i++) {
 511                        const struct ubifs_branch *br;
 512
 513                        br = ubifs_idx_branch(c, idx, i);
 514                        key_read(c, &br->key, &key);
 515                        pr_err("\t%d: LEB %d:%d len %d key %s\n",
 516                               i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 517                               le32_to_cpu(br->len),
 518                               dbg_snprintf_key(c, &key, key_buf,
 519                                                DBG_KEY_BUF_LEN));
 520                }
 521                break;
 522        }
 523        case UBIFS_CS_NODE:
 524                break;
 525        case UBIFS_ORPH_NODE:
 526        {
 527                const struct ubifs_orph_node *orph = node;
 528
 529                pr_err("\tcommit number  %llu\n",
 530                       (unsigned long long)
 531                                le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 532                pr_err("\tlast node flag %llu\n",
 533                       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 534                n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 535                pr_err("\t%d orphan inode numbers:\n", n);
 536                for (i = 0; i < n; i++)
 537                        pr_err("\t  ino %llu\n",
 538                               (unsigned long long)le64_to_cpu(orph->inos[i]));
 539                break;
 540        }
 541        default:
 542                pr_err("node type %d was not recognized\n",
 543                       (int)ch->node_type);
 544        }
 545        spin_unlock(&dbg_lock);
 546}
 547
 548void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 549{
 550        spin_lock(&dbg_lock);
 551        pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 552               req->new_ino, req->dirtied_ino);
 553        pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 554               req->new_ino_d, req->dirtied_ino_d);
 555        pr_err("\tnew_page    %d, dirtied_page %d\n",
 556               req->new_page, req->dirtied_page);
 557        pr_err("\tnew_dent    %d, mod_dent     %d\n",
 558               req->new_dent, req->mod_dent);
 559        pr_err("\tidx_growth  %d\n", req->idx_growth);
 560        pr_err("\tdata_growth %d dd_growth     %d\n",
 561               req->data_growth, req->dd_growth);
 562        spin_unlock(&dbg_lock);
 563}
 564
 565void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 566{
 567        spin_lock(&dbg_lock);
 568        pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 569               current->pid, lst->empty_lebs, lst->idx_lebs);
 570        pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 571               lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 572        pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 573               lst->total_used, lst->total_dark, lst->total_dead);
 574        spin_unlock(&dbg_lock);
 575}
 576
 577#ifndef __UBOOT__
 578void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 579{
 580        int i;
 581        struct rb_node *rb;
 582        struct ubifs_bud *bud;
 583        struct ubifs_gced_idx_leb *idx_gc;
 584        long long available, outstanding, free;
 585
 586        spin_lock(&c->space_lock);
 587        spin_lock(&dbg_lock);
 588        pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 589               current->pid, bi->data_growth + bi->dd_growth,
 590               bi->data_growth + bi->dd_growth + bi->idx_growth);
 591        pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 592               bi->data_growth, bi->dd_growth, bi->idx_growth);
 593        pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 594               bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 595        pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 596               bi->page_budget, bi->inode_budget, bi->dent_budget);
 597        pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 598        pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 599               c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 600
 601        if (bi != &c->bi)
 602                /*
 603                 * If we are dumping saved budgeting data, do not print
 604                 * additional information which is about the current state, not
 605                 * the old one which corresponded to the saved budgeting data.
 606                 */
 607                goto out_unlock;
 608
 609        pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 610               c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 611        pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 612               atomic_long_read(&c->dirty_pg_cnt),
 613               atomic_long_read(&c->dirty_zn_cnt),
 614               atomic_long_read(&c->clean_zn_cnt));
 615        pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 616
 617        /* If we are in R/O mode, journal heads do not exist */
 618        if (c->jheads)
 619                for (i = 0; i < c->jhead_cnt; i++)
 620                        pr_err("\tjhead %s\t LEB %d\n",
 621                               dbg_jhead(c->jheads[i].wbuf.jhead),
 622                               c->jheads[i].wbuf.lnum);
 623        for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 624                bud = rb_entry(rb, struct ubifs_bud, rb);
 625                pr_err("\tbud LEB %d\n", bud->lnum);
 626        }
 627        list_for_each_entry(bud, &c->old_buds, list)
 628                pr_err("\told bud LEB %d\n", bud->lnum);
 629        list_for_each_entry(idx_gc, &c->idx_gc, list)
 630                pr_err("\tGC'ed idx LEB %d unmap %d\n",
 631                       idx_gc->lnum, idx_gc->unmap);
 632        pr_err("\tcommit state %d\n", c->cmt_state);
 633
 634        /* Print budgeting predictions */
 635        available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 636        outstanding = c->bi.data_growth + c->bi.dd_growth;
 637        free = ubifs_get_free_space_nolock(c);
 638        pr_err("Budgeting predictions:\n");
 639        pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 640               available, outstanding, free);
 641out_unlock:
 642        spin_unlock(&dbg_lock);
 643        spin_unlock(&c->space_lock);
 644}
 645#else
 646void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 647{
 648}
 649#endif
 650
 651void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 652{
 653        int i, spc, dark = 0, dead = 0;
 654        struct rb_node *rb;
 655        struct ubifs_bud *bud;
 656
 657        spc = lp->free + lp->dirty;
 658        if (spc < c->dead_wm)
 659                dead = spc;
 660        else
 661                dark = ubifs_calc_dark(c, spc);
 662
 663        if (lp->flags & LPROPS_INDEX)
 664                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 665                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 666                       lp->flags);
 667        else
 668                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 669                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 670                       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 671
 672        if (lp->flags & LPROPS_TAKEN) {
 673                if (lp->flags & LPROPS_INDEX)
 674                        pr_cont("index, taken");
 675                else
 676                        pr_cont("taken");
 677        } else {
 678                const char *s;
 679
 680                if (lp->flags & LPROPS_INDEX) {
 681                        switch (lp->flags & LPROPS_CAT_MASK) {
 682                        case LPROPS_DIRTY_IDX:
 683                                s = "dirty index";
 684                                break;
 685                        case LPROPS_FRDI_IDX:
 686                                s = "freeable index";
 687                                break;
 688                        default:
 689                                s = "index";
 690                        }
 691                } else {
 692                        switch (lp->flags & LPROPS_CAT_MASK) {
 693                        case LPROPS_UNCAT:
 694                                s = "not categorized";
 695                                break;
 696                        case LPROPS_DIRTY:
 697                                s = "dirty";
 698                                break;
 699                        case LPROPS_FREE:
 700                                s = "free";
 701                                break;
 702                        case LPROPS_EMPTY:
 703                                s = "empty";
 704                                break;
 705                        case LPROPS_FREEABLE:
 706                                s = "freeable";
 707                                break;
 708                        default:
 709                                s = NULL;
 710                                break;
 711                        }
 712                }
 713                pr_cont("%s", s);
 714        }
 715
 716        for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 717                bud = rb_entry(rb, struct ubifs_bud, rb);
 718                if (bud->lnum == lp->lnum) {
 719                        int head = 0;
 720                        for (i = 0; i < c->jhead_cnt; i++) {
 721                                /*
 722                                 * Note, if we are in R/O mode or in the middle
 723                                 * of mounting/re-mounting, the write-buffers do
 724                                 * not exist.
 725                                 */
 726                                if (c->jheads &&
 727                                    lp->lnum == c->jheads[i].wbuf.lnum) {
 728                                        pr_cont(", jhead %s", dbg_jhead(i));
 729                                        head = 1;
 730                                }
 731                        }
 732                        if (!head)
 733                                pr_cont(", bud of jhead %s",
 734                                       dbg_jhead(bud->jhead));
 735                }
 736        }
 737        if (lp->lnum == c->gc_lnum)
 738                pr_cont(", GC LEB");
 739        pr_cont(")\n");
 740}
 741
 742void ubifs_dump_lprops(struct ubifs_info *c)
 743{
 744        int lnum, err;
 745        struct ubifs_lprops lp;
 746        struct ubifs_lp_stats lst;
 747
 748        pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 749        ubifs_get_lp_stats(c, &lst);
 750        ubifs_dump_lstats(&lst);
 751
 752        for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 753                err = ubifs_read_one_lp(c, lnum, &lp);
 754                if (err)
 755                        ubifs_err("cannot read lprops for LEB %d", lnum);
 756
 757                ubifs_dump_lprop(c, &lp);
 758        }
 759        pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 760}
 761
 762void ubifs_dump_lpt_info(struct ubifs_info *c)
 763{
 764        int i;
 765
 766        spin_lock(&dbg_lock);
 767        pr_err("(pid %d) dumping LPT information\n", current->pid);
 768        pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 769        pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 770        pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 771        pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 772        pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 773        pr_err("\tbig_lpt:       %d\n", c->big_lpt);
 774        pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 775        pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 776        pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 777        pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 778        pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 779        pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 780        pr_err("\tspace_bits:    %d\n", c->space_bits);
 781        pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 782        pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 783        pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 784        pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 785        pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 786        pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 787        pr_err("\tLPT head is at %d:%d\n",
 788               c->nhead_lnum, c->nhead_offs);
 789        pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 790        if (c->big_lpt)
 791                pr_err("\tLPT lsave is at %d:%d\n",
 792                       c->lsave_lnum, c->lsave_offs);
 793        for (i = 0; i < c->lpt_lebs; i++)
 794                pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 795                       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 796                       c->ltab[i].tgc, c->ltab[i].cmt);
 797        spin_unlock(&dbg_lock);
 798}
 799
 800void ubifs_dump_sleb(const struct ubifs_info *c,
 801                     const struct ubifs_scan_leb *sleb, int offs)
 802{
 803        struct ubifs_scan_node *snod;
 804
 805        pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
 806               current->pid, sleb->lnum, offs);
 807
 808        list_for_each_entry(snod, &sleb->nodes, list) {
 809                cond_resched();
 810                pr_err("Dumping node at LEB %d:%d len %d\n",
 811                       sleb->lnum, snod->offs, snod->len);
 812                ubifs_dump_node(c, snod->node);
 813        }
 814}
 815
 816void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 817{
 818        struct ubifs_scan_leb *sleb;
 819        struct ubifs_scan_node *snod;
 820        void *buf;
 821
 822        pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 823
 824        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 825        if (!buf) {
 826                ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
 827                return;
 828        }
 829
 830        sleb = ubifs_scan(c, lnum, 0, buf, 0);
 831        if (IS_ERR(sleb)) {
 832                ubifs_err("scan error %d", (int)PTR_ERR(sleb));
 833                goto out;
 834        }
 835
 836        pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 837               sleb->nodes_cnt, sleb->endpt);
 838
 839        list_for_each_entry(snod, &sleb->nodes, list) {
 840                cond_resched();
 841                pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 842                       snod->offs, snod->len);
 843                ubifs_dump_node(c, snod->node);
 844        }
 845
 846        pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 847        ubifs_scan_destroy(sleb);
 848
 849out:
 850        vfree(buf);
 851        return;
 852}
 853
 854void ubifs_dump_znode(const struct ubifs_info *c,
 855                      const struct ubifs_znode *znode)
 856{
 857        int n;
 858        const struct ubifs_zbranch *zbr;
 859        char key_buf[DBG_KEY_BUF_LEN];
 860
 861        spin_lock(&dbg_lock);
 862        if (znode->parent)
 863                zbr = &znode->parent->zbranch[znode->iip];
 864        else
 865                zbr = &c->zroot;
 866
 867        pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 868               znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 869               znode->level, znode->child_cnt, znode->flags);
 870
 871        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 872                spin_unlock(&dbg_lock);
 873                return;
 874        }
 875
 876        pr_err("zbranches:\n");
 877        for (n = 0; n < znode->child_cnt; n++) {
 878                zbr = &znode->zbranch[n];
 879                if (znode->level > 0)
 880                        pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 881                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 882                               dbg_snprintf_key(c, &zbr->key, key_buf,
 883                                                DBG_KEY_BUF_LEN));
 884                else
 885                        pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 886                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 887                               dbg_snprintf_key(c, &zbr->key, key_buf,
 888                                                DBG_KEY_BUF_LEN));
 889        }
 890        spin_unlock(&dbg_lock);
 891}
 892
 893void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 894{
 895        int i;
 896
 897        pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 898               current->pid, cat, heap->cnt);
 899        for (i = 0; i < heap->cnt; i++) {
 900                struct ubifs_lprops *lprops = heap->arr[i];
 901
 902                pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 903                       i, lprops->lnum, lprops->hpos, lprops->free,
 904                       lprops->dirty, lprops->flags);
 905        }
 906        pr_err("(pid %d) finish dumping heap\n", current->pid);
 907}
 908
 909void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 910                      struct ubifs_nnode *parent, int iip)
 911{
 912        int i;
 913
 914        pr_err("(pid %d) dumping pnode:\n", current->pid);
 915        pr_err("\taddress %zx parent %zx cnext %zx\n",
 916               (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 917        pr_err("\tflags %lu iip %d level %d num %d\n",
 918               pnode->flags, iip, pnode->level, pnode->num);
 919        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 920                struct ubifs_lprops *lp = &pnode->lprops[i];
 921
 922                pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 923                       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 924        }
 925}
 926
 927void ubifs_dump_tnc(struct ubifs_info *c)
 928{
 929        struct ubifs_znode *znode;
 930        int level;
 931
 932        pr_err("\n");
 933        pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 934        znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 935        level = znode->level;
 936        pr_err("== Level %d ==\n", level);
 937        while (znode) {
 938                if (level != znode->level) {
 939                        level = znode->level;
 940                        pr_err("== Level %d ==\n", level);
 941                }
 942                ubifs_dump_znode(c, znode);
 943                znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 944        }
 945        pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 946}
 947
 948static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 949                      void *priv)
 950{
 951        ubifs_dump_znode(c, znode);
 952        return 0;
 953}
 954
 955/**
 956 * ubifs_dump_index - dump the on-flash index.
 957 * @c: UBIFS file-system description object
 958 *
 959 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 960 * which dumps only in-memory znodes and does not read znodes which from flash.
 961 */
 962void ubifs_dump_index(struct ubifs_info *c)
 963{
 964        dbg_walk_index(c, NULL, dump_znode, NULL);
 965}
 966
 967#ifndef __UBOOT__
 968/**
 969 * dbg_save_space_info - save information about flash space.
 970 * @c: UBIFS file-system description object
 971 *
 972 * This function saves information about UBIFS free space, dirty space, etc, in
 973 * order to check it later.
 974 */
 975void dbg_save_space_info(struct ubifs_info *c)
 976{
 977        struct ubifs_debug_info *d = c->dbg;
 978        int freeable_cnt;
 979
 980        spin_lock(&c->space_lock);
 981        memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 982        memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 983        d->saved_idx_gc_cnt = c->idx_gc_cnt;
 984
 985        /*
 986         * We use a dirty hack here and zero out @c->freeable_cnt, because it
 987         * affects the free space calculations, and UBIFS might not know about
 988         * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
 989         * only when we read their lprops, and we do this only lazily, upon the
 990         * need. So at any given point of time @c->freeable_cnt might be not
 991         * exactly accurate.
 992         *
 993         * Just one example about the issue we hit when we did not zero
 994         * @c->freeable_cnt.
 995         * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
 996         *    amount of free space in @d->saved_free
 997         * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
 998         *    information from flash, where we cache LEBs from various
 999         *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1000         *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1001         *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1002         *    -> 'ubifs_add_to_cat()').
1003         * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1004         *    becomes %1.
1005         * 4. We calculate the amount of free space when the re-mount is
1006         *    finished in 'dbg_check_space_info()' and it does not match
1007         *    @d->saved_free.
1008         */
1009        freeable_cnt = c->freeable_cnt;
1010        c->freeable_cnt = 0;
1011        d->saved_free = ubifs_get_free_space_nolock(c);
1012        c->freeable_cnt = freeable_cnt;
1013        spin_unlock(&c->space_lock);
1014}
1015
1016/**
1017 * dbg_check_space_info - check flash space information.
1018 * @c: UBIFS file-system description object
1019 *
1020 * This function compares current flash space information with the information
1021 * which was saved when the 'dbg_save_space_info()' function was called.
1022 * Returns zero if the information has not changed, and %-EINVAL it it has
1023 * changed.
1024 */
1025int dbg_check_space_info(struct ubifs_info *c)
1026{
1027        struct ubifs_debug_info *d = c->dbg;
1028        struct ubifs_lp_stats lst;
1029        long long free;
1030        int freeable_cnt;
1031
1032        spin_lock(&c->space_lock);
1033        freeable_cnt = c->freeable_cnt;
1034        c->freeable_cnt = 0;
1035        free = ubifs_get_free_space_nolock(c);
1036        c->freeable_cnt = freeable_cnt;
1037        spin_unlock(&c->space_lock);
1038
1039        if (free != d->saved_free) {
1040                ubifs_err("free space changed from %lld to %lld",
1041                          d->saved_free, free);
1042                goto out;
1043        }
1044
1045        return 0;
1046
1047out:
1048        ubifs_msg("saved lprops statistics dump");
1049        ubifs_dump_lstats(&d->saved_lst);
1050        ubifs_msg("saved budgeting info dump");
1051        ubifs_dump_budg(c, &d->saved_bi);
1052        ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1053        ubifs_msg("current lprops statistics dump");
1054        ubifs_get_lp_stats(c, &lst);
1055        ubifs_dump_lstats(&lst);
1056        ubifs_msg("current budgeting info dump");
1057        ubifs_dump_budg(c, &c->bi);
1058        dump_stack();
1059        return -EINVAL;
1060}
1061
1062/**
1063 * dbg_check_synced_i_size - check synchronized inode size.
1064 * @c: UBIFS file-system description object
1065 * @inode: inode to check
1066 *
1067 * If inode is clean, synchronized inode size has to be equivalent to current
1068 * inode size. This function has to be called only for locked inodes (@i_mutex
1069 * has to be locked). Returns %0 if synchronized inode size if correct, and
1070 * %-EINVAL if not.
1071 */
1072int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1073{
1074        int err = 0;
1075        struct ubifs_inode *ui = ubifs_inode(inode);
1076
1077        if (!dbg_is_chk_gen(c))
1078                return 0;
1079        if (!S_ISREG(inode->i_mode))
1080                return 0;
1081
1082        mutex_lock(&ui->ui_mutex);
1083        spin_lock(&ui->ui_lock);
1084        if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1085                ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean",
1086                          ui->ui_size, ui->synced_i_size);
1087                ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1088                          inode->i_mode, i_size_read(inode));
1089                dump_stack();
1090                err = -EINVAL;
1091        }
1092        spin_unlock(&ui->ui_lock);
1093        mutex_unlock(&ui->ui_mutex);
1094        return err;
1095}
1096
1097/*
1098 * dbg_check_dir - check directory inode size and link count.
1099 * @c: UBIFS file-system description object
1100 * @dir: the directory to calculate size for
1101 * @size: the result is returned here
1102 *
1103 * This function makes sure that directory size and link count are correct.
1104 * Returns zero in case of success and a negative error code in case of
1105 * failure.
1106 *
1107 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1108 * calling this function.
1109 */
1110int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1111{
1112        unsigned int nlink = 2;
1113        union ubifs_key key;
1114        struct ubifs_dent_node *dent, *pdent = NULL;
1115        struct qstr nm = { .name = NULL };
1116        loff_t size = UBIFS_INO_NODE_SZ;
1117
1118        if (!dbg_is_chk_gen(c))
1119                return 0;
1120
1121        if (!S_ISDIR(dir->i_mode))
1122                return 0;
1123
1124        lowest_dent_key(c, &key, dir->i_ino);
1125        while (1) {
1126                int err;
1127
1128                dent = ubifs_tnc_next_ent(c, &key, &nm);
1129                if (IS_ERR(dent)) {
1130                        err = PTR_ERR(dent);
1131                        if (err == -ENOENT)
1132                                break;
1133                        return err;
1134                }
1135
1136                nm.name = dent->name;
1137                nm.len = le16_to_cpu(dent->nlen);
1138                size += CALC_DENT_SIZE(nm.len);
1139                if (dent->type == UBIFS_ITYPE_DIR)
1140                        nlink += 1;
1141                kfree(pdent);
1142                pdent = dent;
1143                key_read(c, &dent->key, &key);
1144        }
1145        kfree(pdent);
1146
1147        if (i_size_read(dir) != size) {
1148                ubifs_err("directory inode %lu has size %llu, but calculated size is %llu",
1149                          dir->i_ino, (unsigned long long)i_size_read(dir),
1150                          (unsigned long long)size);
1151                ubifs_dump_inode(c, dir);
1152                dump_stack();
1153                return -EINVAL;
1154        }
1155        if (dir->i_nlink != nlink) {
1156                ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u",
1157                          dir->i_ino, dir->i_nlink, nlink);
1158                ubifs_dump_inode(c, dir);
1159                dump_stack();
1160                return -EINVAL;
1161        }
1162
1163        return 0;
1164}
1165
1166/**
1167 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1168 * @c: UBIFS file-system description object
1169 * @zbr1: first zbranch
1170 * @zbr2: following zbranch
1171 *
1172 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1173 * names of the direntries/xentries which are referred by the keys. This
1174 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1175 * sure the name of direntry/xentry referred by @zbr1 is less than
1176 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1177 * and a negative error code in case of failure.
1178 */
1179static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1180                               struct ubifs_zbranch *zbr2)
1181{
1182        int err, nlen1, nlen2, cmp;
1183        struct ubifs_dent_node *dent1, *dent2;
1184        union ubifs_key key;
1185        char key_buf[DBG_KEY_BUF_LEN];
1186
1187        ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1188        dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1189        if (!dent1)
1190                return -ENOMEM;
1191        dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1192        if (!dent2) {
1193                err = -ENOMEM;
1194                goto out_free;
1195        }
1196
1197        err = ubifs_tnc_read_node(c, zbr1, dent1);
1198        if (err)
1199                goto out_free;
1200        err = ubifs_validate_entry(c, dent1);
1201        if (err)
1202                goto out_free;
1203
1204        err = ubifs_tnc_read_node(c, zbr2, dent2);
1205        if (err)
1206                goto out_free;
1207        err = ubifs_validate_entry(c, dent2);
1208        if (err)
1209                goto out_free;
1210
1211        /* Make sure node keys are the same as in zbranch */
1212        err = 1;
1213        key_read(c, &dent1->key, &key);
1214        if (keys_cmp(c, &zbr1->key, &key)) {
1215                ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1216                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1217                                                       DBG_KEY_BUF_LEN));
1218                ubifs_err("but it should have key %s according to tnc",
1219                          dbg_snprintf_key(c, &zbr1->key, key_buf,
1220                                           DBG_KEY_BUF_LEN));
1221                ubifs_dump_node(c, dent1);
1222                goto out_free;
1223        }
1224
1225        key_read(c, &dent2->key, &key);
1226        if (keys_cmp(c, &zbr2->key, &key)) {
1227                ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1228                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1229                                                       DBG_KEY_BUF_LEN));
1230                ubifs_err("but it should have key %s according to tnc",
1231                          dbg_snprintf_key(c, &zbr2->key, key_buf,
1232                                           DBG_KEY_BUF_LEN));
1233                ubifs_dump_node(c, dent2);
1234                goto out_free;
1235        }
1236
1237        nlen1 = le16_to_cpu(dent1->nlen);
1238        nlen2 = le16_to_cpu(dent2->nlen);
1239
1240        cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1241        if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1242                err = 0;
1243                goto out_free;
1244        }
1245        if (cmp == 0 && nlen1 == nlen2)
1246                ubifs_err("2 xent/dent nodes with the same name");
1247        else
1248                ubifs_err("bad order of colliding key %s",
1249                          dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1250
1251        ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1252        ubifs_dump_node(c, dent1);
1253        ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1254        ubifs_dump_node(c, dent2);
1255
1256out_free:
1257        kfree(dent2);
1258        kfree(dent1);
1259        return err;
1260}
1261
1262/**
1263 * dbg_check_znode - check if znode is all right.
1264 * @c: UBIFS file-system description object
1265 * @zbr: zbranch which points to this znode
1266 *
1267 * This function makes sure that znode referred to by @zbr is all right.
1268 * Returns zero if it is, and %-EINVAL if it is not.
1269 */
1270static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1271{
1272        struct ubifs_znode *znode = zbr->znode;
1273        struct ubifs_znode *zp = znode->parent;
1274        int n, err, cmp;
1275
1276        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1277                err = 1;
1278                goto out;
1279        }
1280        if (znode->level < 0) {
1281                err = 2;
1282                goto out;
1283        }
1284        if (znode->iip < 0 || znode->iip >= c->fanout) {
1285                err = 3;
1286                goto out;
1287        }
1288
1289        if (zbr->len == 0)
1290                /* Only dirty zbranch may have no on-flash nodes */
1291                if (!ubifs_zn_dirty(znode)) {
1292                        err = 4;
1293                        goto out;
1294                }
1295
1296        if (ubifs_zn_dirty(znode)) {
1297                /*
1298                 * If znode is dirty, its parent has to be dirty as well. The
1299                 * order of the operation is important, so we have to have
1300                 * memory barriers.
1301                 */
1302                smp_mb();
1303                if (zp && !ubifs_zn_dirty(zp)) {
1304                        /*
1305                         * The dirty flag is atomic and is cleared outside the
1306                         * TNC mutex, so znode's dirty flag may now have
1307                         * been cleared. The child is always cleared before the
1308                         * parent, so we just need to check again.
1309                         */
1310                        smp_mb();
1311                        if (ubifs_zn_dirty(znode)) {
1312                                err = 5;
1313                                goto out;
1314                        }
1315                }
1316        }
1317
1318        if (zp) {
1319                const union ubifs_key *min, *max;
1320
1321                if (znode->level != zp->level - 1) {
1322                        err = 6;
1323                        goto out;
1324                }
1325
1326                /* Make sure the 'parent' pointer in our znode is correct */
1327                err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1328                if (!err) {
1329                        /* This zbranch does not exist in the parent */
1330                        err = 7;
1331                        goto out;
1332                }
1333
1334                if (znode->iip >= zp->child_cnt) {
1335                        err = 8;
1336                        goto out;
1337                }
1338
1339                if (znode->iip != n) {
1340                        /* This may happen only in case of collisions */
1341                        if (keys_cmp(c, &zp->zbranch[n].key,
1342                                     &zp->zbranch[znode->iip].key)) {
1343                                err = 9;
1344                                goto out;
1345                        }
1346                        n = znode->iip;
1347                }
1348
1349                /*
1350                 * Make sure that the first key in our znode is greater than or
1351                 * equal to the key in the pointing zbranch.
1352                 */
1353                min = &zbr->key;
1354                cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1355                if (cmp == 1) {
1356                        err = 10;
1357                        goto out;
1358                }
1359
1360                if (n + 1 < zp->child_cnt) {
1361                        max = &zp->zbranch[n + 1].key;
1362
1363                        /*
1364                         * Make sure the last key in our znode is less or
1365                         * equivalent than the key in the zbranch which goes
1366                         * after our pointing zbranch.
1367                         */
1368                        cmp = keys_cmp(c, max,
1369                                &znode->zbranch[znode->child_cnt - 1].key);
1370                        if (cmp == -1) {
1371                                err = 11;
1372                                goto out;
1373                        }
1374                }
1375        } else {
1376                /* This may only be root znode */
1377                if (zbr != &c->zroot) {
1378                        err = 12;
1379                        goto out;
1380                }
1381        }
1382
1383        /*
1384         * Make sure that next key is greater or equivalent then the previous
1385         * one.
1386         */
1387        for (n = 1; n < znode->child_cnt; n++) {
1388                cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1389                               &znode->zbranch[n].key);
1390                if (cmp > 0) {
1391                        err = 13;
1392                        goto out;
1393                }
1394                if (cmp == 0) {
1395                        /* This can only be keys with colliding hash */
1396                        if (!is_hash_key(c, &znode->zbranch[n].key)) {
1397                                err = 14;
1398                                goto out;
1399                        }
1400
1401                        if (znode->level != 0 || c->replaying)
1402                                continue;
1403
1404                        /*
1405                         * Colliding keys should follow binary order of
1406                         * corresponding xentry/dentry names.
1407                         */
1408                        err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1409                                                  &znode->zbranch[n]);
1410                        if (err < 0)
1411                                return err;
1412                        if (err) {
1413                                err = 15;
1414                                goto out;
1415                        }
1416                }
1417        }
1418
1419        for (n = 0; n < znode->child_cnt; n++) {
1420                if (!znode->zbranch[n].znode &&
1421                    (znode->zbranch[n].lnum == 0 ||
1422                     znode->zbranch[n].len == 0)) {
1423                        err = 16;
1424                        goto out;
1425                }
1426
1427                if (znode->zbranch[n].lnum != 0 &&
1428                    znode->zbranch[n].len == 0) {
1429                        err = 17;
1430                        goto out;
1431                }
1432
1433                if (znode->zbranch[n].lnum == 0 &&
1434                    znode->zbranch[n].len != 0) {
1435                        err = 18;
1436                        goto out;
1437                }
1438
1439                if (znode->zbranch[n].lnum == 0 &&
1440                    znode->zbranch[n].offs != 0) {
1441                        err = 19;
1442                        goto out;
1443                }
1444
1445                if (znode->level != 0 && znode->zbranch[n].znode)
1446                        if (znode->zbranch[n].znode->parent != znode) {
1447                                err = 20;
1448                                goto out;
1449                        }
1450        }
1451
1452        return 0;
1453
1454out:
1455        ubifs_err("failed, error %d", err);
1456        ubifs_msg("dump of the znode");
1457        ubifs_dump_znode(c, znode);
1458        if (zp) {
1459                ubifs_msg("dump of the parent znode");
1460                ubifs_dump_znode(c, zp);
1461        }
1462        dump_stack();
1463        return -EINVAL;
1464}
1465#else
1466
1467int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1468{
1469        return 0;
1470}
1471
1472void dbg_debugfs_exit_fs(struct ubifs_info *c)
1473{
1474        return;
1475}
1476
1477int ubifs_debugging_init(struct ubifs_info *c)
1478{
1479        return 0;
1480}
1481void ubifs_debugging_exit(struct ubifs_info *c)
1482{
1483}
1484int dbg_check_filesystem(struct ubifs_info *c)
1485{
1486        return 0;
1487}
1488int dbg_debugfs_init_fs(struct ubifs_info *c)
1489{
1490        return 0;
1491}
1492#endif
1493
1494#ifndef __UBOOT__
1495/**
1496 * dbg_check_tnc - check TNC tree.
1497 * @c: UBIFS file-system description object
1498 * @extra: do extra checks that are possible at start commit
1499 *
1500 * This function traverses whole TNC tree and checks every znode. Returns zero
1501 * if everything is all right and %-EINVAL if something is wrong with TNC.
1502 */
1503int dbg_check_tnc(struct ubifs_info *c, int extra)
1504{
1505        struct ubifs_znode *znode;
1506        long clean_cnt = 0, dirty_cnt = 0;
1507        int err, last;
1508
1509        if (!dbg_is_chk_index(c))
1510                return 0;
1511
1512        ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1513        if (!c->zroot.znode)
1514                return 0;
1515
1516        znode = ubifs_tnc_postorder_first(c->zroot.znode);
1517        while (1) {
1518                struct ubifs_znode *prev;
1519                struct ubifs_zbranch *zbr;
1520
1521                if (!znode->parent)
1522                        zbr = &c->zroot;
1523                else
1524                        zbr = &znode->parent->zbranch[znode->iip];
1525
1526                err = dbg_check_znode(c, zbr);
1527                if (err)
1528                        return err;
1529
1530                if (extra) {
1531                        if (ubifs_zn_dirty(znode))
1532                                dirty_cnt += 1;
1533                        else
1534                                clean_cnt += 1;
1535                }
1536
1537                prev = znode;
1538                znode = ubifs_tnc_postorder_next(znode);
1539                if (!znode)
1540                        break;
1541
1542                /*
1543                 * If the last key of this znode is equivalent to the first key
1544                 * of the next znode (collision), then check order of the keys.
1545                 */
1546                last = prev->child_cnt - 1;
1547                if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1548                    !keys_cmp(c, &prev->zbranch[last].key,
1549                              &znode->zbranch[0].key)) {
1550                        err = dbg_check_key_order(c, &prev->zbranch[last],
1551                                                  &znode->zbranch[0]);
1552                        if (err < 0)
1553                                return err;
1554                        if (err) {
1555                                ubifs_msg("first znode");
1556                                ubifs_dump_znode(c, prev);
1557                                ubifs_msg("second znode");
1558                                ubifs_dump_znode(c, znode);
1559                                return -EINVAL;
1560                        }
1561                }
1562        }
1563
1564        if (extra) {
1565                if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1566                        ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1567                                  atomic_long_read(&c->clean_zn_cnt),
1568                                  clean_cnt);
1569                        return -EINVAL;
1570                }
1571                if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1572                        ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1573                                  atomic_long_read(&c->dirty_zn_cnt),
1574                                  dirty_cnt);
1575                        return -EINVAL;
1576                }
1577        }
1578
1579        return 0;
1580}
1581#else
1582int dbg_check_tnc(struct ubifs_info *c, int extra)
1583{
1584        return 0;
1585}
1586#endif
1587
1588/**
1589 * dbg_walk_index - walk the on-flash index.
1590 * @c: UBIFS file-system description object
1591 * @leaf_cb: called for each leaf node
1592 * @znode_cb: called for each indexing node
1593 * @priv: private data which is passed to callbacks
1594 *
1595 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1596 * node and @znode_cb for each indexing node. Returns zero in case of success
1597 * and a negative error code in case of failure.
1598 *
1599 * It would be better if this function removed every znode it pulled to into
1600 * the TNC, so that the behavior more closely matched the non-debugging
1601 * behavior.
1602 */
1603int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1604                   dbg_znode_callback znode_cb, void *priv)
1605{
1606        int err;
1607        struct ubifs_zbranch *zbr;
1608        struct ubifs_znode *znode, *child;
1609
1610        mutex_lock(&c->tnc_mutex);
1611        /* If the root indexing node is not in TNC - pull it */
1612        if (!c->zroot.znode) {
1613                c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1614                if (IS_ERR(c->zroot.znode)) {
1615                        err = PTR_ERR(c->zroot.znode);
1616                        c->zroot.znode = NULL;
1617                        goto out_unlock;
1618                }
1619        }
1620
1621        /*
1622         * We are going to traverse the indexing tree in the postorder manner.
1623         * Go down and find the leftmost indexing node where we are going to
1624         * start from.
1625         */
1626        znode = c->zroot.znode;
1627        while (znode->level > 0) {
1628                zbr = &znode->zbranch[0];
1629                child = zbr->znode;
1630                if (!child) {
1631                        child = ubifs_load_znode(c, zbr, znode, 0);
1632                        if (IS_ERR(child)) {
1633                                err = PTR_ERR(child);
1634                                goto out_unlock;
1635                        }
1636                        zbr->znode = child;
1637                }
1638
1639                znode = child;
1640        }
1641
1642        /* Iterate over all indexing nodes */
1643        while (1) {
1644                int idx;
1645
1646                cond_resched();
1647
1648                if (znode_cb) {
1649                        err = znode_cb(c, znode, priv);
1650                        if (err) {
1651                                ubifs_err("znode checking function returned error %d",
1652                                          err);
1653                                ubifs_dump_znode(c, znode);
1654                                goto out_dump;
1655                        }
1656                }
1657                if (leaf_cb && znode->level == 0) {
1658                        for (idx = 0; idx < znode->child_cnt; idx++) {
1659                                zbr = &znode->zbranch[idx];
1660                                err = leaf_cb(c, zbr, priv);
1661                                if (err) {
1662                                        ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d",
1663                                                  err, zbr->lnum, zbr->offs);
1664                                        goto out_dump;
1665                                }
1666                        }
1667                }
1668
1669                if (!znode->parent)
1670                        break;
1671
1672                idx = znode->iip + 1;
1673                znode = znode->parent;
1674                if (idx < znode->child_cnt) {
1675                        /* Switch to the next index in the parent */
1676                        zbr = &znode->zbranch[idx];
1677                        child = zbr->znode;
1678                        if (!child) {
1679                                child = ubifs_load_znode(c, zbr, znode, idx);
1680                                if (IS_ERR(child)) {
1681                                        err = PTR_ERR(child);
1682                                        goto out_unlock;
1683                                }
1684                                zbr->znode = child;
1685                        }
1686                        znode = child;
1687                } else
1688                        /*
1689                         * This is the last child, switch to the parent and
1690                         * continue.
1691                         */
1692                        continue;
1693
1694                /* Go to the lowest leftmost znode in the new sub-tree */
1695                while (znode->level > 0) {
1696                        zbr = &znode->zbranch[0];
1697                        child = zbr->znode;
1698                        if (!child) {
1699                                child = ubifs_load_znode(c, zbr, znode, 0);
1700                                if (IS_ERR(child)) {
1701                                        err = PTR_ERR(child);
1702                                        goto out_unlock;
1703                                }
1704                                zbr->znode = child;
1705                        }
1706                        znode = child;
1707                }
1708        }
1709
1710        mutex_unlock(&c->tnc_mutex);
1711        return 0;
1712
1713out_dump:
1714        if (znode->parent)
1715                zbr = &znode->parent->zbranch[znode->iip];
1716        else
1717                zbr = &c->zroot;
1718        ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1719        ubifs_dump_znode(c, znode);
1720out_unlock:
1721        mutex_unlock(&c->tnc_mutex);
1722        return err;
1723}
1724
1725/**
1726 * add_size - add znode size to partially calculated index size.
1727 * @c: UBIFS file-system description object
1728 * @znode: znode to add size for
1729 * @priv: partially calculated index size
1730 *
1731 * This is a helper function for 'dbg_check_idx_size()' which is called for
1732 * every indexing node and adds its size to the 'long long' variable pointed to
1733 * by @priv.
1734 */
1735static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1736{
1737        long long *idx_size = priv;
1738        int add;
1739
1740        add = ubifs_idx_node_sz(c, znode->child_cnt);
1741        add = ALIGN(add, 8);
1742        *idx_size += add;
1743        return 0;
1744}
1745
1746/**
1747 * dbg_check_idx_size - check index size.
1748 * @c: UBIFS file-system description object
1749 * @idx_size: size to check
1750 *
1751 * This function walks the UBIFS index, calculates its size and checks that the
1752 * size is equivalent to @idx_size. Returns zero in case of success and a
1753 * negative error code in case of failure.
1754 */
1755int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1756{
1757        int err;
1758        long long calc = 0;
1759
1760        if (!dbg_is_chk_index(c))
1761                return 0;
1762
1763        err = dbg_walk_index(c, NULL, add_size, &calc);
1764        if (err) {
1765                ubifs_err("error %d while walking the index", err);
1766                return err;
1767        }
1768
1769        if (calc != idx_size) {
1770                ubifs_err("index size check failed: calculated size is %lld, should be %lld",
1771                          calc, idx_size);
1772                dump_stack();
1773                return -EINVAL;
1774        }
1775
1776        return 0;
1777}
1778
1779#ifndef __UBOOT__
1780/**
1781 * struct fsck_inode - information about an inode used when checking the file-system.
1782 * @rb: link in the RB-tree of inodes
1783 * @inum: inode number
1784 * @mode: inode type, permissions, etc
1785 * @nlink: inode link count
1786 * @xattr_cnt: count of extended attributes
1787 * @references: how many directory/xattr entries refer this inode (calculated
1788 *              while walking the index)
1789 * @calc_cnt: for directory inode count of child directories
1790 * @size: inode size (read from on-flash inode)
1791 * @xattr_sz: summary size of all extended attributes (read from on-flash
1792 *            inode)
1793 * @calc_sz: for directories calculated directory size
1794 * @calc_xcnt: count of extended attributes
1795 * @calc_xsz: calculated summary size of all extended attributes
1796 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1797 *             inode (read from on-flash inode)
1798 * @calc_xnms: calculated sum of lengths of all extended attribute names
1799 */
1800struct fsck_inode {
1801        struct rb_node rb;
1802        ino_t inum;
1803        umode_t mode;
1804        unsigned int nlink;
1805        unsigned int xattr_cnt;
1806        int references;
1807        int calc_cnt;
1808        long long size;
1809        unsigned int xattr_sz;
1810        long long calc_sz;
1811        long long calc_xcnt;
1812        long long calc_xsz;
1813        unsigned int xattr_nms;
1814        long long calc_xnms;
1815};
1816
1817/**
1818 * struct fsck_data - private FS checking information.
1819 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1820 */
1821struct fsck_data {
1822        struct rb_root inodes;
1823};
1824
1825/**
1826 * add_inode - add inode information to RB-tree of inodes.
1827 * @c: UBIFS file-system description object
1828 * @fsckd: FS checking information
1829 * @ino: raw UBIFS inode to add
1830 *
1831 * This is a helper function for 'check_leaf()' which adds information about
1832 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1833 * case of success and a negative error code in case of failure.
1834 */
1835static struct fsck_inode *add_inode(struct ubifs_info *c,
1836                                    struct fsck_data *fsckd,
1837                                    struct ubifs_ino_node *ino)
1838{
1839        struct rb_node **p, *parent = NULL;
1840        struct fsck_inode *fscki;
1841        ino_t inum = key_inum_flash(c, &ino->key);
1842        struct inode *inode;
1843        struct ubifs_inode *ui;
1844
1845        p = &fsckd->inodes.rb_node;
1846        while (*p) {
1847                parent = *p;
1848                fscki = rb_entry(parent, struct fsck_inode, rb);
1849                if (inum < fscki->inum)
1850                        p = &(*p)->rb_left;
1851                else if (inum > fscki->inum)
1852                        p = &(*p)->rb_right;
1853                else
1854                        return fscki;
1855        }
1856
1857        if (inum > c->highest_inum) {
1858                ubifs_err("too high inode number, max. is %lu",
1859                          (unsigned long)c->highest_inum);
1860                return ERR_PTR(-EINVAL);
1861        }
1862
1863        fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1864        if (!fscki)
1865                return ERR_PTR(-ENOMEM);
1866
1867        inode = ilookup(c->vfs_sb, inum);
1868
1869        fscki->inum = inum;
1870        /*
1871         * If the inode is present in the VFS inode cache, use it instead of
1872         * the on-flash inode which might be out-of-date. E.g., the size might
1873         * be out-of-date. If we do not do this, the following may happen, for
1874         * example:
1875         *   1. A power cut happens
1876         *   2. We mount the file-system R/O, the replay process fixes up the
1877         *      inode size in the VFS cache, but on on-flash.
1878         *   3. 'check_leaf()' fails because it hits a data node beyond inode
1879         *      size.
1880         */
1881        if (!inode) {
1882                fscki->nlink = le32_to_cpu(ino->nlink);
1883                fscki->size = le64_to_cpu(ino->size);
1884                fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1885                fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1886                fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1887                fscki->mode = le32_to_cpu(ino->mode);
1888        } else {
1889                ui = ubifs_inode(inode);
1890                fscki->nlink = inode->i_nlink;
1891                fscki->size = inode->i_size;
1892                fscki->xattr_cnt = ui->xattr_cnt;
1893                fscki->xattr_sz = ui->xattr_size;
1894                fscki->xattr_nms = ui->xattr_names;
1895                fscki->mode = inode->i_mode;
1896                iput(inode);
1897        }
1898
1899        if (S_ISDIR(fscki->mode)) {
1900                fscki->calc_sz = UBIFS_INO_NODE_SZ;
1901                fscki->calc_cnt = 2;
1902        }
1903
1904        rb_link_node(&fscki->rb, parent, p);
1905        rb_insert_color(&fscki->rb, &fsckd->inodes);
1906
1907        return fscki;
1908}
1909
1910/**
1911 * search_inode - search inode in the RB-tree of inodes.
1912 * @fsckd: FS checking information
1913 * @inum: inode number to search
1914 *
1915 * This is a helper function for 'check_leaf()' which searches inode @inum in
1916 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1917 * the inode was not found.
1918 */
1919static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1920{
1921        struct rb_node *p;
1922        struct fsck_inode *fscki;
1923
1924        p = fsckd->inodes.rb_node;
1925        while (p) {
1926                fscki = rb_entry(p, struct fsck_inode, rb);
1927                if (inum < fscki->inum)
1928                        p = p->rb_left;
1929                else if (inum > fscki->inum)
1930                        p = p->rb_right;
1931                else
1932                        return fscki;
1933        }
1934        return NULL;
1935}
1936
1937/**
1938 * read_add_inode - read inode node and add it to RB-tree of inodes.
1939 * @c: UBIFS file-system description object
1940 * @fsckd: FS checking information
1941 * @inum: inode number to read
1942 *
1943 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1944 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1945 * information pointer in case of success and a negative error code in case of
1946 * failure.
1947 */
1948static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1949                                         struct fsck_data *fsckd, ino_t inum)
1950{
1951        int n, err;
1952        union ubifs_key key;
1953        struct ubifs_znode *znode;
1954        struct ubifs_zbranch *zbr;
1955        struct ubifs_ino_node *ino;
1956        struct fsck_inode *fscki;
1957
1958        fscki = search_inode(fsckd, inum);
1959        if (fscki)
1960                return fscki;
1961
1962        ino_key_init(c, &key, inum);
1963        err = ubifs_lookup_level0(c, &key, &znode, &n);
1964        if (!err) {
1965                ubifs_err("inode %lu not found in index", (unsigned long)inum);
1966                return ERR_PTR(-ENOENT);
1967        } else if (err < 0) {
1968                ubifs_err("error %d while looking up inode %lu",
1969                          err, (unsigned long)inum);
1970                return ERR_PTR(err);
1971        }
1972
1973        zbr = &znode->zbranch[n];
1974        if (zbr->len < UBIFS_INO_NODE_SZ) {
1975                ubifs_err("bad node %lu node length %d",
1976                          (unsigned long)inum, zbr->len);
1977                return ERR_PTR(-EINVAL);
1978        }
1979
1980        ino = kmalloc(zbr->len, GFP_NOFS);
1981        if (!ino)
1982                return ERR_PTR(-ENOMEM);
1983
1984        err = ubifs_tnc_read_node(c, zbr, ino);
1985        if (err) {
1986                ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1987                          zbr->lnum, zbr->offs, err);
1988                kfree(ino);
1989                return ERR_PTR(err);
1990        }
1991
1992        fscki = add_inode(c, fsckd, ino);
1993        kfree(ino);
1994        if (IS_ERR(fscki)) {
1995                ubifs_err("error %ld while adding inode %lu node",
1996                          PTR_ERR(fscki), (unsigned long)inum);
1997                return fscki;
1998        }
1999
2000        return fscki;
2001}
2002
2003/**
2004 * check_leaf - check leaf node.
2005 * @c: UBIFS file-system description object
2006 * @zbr: zbranch of the leaf node to check
2007 * @priv: FS checking information
2008 *
2009 * This is a helper function for 'dbg_check_filesystem()' which is called for
2010 * every single leaf node while walking the indexing tree. It checks that the
2011 * leaf node referred from the indexing tree exists, has correct CRC, and does
2012 * some other basic validation. This function is also responsible for building
2013 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2014 * calculates reference count, size, etc for each inode in order to later
2015 * compare them to the information stored inside the inodes and detect possible
2016 * inconsistencies. Returns zero in case of success and a negative error code
2017 * in case of failure.
2018 */
2019static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2020                      void *priv)
2021{
2022        ino_t inum;
2023        void *node;
2024        struct ubifs_ch *ch;
2025        int err, type = key_type(c, &zbr->key);
2026        struct fsck_inode *fscki;
2027
2028        if (zbr->len < UBIFS_CH_SZ) {
2029                ubifs_err("bad leaf length %d (LEB %d:%d)",
2030                          zbr->len, zbr->lnum, zbr->offs);
2031                return -EINVAL;
2032        }
2033
2034        node = kmalloc(zbr->len, GFP_NOFS);
2035        if (!node)
2036                return -ENOMEM;
2037
2038        err = ubifs_tnc_read_node(c, zbr, node);
2039        if (err) {
2040                ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2041                          zbr->lnum, zbr->offs, err);
2042                goto out_free;
2043        }
2044
2045        /* If this is an inode node, add it to RB-tree of inodes */
2046        if (type == UBIFS_INO_KEY) {
2047                fscki = add_inode(c, priv, node);
2048                if (IS_ERR(fscki)) {
2049                        err = PTR_ERR(fscki);
2050                        ubifs_err("error %d while adding inode node", err);
2051                        goto out_dump;
2052                }
2053                goto out;
2054        }
2055
2056        if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2057            type != UBIFS_DATA_KEY) {
2058                ubifs_err("unexpected node type %d at LEB %d:%d",
2059                          type, zbr->lnum, zbr->offs);
2060                err = -EINVAL;
2061                goto out_free;
2062        }
2063
2064        ch = node;
2065        if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2066                ubifs_err("too high sequence number, max. is %llu",
2067                          c->max_sqnum);
2068                err = -EINVAL;
2069                goto out_dump;
2070        }
2071
2072        if (type == UBIFS_DATA_KEY) {
2073                long long blk_offs;
2074                struct ubifs_data_node *dn = node;
2075
2076                /*
2077                 * Search the inode node this data node belongs to and insert
2078                 * it to the RB-tree of inodes.
2079                 */
2080                inum = key_inum_flash(c, &dn->key);
2081                fscki = read_add_inode(c, priv, inum);
2082                if (IS_ERR(fscki)) {
2083                        err = PTR_ERR(fscki);
2084                        ubifs_err("error %d while processing data node and trying to find inode node %lu",
2085                                  err, (unsigned long)inum);
2086                        goto out_dump;
2087                }
2088
2089                /* Make sure the data node is within inode size */
2090                blk_offs = key_block_flash(c, &dn->key);
2091                blk_offs <<= UBIFS_BLOCK_SHIFT;
2092                blk_offs += le32_to_cpu(dn->size);
2093                if (blk_offs > fscki->size) {
2094                        ubifs_err("data node at LEB %d:%d is not within inode size %lld",
2095                                  zbr->lnum, zbr->offs, fscki->size);
2096                        err = -EINVAL;
2097                        goto out_dump;
2098                }
2099        } else {
2100                int nlen;
2101                struct ubifs_dent_node *dent = node;
2102                struct fsck_inode *fscki1;
2103
2104                err = ubifs_validate_entry(c, dent);
2105                if (err)
2106                        goto out_dump;
2107
2108                /*
2109                 * Search the inode node this entry refers to and the parent
2110                 * inode node and insert them to the RB-tree of inodes.
2111                 */
2112                inum = le64_to_cpu(dent->inum);
2113                fscki = read_add_inode(c, priv, inum);
2114                if (IS_ERR(fscki)) {
2115                        err = PTR_ERR(fscki);
2116                        ubifs_err("error %d while processing entry node and trying to find inode node %lu",
2117                                  err, (unsigned long)inum);
2118                        goto out_dump;
2119                }
2120
2121                /* Count how many direntries or xentries refers this inode */
2122                fscki->references += 1;
2123
2124                inum = key_inum_flash(c, &dent->key);
2125                fscki1 = read_add_inode(c, priv, inum);
2126                if (IS_ERR(fscki1)) {
2127                        err = PTR_ERR(fscki1);
2128                        ubifs_err("error %d while processing entry node and trying to find parent inode node %lu",
2129                                  err, (unsigned long)inum);
2130                        goto out_dump;
2131                }
2132
2133                nlen = le16_to_cpu(dent->nlen);
2134                if (type == UBIFS_XENT_KEY) {
2135                        fscki1->calc_xcnt += 1;
2136                        fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2137                        fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2138                        fscki1->calc_xnms += nlen;
2139                } else {
2140                        fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2141                        if (dent->type == UBIFS_ITYPE_DIR)
2142                                fscki1->calc_cnt += 1;
2143                }
2144        }
2145
2146out:
2147        kfree(node);
2148        return 0;
2149
2150out_dump:
2151        ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2152        ubifs_dump_node(c, node);
2153out_free:
2154        kfree(node);
2155        return err;
2156}
2157
2158/**
2159 * free_inodes - free RB-tree of inodes.
2160 * @fsckd: FS checking information
2161 */
2162static void free_inodes(struct fsck_data *fsckd)
2163{
2164        struct fsck_inode *fscki, *n;
2165
2166        rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2167                kfree(fscki);
2168}
2169
2170/**
2171 * check_inodes - checks all inodes.
2172 * @c: UBIFS file-system description object
2173 * @fsckd: FS checking information
2174 *
2175 * This is a helper function for 'dbg_check_filesystem()' which walks the
2176 * RB-tree of inodes after the index scan has been finished, and checks that
2177 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2178 * %-EINVAL if not, and a negative error code in case of failure.
2179 */
2180static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2181{
2182        int n, err;
2183        union ubifs_key key;
2184        struct ubifs_znode *znode;
2185        struct ubifs_zbranch *zbr;
2186        struct ubifs_ino_node *ino;
2187        struct fsck_inode *fscki;
2188        struct rb_node *this = rb_first(&fsckd->inodes);
2189
2190        while (this) {
2191                fscki = rb_entry(this, struct fsck_inode, rb);
2192                this = rb_next(this);
2193
2194                if (S_ISDIR(fscki->mode)) {
2195                        /*
2196                         * Directories have to have exactly one reference (they
2197                         * cannot have hardlinks), although root inode is an
2198                         * exception.
2199                         */
2200                        if (fscki->inum != UBIFS_ROOT_INO &&
2201                            fscki->references != 1) {
2202                                ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1",
2203                                          (unsigned long)fscki->inum,
2204                                          fscki->references);
2205                                goto out_dump;
2206                        }
2207                        if (fscki->inum == UBIFS_ROOT_INO &&
2208                            fscki->references != 0) {
2209                                ubifs_err("root inode %lu has non-zero (%d) direntries which refer it",
2210                                          (unsigned long)fscki->inum,
2211                                          fscki->references);
2212                                goto out_dump;
2213                        }
2214                        if (fscki->calc_sz != fscki->size) {
2215                                ubifs_err("directory inode %lu size is %lld, but calculated size is %lld",
2216                                          (unsigned long)fscki->inum,
2217                                          fscki->size, fscki->calc_sz);
2218                                goto out_dump;
2219                        }
2220                        if (fscki->calc_cnt != fscki->nlink) {
2221                                ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d",
2222                                          (unsigned long)fscki->inum,
2223                                          fscki->nlink, fscki->calc_cnt);
2224                                goto out_dump;
2225                        }
2226                } else {
2227                        if (fscki->references != fscki->nlink) {
2228                                ubifs_err("inode %lu nlink is %d, but calculated nlink is %d",
2229                                          (unsigned long)fscki->inum,
2230                                          fscki->nlink, fscki->references);
2231                                goto out_dump;
2232                        }
2233                }
2234                if (fscki->xattr_sz != fscki->calc_xsz) {
2235                        ubifs_err("inode %lu has xattr size %u, but calculated size is %lld",
2236                                  (unsigned long)fscki->inum, fscki->xattr_sz,
2237                                  fscki->calc_xsz);
2238                        goto out_dump;
2239                }
2240                if (fscki->xattr_cnt != fscki->calc_xcnt) {
2241                        ubifs_err("inode %lu has %u xattrs, but calculated count is %lld",
2242                                  (unsigned long)fscki->inum,
2243                                  fscki->xattr_cnt, fscki->calc_xcnt);
2244                        goto out_dump;
2245                }
2246                if (fscki->xattr_nms != fscki->calc_xnms) {
2247                        ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld",
2248                                  (unsigned long)fscki->inum, fscki->xattr_nms,
2249                                  fscki->calc_xnms);
2250                        goto out_dump;
2251                }
2252        }
2253
2254        return 0;
2255
2256out_dump:
2257        /* Read the bad inode and dump it */
2258        ino_key_init(c, &key, fscki->inum);
2259        err = ubifs_lookup_level0(c, &key, &znode, &n);
2260        if (!err) {
2261                ubifs_err("inode %lu not found in index",
2262                          (unsigned long)fscki->inum);
2263                return -ENOENT;
2264        } else if (err < 0) {
2265                ubifs_err("error %d while looking up inode %lu",
2266                          err, (unsigned long)fscki->inum);
2267                return err;
2268        }
2269
2270        zbr = &znode->zbranch[n];
2271        ino = kmalloc(zbr->len, GFP_NOFS);
2272        if (!ino)
2273                return -ENOMEM;
2274
2275        err = ubifs_tnc_read_node(c, zbr, ino);
2276        if (err) {
2277                ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2278                          zbr->lnum, zbr->offs, err);
2279                kfree(ino);
2280                return err;
2281        }
2282
2283        ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2284                  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2285        ubifs_dump_node(c, ino);
2286        kfree(ino);
2287        return -EINVAL;
2288}
2289
2290/**
2291 * dbg_check_filesystem - check the file-system.
2292 * @c: UBIFS file-system description object
2293 *
2294 * This function checks the file system, namely:
2295 * o makes sure that all leaf nodes exist and their CRCs are correct;
2296 * o makes sure inode nlink, size, xattr size/count are correct (for all
2297 *   inodes).
2298 *
2299 * The function reads whole indexing tree and all nodes, so it is pretty
2300 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2301 * not, and a negative error code in case of failure.
2302 */
2303int dbg_check_filesystem(struct ubifs_info *c)
2304{
2305        int err;
2306        struct fsck_data fsckd;
2307
2308        if (!dbg_is_chk_fs(c))
2309                return 0;
2310
2311        fsckd.inodes = RB_ROOT;
2312        err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2313        if (err)
2314                goto out_free;
2315
2316        err = check_inodes(c, &fsckd);
2317        if (err)
2318                goto out_free;
2319
2320        free_inodes(&fsckd);
2321        return 0;
2322
2323out_free:
2324        ubifs_err("file-system check failed with error %d", err);
2325        dump_stack();
2326        free_inodes(&fsckd);
2327        return err;
2328}
2329
2330/**
2331 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2332 * @c: UBIFS file-system description object
2333 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2334 *
2335 * This function returns zero if the list of data nodes is sorted correctly,
2336 * and %-EINVAL if not.
2337 */
2338int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2339{
2340        struct list_head *cur;
2341        struct ubifs_scan_node *sa, *sb;
2342
2343        if (!dbg_is_chk_gen(c))
2344                return 0;
2345
2346        for (cur = head->next; cur->next != head; cur = cur->next) {
2347                ino_t inuma, inumb;
2348                uint32_t blka, blkb;
2349
2350                cond_resched();
2351                sa = container_of(cur, struct ubifs_scan_node, list);
2352                sb = container_of(cur->next, struct ubifs_scan_node, list);
2353
2354                if (sa->type != UBIFS_DATA_NODE) {
2355                        ubifs_err("bad node type %d", sa->type);
2356                        ubifs_dump_node(c, sa->node);
2357                        return -EINVAL;
2358                }
2359                if (sb->type != UBIFS_DATA_NODE) {
2360                        ubifs_err("bad node type %d", sb->type);
2361                        ubifs_dump_node(c, sb->node);
2362                        return -EINVAL;
2363                }
2364
2365                inuma = key_inum(c, &sa->key);
2366                inumb = key_inum(c, &sb->key);
2367
2368                if (inuma < inumb)
2369                        continue;
2370                if (inuma > inumb) {
2371                        ubifs_err("larger inum %lu goes before inum %lu",
2372                                  (unsigned long)inuma, (unsigned long)inumb);
2373                        goto error_dump;
2374                }
2375
2376                blka = key_block(c, &sa->key);
2377                blkb = key_block(c, &sb->key);
2378
2379                if (blka > blkb) {
2380                        ubifs_err("larger block %u goes before %u", blka, blkb);
2381                        goto error_dump;
2382                }
2383                if (blka == blkb) {
2384                        ubifs_err("two data nodes for the same block");
2385                        goto error_dump;
2386                }
2387        }
2388
2389        return 0;
2390
2391error_dump:
2392        ubifs_dump_node(c, sa->node);
2393        ubifs_dump_node(c, sb->node);
2394        return -EINVAL;
2395}
2396
2397/**
2398 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2399 * @c: UBIFS file-system description object
2400 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2401 *
2402 * This function returns zero if the list of non-data nodes is sorted correctly,
2403 * and %-EINVAL if not.
2404 */
2405int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2406{
2407        struct list_head *cur;
2408        struct ubifs_scan_node *sa, *sb;
2409
2410        if (!dbg_is_chk_gen(c))
2411                return 0;
2412
2413        for (cur = head->next; cur->next != head; cur = cur->next) {
2414                ino_t inuma, inumb;
2415                uint32_t hasha, hashb;
2416
2417                cond_resched();
2418                sa = container_of(cur, struct ubifs_scan_node, list);
2419                sb = container_of(cur->next, struct ubifs_scan_node, list);
2420
2421                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2422                    sa->type != UBIFS_XENT_NODE) {
2423                        ubifs_err("bad node type %d", sa->type);
2424                        ubifs_dump_node(c, sa->node);
2425                        return -EINVAL;
2426                }
2427                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2428                    sa->type != UBIFS_XENT_NODE) {
2429                        ubifs_err("bad node type %d", sb->type);
2430                        ubifs_dump_node(c, sb->node);
2431                        return -EINVAL;
2432                }
2433
2434                if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2435                        ubifs_err("non-inode node goes before inode node");
2436                        goto error_dump;
2437                }
2438
2439                if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2440                        continue;
2441
2442                if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2443                        /* Inode nodes are sorted in descending size order */
2444                        if (sa->len < sb->len) {
2445                                ubifs_err("smaller inode node goes first");
2446                                goto error_dump;
2447                        }
2448                        continue;
2449                }
2450
2451                /*
2452                 * This is either a dentry or xentry, which should be sorted in
2453                 * ascending (parent ino, hash) order.
2454                 */
2455                inuma = key_inum(c, &sa->key);
2456                inumb = key_inum(c, &sb->key);
2457
2458                if (inuma < inumb)
2459                        continue;
2460                if (inuma > inumb) {
2461                        ubifs_err("larger inum %lu goes before inum %lu",
2462                                  (unsigned long)inuma, (unsigned long)inumb);
2463                        goto error_dump;
2464                }
2465
2466                hasha = key_block(c, &sa->key);
2467                hashb = key_block(c, &sb->key);
2468
2469                if (hasha > hashb) {
2470                        ubifs_err("larger hash %u goes before %u",
2471                                  hasha, hashb);
2472                        goto error_dump;
2473                }
2474        }
2475
2476        return 0;
2477
2478error_dump:
2479        ubifs_msg("dumping first node");
2480        ubifs_dump_node(c, sa->node);
2481        ubifs_msg("dumping second node");
2482        ubifs_dump_node(c, sb->node);
2483        return -EINVAL;
2484        return 0;
2485}
2486
2487static inline int chance(unsigned int n, unsigned int out_of)
2488{
2489        return !!((prandom_u32() % out_of) + 1 <= n);
2490
2491}
2492
2493static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2494{
2495        struct ubifs_debug_info *d = c->dbg;
2496
2497        ubifs_assert(dbg_is_tst_rcvry(c));
2498
2499        if (!d->pc_cnt) {
2500                /* First call - decide delay to the power cut */
2501                if (chance(1, 2)) {
2502                        unsigned long delay;
2503
2504                        if (chance(1, 2)) {
2505                                d->pc_delay = 1;
2506                                /* Fail withing 1 minute */
2507                                delay = prandom_u32() % 60000;
2508                                d->pc_timeout = jiffies;
2509                                d->pc_timeout += msecs_to_jiffies(delay);
2510                                ubifs_warn("failing after %lums", delay);
2511                        } else {
2512                                d->pc_delay = 2;
2513                                delay = prandom_u32() % 10000;
2514                                /* Fail within 10000 operations */
2515                                d->pc_cnt_max = delay;
2516                                ubifs_warn("failing after %lu calls", delay);
2517                        }
2518                }
2519
2520                d->pc_cnt += 1;
2521        }
2522
2523        /* Determine if failure delay has expired */
2524        if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2525                        return 0;
2526        if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2527                        return 0;
2528
2529        if (lnum == UBIFS_SB_LNUM) {
2530                if (write && chance(1, 2))
2531                        return 0;
2532                if (chance(19, 20))
2533                        return 0;
2534                ubifs_warn("failing in super block LEB %d", lnum);
2535        } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2536                if (chance(19, 20))
2537                        return 0;
2538                ubifs_warn("failing in master LEB %d", lnum);
2539        } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2540                if (write && chance(99, 100))
2541                        return 0;
2542                if (chance(399, 400))
2543                        return 0;
2544                ubifs_warn("failing in log LEB %d", lnum);
2545        } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2546                if (write && chance(7, 8))
2547                        return 0;
2548                if (chance(19, 20))
2549                        return 0;
2550                ubifs_warn("failing in LPT LEB %d", lnum);
2551        } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2552                if (write && chance(1, 2))
2553                        return 0;
2554                if (chance(9, 10))
2555                        return 0;
2556                ubifs_warn("failing in orphan LEB %d", lnum);
2557        } else if (lnum == c->ihead_lnum) {
2558                if (chance(99, 100))
2559                        return 0;
2560                ubifs_warn("failing in index head LEB %d", lnum);
2561        } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2562                if (chance(9, 10))
2563                        return 0;
2564                ubifs_warn("failing in GC head LEB %d", lnum);
2565        } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2566                   !ubifs_search_bud(c, lnum)) {
2567                if (chance(19, 20))
2568                        return 0;
2569                ubifs_warn("failing in non-bud LEB %d", lnum);
2570        } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2571                   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2572                if (chance(999, 1000))
2573                        return 0;
2574                ubifs_warn("failing in bud LEB %d commit running", lnum);
2575        } else {
2576                if (chance(9999, 10000))
2577                        return 0;
2578                ubifs_warn("failing in bud LEB %d commit not running", lnum);
2579        }
2580
2581        d->pc_happened = 1;
2582        ubifs_warn("========== Power cut emulated ==========");
2583        dump_stack();
2584        return 1;
2585}
2586
2587static int corrupt_data(const struct ubifs_info *c, const void *buf,
2588                        unsigned int len)
2589{
2590        unsigned int from, to, ffs = chance(1, 2);
2591        unsigned char *p = (void *)buf;
2592
2593        from = prandom_u32() % len;
2594        /* Corruption span max to end of write unit */
2595        to = min(len, ALIGN(from + 1, c->max_write_size));
2596
2597        ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2598                   ffs ? "0xFFs" : "random data");
2599
2600        if (ffs)
2601                memset(p + from, 0xFF, to - from);
2602        else
2603                prandom_bytes(p + from, to - from);
2604
2605        return to;
2606}
2607
2608int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2609                  int offs, int len)
2610{
2611        int err, failing;
2612
2613        if (c->dbg->pc_happened)
2614                return -EROFS;
2615
2616        failing = power_cut_emulated(c, lnum, 1);
2617        if (failing) {
2618                len = corrupt_data(c, buf, len);
2619                ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2620                           len, lnum, offs);
2621        }
2622        err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2623        if (err)
2624                return err;
2625        if (failing)
2626                return -EROFS;
2627        return 0;
2628}
2629
2630int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2631                   int len)
2632{
2633        int err;
2634
2635        if (c->dbg->pc_happened)
2636                return -EROFS;
2637        if (power_cut_emulated(c, lnum, 1))
2638                return -EROFS;
2639        err = ubi_leb_change(c->ubi, lnum, buf, len);
2640        if (err)
2641                return err;
2642        if (power_cut_emulated(c, lnum, 1))
2643                return -EROFS;
2644        return 0;
2645}
2646
2647int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2648{
2649        int err;
2650
2651        if (c->dbg->pc_happened)
2652                return -EROFS;
2653        if (power_cut_emulated(c, lnum, 0))
2654                return -EROFS;
2655        err = ubi_leb_unmap(c->ubi, lnum);
2656        if (err)
2657                return err;
2658        if (power_cut_emulated(c, lnum, 0))
2659                return -EROFS;
2660        return 0;
2661}
2662
2663int dbg_leb_map(struct ubifs_info *c, int lnum)
2664{
2665        int err;
2666
2667        if (c->dbg->pc_happened)
2668                return -EROFS;
2669        if (power_cut_emulated(c, lnum, 0))
2670                return -EROFS;
2671        err = ubi_leb_map(c->ubi, lnum);
2672        if (err)
2673                return err;
2674        if (power_cut_emulated(c, lnum, 0))
2675                return -EROFS;
2676        return 0;
2677}
2678
2679/*
2680 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2681 * contain the stuff specific to particular file-system mounts.
2682 */
2683static struct dentry *dfs_rootdir;
2684
2685static int dfs_file_open(struct inode *inode, struct file *file)
2686{
2687        file->private_data = inode->i_private;
2688        return nonseekable_open(inode, file);
2689}
2690
2691/**
2692 * provide_user_output - provide output to the user reading a debugfs file.
2693 * @val: boolean value for the answer
2694 * @u: the buffer to store the answer at
2695 * @count: size of the buffer
2696 * @ppos: position in the @u output buffer
2697 *
2698 * This is a simple helper function which stores @val boolean value in the user
2699 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2700 * bytes written to @u in case of success and a negative error code in case of
2701 * failure.
2702 */
2703static int provide_user_output(int val, char __user *u, size_t count,
2704                               loff_t *ppos)
2705{
2706        char buf[3];
2707
2708        if (val)
2709                buf[0] = '1';
2710        else
2711                buf[0] = '0';
2712        buf[1] = '\n';
2713        buf[2] = 0x00;
2714
2715        return simple_read_from_buffer(u, count, ppos, buf, 2);
2716}
2717
2718static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2719                             loff_t *ppos)
2720{
2721        struct dentry *dent = file->f_path.dentry;
2722        struct ubifs_info *c = file->private_data;
2723        struct ubifs_debug_info *d = c->dbg;
2724        int val;
2725
2726        if (dent == d->dfs_chk_gen)
2727                val = d->chk_gen;
2728        else if (dent == d->dfs_chk_index)
2729                val = d->chk_index;
2730        else if (dent == d->dfs_chk_orph)
2731                val = d->chk_orph;
2732        else if (dent == d->dfs_chk_lprops)
2733                val = d->chk_lprops;
2734        else if (dent == d->dfs_chk_fs)
2735                val = d->chk_fs;
2736        else if (dent == d->dfs_tst_rcvry)
2737                val = d->tst_rcvry;
2738        else if (dent == d->dfs_ro_error)
2739                val = c->ro_error;
2740        else
2741                return -EINVAL;
2742
2743        return provide_user_output(val, u, count, ppos);
2744}
2745
2746/**
2747 * interpret_user_input - interpret user debugfs file input.
2748 * @u: user-provided buffer with the input
2749 * @count: buffer size
2750 *
2751 * This is a helper function which interpret user input to a boolean UBIFS
2752 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2753 * in case of failure.
2754 */
2755static int interpret_user_input(const char __user *u, size_t count)
2756{
2757        size_t buf_size;
2758        char buf[8];
2759
2760        buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2761        if (copy_from_user(buf, u, buf_size))
2762                return -EFAULT;
2763
2764        if (buf[0] == '1')
2765                return 1;
2766        else if (buf[0] == '0')
2767                return 0;
2768
2769        return -EINVAL;
2770}
2771
2772static ssize_t dfs_file_write(struct file *file, const char __user *u,
2773                              size_t count, loff_t *ppos)
2774{
2775        struct ubifs_info *c = file->private_data;
2776        struct ubifs_debug_info *d = c->dbg;
2777        struct dentry *dent = file->f_path.dentry;
2778        int val;
2779
2780        /*
2781         * TODO: this is racy - the file-system might have already been
2782         * unmounted and we'd oops in this case. The plan is to fix it with
2783         * help of 'iterate_supers_type()' which we should have in v3.0: when
2784         * a debugfs opened, we rember FS's UUID in file->private_data. Then
2785         * whenever we access the FS via a debugfs file, we iterate all UBIFS
2786         * superblocks and fine the one with the same UUID, and take the
2787         * locking right.
2788         *
2789         * The other way to go suggested by Al Viro is to create a separate
2790         * 'ubifs-debug' file-system instead.
2791         */
2792        if (file->f_path.dentry == d->dfs_dump_lprops) {
2793                ubifs_dump_lprops(c);
2794                return count;
2795        }
2796        if (file->f_path.dentry == d->dfs_dump_budg) {
2797                ubifs_dump_budg(c, &c->bi);
2798                return count;
2799        }
2800        if (file->f_path.dentry == d->dfs_dump_tnc) {
2801                mutex_lock(&c->tnc_mutex);
2802                ubifs_dump_tnc(c);
2803                mutex_unlock(&c->tnc_mutex);
2804                return count;
2805        }
2806
2807        val = interpret_user_input(u, count);
2808        if (val < 0)
2809                return val;
2810
2811        if (dent == d->dfs_chk_gen)
2812                d->chk_gen = val;
2813        else if (dent == d->dfs_chk_index)
2814                d->chk_index = val;
2815        else if (dent == d->dfs_chk_orph)
2816                d->chk_orph = val;
2817        else if (dent == d->dfs_chk_lprops)
2818                d->chk_lprops = val;
2819        else if (dent == d->dfs_chk_fs)
2820                d->chk_fs = val;
2821        else if (dent == d->dfs_tst_rcvry)
2822                d->tst_rcvry = val;
2823        else if (dent == d->dfs_ro_error)
2824                c->ro_error = !!val;
2825        else
2826                return -EINVAL;
2827
2828        return count;
2829}
2830
2831static const struct file_operations dfs_fops = {
2832        .open = dfs_file_open,
2833        .read = dfs_file_read,
2834        .write = dfs_file_write,
2835        .owner = THIS_MODULE,
2836        .llseek = no_llseek,
2837};
2838
2839/**
2840 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2841 * @c: UBIFS file-system description object
2842 *
2843 * This function creates all debugfs files for this instance of UBIFS. Returns
2844 * zero in case of success and a negative error code in case of failure.
2845 *
2846 * Note, the only reason we have not merged this function with the
2847 * 'ubifs_debugging_init()' function is because it is better to initialize
2848 * debugfs interfaces at the very end of the mount process, and remove them at
2849 * the very beginning of the mount process.
2850 */
2851int dbg_debugfs_init_fs(struct ubifs_info *c)
2852{
2853        int err, n;
2854        const char *fname;
2855        struct dentry *dent;
2856        struct ubifs_debug_info *d = c->dbg;
2857
2858        if (!IS_ENABLED(CONFIG_DEBUG_FS))
2859                return 0;
2860
2861        n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2862                     c->vi.ubi_num, c->vi.vol_id);
2863        if (n == UBIFS_DFS_DIR_LEN) {
2864                /* The array size is too small */
2865                fname = UBIFS_DFS_DIR_NAME;
2866                dent = ERR_PTR(-EINVAL);
2867                goto out;
2868        }
2869
2870        fname = d->dfs_dir_name;
2871        dent = debugfs_create_dir(fname, dfs_rootdir);
2872        if (IS_ERR_OR_NULL(dent))
2873                goto out;
2874        d->dfs_dir = dent;
2875
2876        fname = "dump_lprops";
2877        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2878        if (IS_ERR_OR_NULL(dent))
2879                goto out_remove;
2880        d->dfs_dump_lprops = dent;
2881
2882        fname = "dump_budg";
2883        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2884        if (IS_ERR_OR_NULL(dent))
2885                goto out_remove;
2886        d->dfs_dump_budg = dent;
2887
2888        fname = "dump_tnc";
2889        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2890        if (IS_ERR_OR_NULL(dent))
2891                goto out_remove;
2892        d->dfs_dump_tnc = dent;
2893
2894        fname = "chk_general";
2895        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2896                                   &dfs_fops);
2897        if (IS_ERR_OR_NULL(dent))
2898                goto out_remove;
2899        d->dfs_chk_gen = dent;
2900
2901        fname = "chk_index";
2902        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2903                                   &dfs_fops);
2904        if (IS_ERR_OR_NULL(dent))
2905                goto out_remove;
2906        d->dfs_chk_index = dent;
2907
2908        fname = "chk_orphans";
2909        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2910                                   &dfs_fops);
2911        if (IS_ERR_OR_NULL(dent))
2912                goto out_remove;
2913        d->dfs_chk_orph = dent;
2914
2915        fname = "chk_lprops";
2916        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2917                                   &dfs_fops);
2918        if (IS_ERR_OR_NULL(dent))
2919                goto out_remove;
2920        d->dfs_chk_lprops = dent;
2921
2922        fname = "chk_fs";
2923        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2924                                   &dfs_fops);
2925        if (IS_ERR_OR_NULL(dent))
2926                goto out_remove;
2927        d->dfs_chk_fs = dent;
2928
2929        fname = "tst_recovery";
2930        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2931                                   &dfs_fops);
2932        if (IS_ERR_OR_NULL(dent))
2933                goto out_remove;
2934        d->dfs_tst_rcvry = dent;
2935
2936        fname = "ro_error";
2937        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2938                                   &dfs_fops);
2939        if (IS_ERR_OR_NULL(dent))
2940                goto out_remove;
2941        d->dfs_ro_error = dent;
2942
2943        return 0;
2944
2945out_remove:
2946        debugfs_remove_recursive(d->dfs_dir);
2947out:
2948        err = dent ? PTR_ERR(dent) : -ENODEV;
2949        ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2950                  fname, err);
2951        return err;
2952}
2953
2954/**
2955 * dbg_debugfs_exit_fs - remove all debugfs files.
2956 * @c: UBIFS file-system description object
2957 */
2958void dbg_debugfs_exit_fs(struct ubifs_info *c)
2959{
2960        if (IS_ENABLED(CONFIG_DEBUG_FS))
2961                debugfs_remove_recursive(c->dbg->dfs_dir);
2962}
2963
2964struct ubifs_global_debug_info ubifs_dbg;
2965
2966static struct dentry *dfs_chk_gen;
2967static struct dentry *dfs_chk_index;
2968static struct dentry *dfs_chk_orph;
2969static struct dentry *dfs_chk_lprops;
2970static struct dentry *dfs_chk_fs;
2971static struct dentry *dfs_tst_rcvry;
2972
2973static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2974                                    size_t count, loff_t *ppos)
2975{
2976        struct dentry *dent = file->f_path.dentry;
2977        int val;
2978
2979        if (dent == dfs_chk_gen)
2980                val = ubifs_dbg.chk_gen;
2981        else if (dent == dfs_chk_index)
2982                val = ubifs_dbg.chk_index;
2983        else if (dent == dfs_chk_orph)
2984                val = ubifs_dbg.chk_orph;
2985        else if (dent == dfs_chk_lprops)
2986                val = ubifs_dbg.chk_lprops;
2987        else if (dent == dfs_chk_fs)
2988                val = ubifs_dbg.chk_fs;
2989        else if (dent == dfs_tst_rcvry)
2990                val = ubifs_dbg.tst_rcvry;
2991        else
2992                return -EINVAL;
2993
2994        return provide_user_output(val, u, count, ppos);
2995}
2996
2997static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2998                                     size_t count, loff_t *ppos)
2999{
3000        struct dentry *dent = file->f_path.dentry;
3001        int val;
3002
3003        val = interpret_user_input(u, count);
3004        if (val < 0)
3005                return val;
3006
3007        if (dent == dfs_chk_gen)
3008                ubifs_dbg.chk_gen = val;
3009        else if (dent == dfs_chk_index)
3010                ubifs_dbg.chk_index = val;
3011        else if (dent == dfs_chk_orph)
3012                ubifs_dbg.chk_orph = val;
3013        else if (dent == dfs_chk_lprops)
3014                ubifs_dbg.chk_lprops = val;
3015        else if (dent == dfs_chk_fs)
3016                ubifs_dbg.chk_fs = val;
3017        else if (dent == dfs_tst_rcvry)
3018                ubifs_dbg.tst_rcvry = val;
3019        else
3020                return -EINVAL;
3021
3022        return count;
3023}
3024
3025static const struct file_operations dfs_global_fops = {
3026        .read = dfs_global_file_read,
3027        .write = dfs_global_file_write,
3028        .owner = THIS_MODULE,
3029        .llseek = no_llseek,
3030};
3031
3032/**
3033 * dbg_debugfs_init - initialize debugfs file-system.
3034 *
3035 * UBIFS uses debugfs file-system to expose various debugging knobs to
3036 * user-space. This function creates "ubifs" directory in the debugfs
3037 * file-system. Returns zero in case of success and a negative error code in
3038 * case of failure.
3039 */
3040int dbg_debugfs_init(void)
3041{
3042        int err;
3043        const char *fname;
3044        struct dentry *dent;
3045
3046        if (!IS_ENABLED(CONFIG_DEBUG_FS))
3047                return 0;
3048
3049        fname = "ubifs";
3050        dent = debugfs_create_dir(fname, NULL);
3051        if (IS_ERR_OR_NULL(dent))
3052                goto out;
3053        dfs_rootdir = dent;
3054
3055        fname = "chk_general";
3056        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3057                                   &dfs_global_fops);
3058        if (IS_ERR_OR_NULL(dent))
3059                goto out_remove;
3060        dfs_chk_gen = dent;
3061
3062        fname = "chk_index";
3063        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3064                                   &dfs_global_fops);
3065        if (IS_ERR_OR_NULL(dent))
3066                goto out_remove;
3067        dfs_chk_index = dent;
3068
3069        fname = "chk_orphans";
3070        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3071                                   &dfs_global_fops);
3072        if (IS_ERR_OR_NULL(dent))
3073                goto out_remove;
3074        dfs_chk_orph = dent;
3075
3076        fname = "chk_lprops";
3077        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3078                                   &dfs_global_fops);
3079        if (IS_ERR_OR_NULL(dent))
3080                goto out_remove;
3081        dfs_chk_lprops = dent;
3082
3083        fname = "chk_fs";
3084        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3085                                   &dfs_global_fops);
3086        if (IS_ERR_OR_NULL(dent))
3087                goto out_remove;
3088        dfs_chk_fs = dent;
3089
3090        fname = "tst_recovery";
3091        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3092                                   &dfs_global_fops);
3093        if (IS_ERR_OR_NULL(dent))
3094                goto out_remove;
3095        dfs_tst_rcvry = dent;
3096
3097        return 0;
3098
3099out_remove:
3100        debugfs_remove_recursive(dfs_rootdir);
3101out:
3102        err = dent ? PTR_ERR(dent) : -ENODEV;
3103        ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3104                  fname, err);
3105        return err;
3106}
3107
3108/**
3109 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3110 */
3111void dbg_debugfs_exit(void)
3112{
3113        if (IS_ENABLED(CONFIG_DEBUG_FS))
3114                debugfs_remove_recursive(dfs_rootdir);
3115}
3116
3117/**
3118 * ubifs_debugging_init - initialize UBIFS debugging.
3119 * @c: UBIFS file-system description object
3120 *
3121 * This function initializes debugging-related data for the file system.
3122 * Returns zero in case of success and a negative error code in case of
3123 * failure.
3124 */
3125int ubifs_debugging_init(struct ubifs_info *c)
3126{
3127        c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3128        if (!c->dbg)
3129                return -ENOMEM;
3130
3131        return 0;
3132}
3133
3134/**
3135 * ubifs_debugging_exit - free debugging data.
3136 * @c: UBIFS file-system description object
3137 */
3138void ubifs_debugging_exit(struct ubifs_info *c)
3139{
3140        kfree(c->dbg);
3141}
3142#endif
3143