uboot/drivers/mtd/ubi/eba.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * SPDX-License-Identifier:     GPL-2.0+
   5 *
   6 * Author: Artem Bityutskiy (Битюцкий Артём)
   7 */
   8
   9/*
  10 * The UBI Eraseblock Association (EBA) sub-system.
  11 *
  12 * This sub-system is responsible for I/O to/from logical eraseblock.
  13 *
  14 * Although in this implementation the EBA table is fully kept and managed in
  15 * RAM, which assumes poor scalability, it might be (partially) maintained on
  16 * flash in future implementations.
  17 *
  18 * The EBA sub-system implements per-logical eraseblock locking. Before
  19 * accessing a logical eraseblock it is locked for reading or writing. The
  20 * per-logical eraseblock locking is implemented by means of the lock tree. The
  21 * lock tree is an RB-tree which refers all the currently locked logical
  22 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
  23 * They are indexed by (@vol_id, @lnum) pairs.
  24 *
  25 * EBA also maintains the global sequence counter which is incremented each
  26 * time a logical eraseblock is mapped to a physical eraseblock and it is
  27 * stored in the volume identifier header. This means that each VID header has
  28 * a unique sequence number. The sequence number is only increased an we assume
  29 * 64 bits is enough to never overflow.
  30 */
  31
  32#ifndef __UBOOT__
  33#include <linux/slab.h>
  34#include <linux/crc32.h>
  35#else
  36#include <ubi_uboot.h>
  37#endif
  38
  39#include <linux/err.h>
  40#include "ubi.h"
  41
  42/* Number of physical eraseblocks reserved for atomic LEB change operation */
  43#define EBA_RESERVED_PEBS 1
  44
  45/**
  46 * next_sqnum - get next sequence number.
  47 * @ubi: UBI device description object
  48 *
  49 * This function returns next sequence number to use, which is just the current
  50 * global sequence counter value. It also increases the global sequence
  51 * counter.
  52 */
  53unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
  54{
  55        unsigned long long sqnum;
  56
  57        spin_lock(&ubi->ltree_lock);
  58        sqnum = ubi->global_sqnum++;
  59        spin_unlock(&ubi->ltree_lock);
  60
  61        return sqnum;
  62}
  63
  64/**
  65 * ubi_get_compat - get compatibility flags of a volume.
  66 * @ubi: UBI device description object
  67 * @vol_id: volume ID
  68 *
  69 * This function returns compatibility flags for an internal volume. User
  70 * volumes have no compatibility flags, so %0 is returned.
  71 */
  72static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
  73{
  74        if (vol_id == UBI_LAYOUT_VOLUME_ID)
  75                return UBI_LAYOUT_VOLUME_COMPAT;
  76        return 0;
  77}
  78
  79/**
  80 * ltree_lookup - look up the lock tree.
  81 * @ubi: UBI device description object
  82 * @vol_id: volume ID
  83 * @lnum: logical eraseblock number
  84 *
  85 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
  86 * object if the logical eraseblock is locked and %NULL if it is not.
  87 * @ubi->ltree_lock has to be locked.
  88 */
  89static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
  90                                            int lnum)
  91{
  92        struct rb_node *p;
  93
  94        p = ubi->ltree.rb_node;
  95        while (p) {
  96                struct ubi_ltree_entry *le;
  97
  98                le = rb_entry(p, struct ubi_ltree_entry, rb);
  99
 100                if (vol_id < le->vol_id)
 101                        p = p->rb_left;
 102                else if (vol_id > le->vol_id)
 103                        p = p->rb_right;
 104                else {
 105                        if (lnum < le->lnum)
 106                                p = p->rb_left;
 107                        else if (lnum > le->lnum)
 108                                p = p->rb_right;
 109                        else
 110                                return le;
 111                }
 112        }
 113
 114        return NULL;
 115}
 116
 117/**
 118 * ltree_add_entry - add new entry to the lock tree.
 119 * @ubi: UBI device description object
 120 * @vol_id: volume ID
 121 * @lnum: logical eraseblock number
 122 *
 123 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
 124 * lock tree. If such entry is already there, its usage counter is increased.
 125 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
 126 * failed.
 127 */
 128static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
 129                                               int vol_id, int lnum)
 130{
 131        struct ubi_ltree_entry *le, *le1, *le_free;
 132
 133        le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
 134        if (!le)
 135                return ERR_PTR(-ENOMEM);
 136
 137        le->users = 0;
 138        init_rwsem(&le->mutex);
 139        le->vol_id = vol_id;
 140        le->lnum = lnum;
 141
 142        spin_lock(&ubi->ltree_lock);
 143        le1 = ltree_lookup(ubi, vol_id, lnum);
 144
 145        if (le1) {
 146                /*
 147                 * This logical eraseblock is already locked. The newly
 148                 * allocated lock entry is not needed.
 149                 */
 150                le_free = le;
 151                le = le1;
 152        } else {
 153                struct rb_node **p, *parent = NULL;
 154
 155                /*
 156                 * No lock entry, add the newly allocated one to the
 157                 * @ubi->ltree RB-tree.
 158                 */
 159                le_free = NULL;
 160
 161                p = &ubi->ltree.rb_node;
 162                while (*p) {
 163                        parent = *p;
 164                        le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
 165
 166                        if (vol_id < le1->vol_id)
 167                                p = &(*p)->rb_left;
 168                        else if (vol_id > le1->vol_id)
 169                                p = &(*p)->rb_right;
 170                        else {
 171                                ubi_assert(lnum != le1->lnum);
 172                                if (lnum < le1->lnum)
 173                                        p = &(*p)->rb_left;
 174                                else
 175                                        p = &(*p)->rb_right;
 176                        }
 177                }
 178
 179                rb_link_node(&le->rb, parent, p);
 180                rb_insert_color(&le->rb, &ubi->ltree);
 181        }
 182        le->users += 1;
 183        spin_unlock(&ubi->ltree_lock);
 184
 185        kfree(le_free);
 186        return le;
 187}
 188
 189/**
 190 * leb_read_lock - lock logical eraseblock for reading.
 191 * @ubi: UBI device description object
 192 * @vol_id: volume ID
 193 * @lnum: logical eraseblock number
 194 *
 195 * This function locks a logical eraseblock for reading. Returns zero in case
 196 * of success and a negative error code in case of failure.
 197 */
 198static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
 199{
 200        struct ubi_ltree_entry *le;
 201
 202        le = ltree_add_entry(ubi, vol_id, lnum);
 203        if (IS_ERR(le))
 204                return PTR_ERR(le);
 205        down_read(&le->mutex);
 206        return 0;
 207}
 208
 209/**
 210 * leb_read_unlock - unlock logical eraseblock.
 211 * @ubi: UBI device description object
 212 * @vol_id: volume ID
 213 * @lnum: logical eraseblock number
 214 */
 215static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 216{
 217        struct ubi_ltree_entry *le;
 218
 219        spin_lock(&ubi->ltree_lock);
 220        le = ltree_lookup(ubi, vol_id, lnum);
 221        le->users -= 1;
 222        ubi_assert(le->users >= 0);
 223        up_read(&le->mutex);
 224        if (le->users == 0) {
 225                rb_erase(&le->rb, &ubi->ltree);
 226                kfree(le);
 227        }
 228        spin_unlock(&ubi->ltree_lock);
 229}
 230
 231/**
 232 * leb_write_lock - lock logical eraseblock for writing.
 233 * @ubi: UBI device description object
 234 * @vol_id: volume ID
 235 * @lnum: logical eraseblock number
 236 *
 237 * This function locks a logical eraseblock for writing. Returns zero in case
 238 * of success and a negative error code in case of failure.
 239 */
 240static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
 241{
 242        struct ubi_ltree_entry *le;
 243
 244        le = ltree_add_entry(ubi, vol_id, lnum);
 245        if (IS_ERR(le))
 246                return PTR_ERR(le);
 247        down_write(&le->mutex);
 248        return 0;
 249}
 250
 251/**
 252 * leb_write_lock - lock logical eraseblock for writing.
 253 * @ubi: UBI device description object
 254 * @vol_id: volume ID
 255 * @lnum: logical eraseblock number
 256 *
 257 * This function locks a logical eraseblock for writing if there is no
 258 * contention and does nothing if there is contention. Returns %0 in case of
 259 * success, %1 in case of contention, and and a negative error code in case of
 260 * failure.
 261 */
 262static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
 263{
 264        struct ubi_ltree_entry *le;
 265
 266        le = ltree_add_entry(ubi, vol_id, lnum);
 267        if (IS_ERR(le))
 268                return PTR_ERR(le);
 269        if (down_write_trylock(&le->mutex))
 270                return 0;
 271
 272        /* Contention, cancel */
 273        spin_lock(&ubi->ltree_lock);
 274        le->users -= 1;
 275        ubi_assert(le->users >= 0);
 276        if (le->users == 0) {
 277                rb_erase(&le->rb, &ubi->ltree);
 278                kfree(le);
 279        }
 280        spin_unlock(&ubi->ltree_lock);
 281
 282        return 1;
 283}
 284
 285/**
 286 * leb_write_unlock - unlock logical eraseblock.
 287 * @ubi: UBI device description object
 288 * @vol_id: volume ID
 289 * @lnum: logical eraseblock number
 290 */
 291static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 292{
 293        struct ubi_ltree_entry *le;
 294
 295        spin_lock(&ubi->ltree_lock);
 296        le = ltree_lookup(ubi, vol_id, lnum);
 297        le->users -= 1;
 298        ubi_assert(le->users >= 0);
 299        up_write(&le->mutex);
 300        if (le->users == 0) {
 301                rb_erase(&le->rb, &ubi->ltree);
 302                kfree(le);
 303        }
 304        spin_unlock(&ubi->ltree_lock);
 305}
 306
 307/**
 308 * ubi_eba_unmap_leb - un-map logical eraseblock.
 309 * @ubi: UBI device description object
 310 * @vol: volume description object
 311 * @lnum: logical eraseblock number
 312 *
 313 * This function un-maps logical eraseblock @lnum and schedules corresponding
 314 * physical eraseblock for erasure. Returns zero in case of success and a
 315 * negative error code in case of failure.
 316 */
 317int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
 318                      int lnum)
 319{
 320        int err, pnum, vol_id = vol->vol_id;
 321
 322        if (ubi->ro_mode)
 323                return -EROFS;
 324
 325        err = leb_write_lock(ubi, vol_id, lnum);
 326        if (err)
 327                return err;
 328
 329        pnum = vol->eba_tbl[lnum];
 330        if (pnum < 0)
 331                /* This logical eraseblock is already unmapped */
 332                goto out_unlock;
 333
 334        dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
 335
 336        down_read(&ubi->fm_sem);
 337        vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
 338        up_read(&ubi->fm_sem);
 339        err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
 340
 341out_unlock:
 342        leb_write_unlock(ubi, vol_id, lnum);
 343        return err;
 344}
 345
 346/**
 347 * ubi_eba_read_leb - read data.
 348 * @ubi: UBI device description object
 349 * @vol: volume description object
 350 * @lnum: logical eraseblock number
 351 * @buf: buffer to store the read data
 352 * @offset: offset from where to read
 353 * @len: how many bytes to read
 354 * @check: data CRC check flag
 355 *
 356 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
 357 * bytes. The @check flag only makes sense for static volumes and forces
 358 * eraseblock data CRC checking.
 359 *
 360 * In case of success this function returns zero. In case of a static volume,
 361 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
 362 * returned for any volume type if an ECC error was detected by the MTD device
 363 * driver. Other negative error cored may be returned in case of other errors.
 364 */
 365int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 366                     void *buf, int offset, int len, int check)
 367{
 368        int err, pnum, scrub = 0, vol_id = vol->vol_id;
 369        struct ubi_vid_hdr *vid_hdr;
 370        uint32_t uninitialized_var(crc);
 371
 372        err = leb_read_lock(ubi, vol_id, lnum);
 373        if (err)
 374                return err;
 375
 376        pnum = vol->eba_tbl[lnum];
 377        if (pnum < 0) {
 378                /*
 379                 * The logical eraseblock is not mapped, fill the whole buffer
 380                 * with 0xFF bytes. The exception is static volumes for which
 381                 * it is an error to read unmapped logical eraseblocks.
 382                 */
 383                dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
 384                        len, offset, vol_id, lnum);
 385                leb_read_unlock(ubi, vol_id, lnum);
 386                ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
 387                memset(buf, 0xFF, len);
 388                return 0;
 389        }
 390
 391        dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
 392                len, offset, vol_id, lnum, pnum);
 393
 394        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 395                check = 0;
 396
 397retry:
 398        if (check) {
 399                vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 400                if (!vid_hdr) {
 401                        err = -ENOMEM;
 402                        goto out_unlock;
 403                }
 404
 405                err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
 406                if (err && err != UBI_IO_BITFLIPS) {
 407                        if (err > 0) {
 408                                /*
 409                                 * The header is either absent or corrupted.
 410                                 * The former case means there is a bug -
 411                                 * switch to read-only mode just in case.
 412                                 * The latter case means a real corruption - we
 413                                 * may try to recover data. FIXME: but this is
 414                                 * not implemented.
 415                                 */
 416                                if (err == UBI_IO_BAD_HDR_EBADMSG ||
 417                                    err == UBI_IO_BAD_HDR) {
 418                                        ubi_warn("corrupted VID header at PEB %d, LEB %d:%d",
 419                                                 pnum, vol_id, lnum);
 420                                        err = -EBADMSG;
 421                                } else
 422                                        ubi_ro_mode(ubi);
 423                        }
 424                        goto out_free;
 425                } else if (err == UBI_IO_BITFLIPS)
 426                        scrub = 1;
 427
 428                ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
 429                ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
 430
 431                crc = be32_to_cpu(vid_hdr->data_crc);
 432                ubi_free_vid_hdr(ubi, vid_hdr);
 433        }
 434
 435        err = ubi_io_read_data(ubi, buf, pnum, offset, len);
 436        if (err) {
 437                if (err == UBI_IO_BITFLIPS) {
 438                        scrub = 1;
 439                        err = 0;
 440                } else if (mtd_is_eccerr(err)) {
 441                        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 442                                goto out_unlock;
 443                        scrub = 1;
 444                        if (!check) {
 445                                ubi_msg("force data checking");
 446                                check = 1;
 447                                goto retry;
 448                        }
 449                } else
 450                        goto out_unlock;
 451        }
 452
 453        if (check) {
 454                uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
 455                if (crc1 != crc) {
 456                        ubi_warn("CRC error: calculated %#08x, must be %#08x",
 457                                 crc1, crc);
 458                        err = -EBADMSG;
 459                        goto out_unlock;
 460                }
 461        }
 462
 463        if (scrub)
 464                err = ubi_wl_scrub_peb(ubi, pnum);
 465
 466        leb_read_unlock(ubi, vol_id, lnum);
 467        return err;
 468
 469out_free:
 470        ubi_free_vid_hdr(ubi, vid_hdr);
 471out_unlock:
 472        leb_read_unlock(ubi, vol_id, lnum);
 473        return err;
 474}
 475
 476/**
 477 * recover_peb - recover from write failure.
 478 * @ubi: UBI device description object
 479 * @pnum: the physical eraseblock to recover
 480 * @vol_id: volume ID
 481 * @lnum: logical eraseblock number
 482 * @buf: data which was not written because of the write failure
 483 * @offset: offset of the failed write
 484 * @len: how many bytes should have been written
 485 *
 486 * This function is called in case of a write failure and moves all good data
 487 * from the potentially bad physical eraseblock to a good physical eraseblock.
 488 * This function also writes the data which was not written due to the failure.
 489 * Returns new physical eraseblock number in case of success, and a negative
 490 * error code in case of failure.
 491 */
 492static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
 493                       const void *buf, int offset, int len)
 494{
 495        int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
 496        struct ubi_volume *vol = ubi->volumes[idx];
 497        struct ubi_vid_hdr *vid_hdr;
 498
 499        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 500        if (!vid_hdr)
 501                return -ENOMEM;
 502
 503retry:
 504        new_pnum = ubi_wl_get_peb(ubi);
 505        if (new_pnum < 0) {
 506                ubi_free_vid_hdr(ubi, vid_hdr);
 507                return new_pnum;
 508        }
 509
 510        ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
 511
 512        err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
 513        if (err && err != UBI_IO_BITFLIPS) {
 514                if (err > 0)
 515                        err = -EIO;
 516                goto out_put;
 517        }
 518
 519        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 520        err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
 521        if (err)
 522                goto write_error;
 523
 524        data_size = offset + len;
 525        mutex_lock(&ubi->buf_mutex);
 526        memset(ubi->peb_buf + offset, 0xFF, len);
 527
 528        /* Read everything before the area where the write failure happened */
 529        if (offset > 0) {
 530                err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
 531                if (err && err != UBI_IO_BITFLIPS)
 532                        goto out_unlock;
 533        }
 534
 535        memcpy(ubi->peb_buf + offset, buf, len);
 536
 537        err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
 538        if (err) {
 539                mutex_unlock(&ubi->buf_mutex);
 540                goto write_error;
 541        }
 542
 543        mutex_unlock(&ubi->buf_mutex);
 544        ubi_free_vid_hdr(ubi, vid_hdr);
 545
 546        down_read(&ubi->fm_sem);
 547        vol->eba_tbl[lnum] = new_pnum;
 548        up_read(&ubi->fm_sem);
 549        ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 550
 551        ubi_msg("data was successfully recovered");
 552        return 0;
 553
 554out_unlock:
 555        mutex_unlock(&ubi->buf_mutex);
 556out_put:
 557        ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
 558        ubi_free_vid_hdr(ubi, vid_hdr);
 559        return err;
 560
 561write_error:
 562        /*
 563         * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
 564         * get another one.
 565         */
 566        ubi_warn("failed to write to PEB %d", new_pnum);
 567        ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
 568        if (++tries > UBI_IO_RETRIES) {
 569                ubi_free_vid_hdr(ubi, vid_hdr);
 570                return err;
 571        }
 572        ubi_msg("try again");
 573        goto retry;
 574}
 575
 576/**
 577 * ubi_eba_write_leb - write data to dynamic volume.
 578 * @ubi: UBI device description object
 579 * @vol: volume description object
 580 * @lnum: logical eraseblock number
 581 * @buf: the data to write
 582 * @offset: offset within the logical eraseblock where to write
 583 * @len: how many bytes to write
 584 *
 585 * This function writes data to logical eraseblock @lnum of a dynamic volume
 586 * @vol. Returns zero in case of success and a negative error code in case
 587 * of failure. In case of error, it is possible that something was still
 588 * written to the flash media, but may be some garbage.
 589 */
 590int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 591                      const void *buf, int offset, int len)
 592{
 593        int err, pnum, tries = 0, vol_id = vol->vol_id;
 594        struct ubi_vid_hdr *vid_hdr;
 595
 596        if (ubi->ro_mode)
 597                return -EROFS;
 598
 599        err = leb_write_lock(ubi, vol_id, lnum);
 600        if (err)
 601                return err;
 602
 603        pnum = vol->eba_tbl[lnum];
 604        if (pnum >= 0) {
 605                dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
 606                        len, offset, vol_id, lnum, pnum);
 607
 608                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 609                if (err) {
 610                        ubi_warn("failed to write data to PEB %d", pnum);
 611                        if (err == -EIO && ubi->bad_allowed)
 612                                err = recover_peb(ubi, pnum, vol_id, lnum, buf,
 613                                                  offset, len);
 614                        if (err)
 615                                ubi_ro_mode(ubi);
 616                }
 617                leb_write_unlock(ubi, vol_id, lnum);
 618                return err;
 619        }
 620
 621        /*
 622         * The logical eraseblock is not mapped. We have to get a free physical
 623         * eraseblock and write the volume identifier header there first.
 624         */
 625        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 626        if (!vid_hdr) {
 627                leb_write_unlock(ubi, vol_id, lnum);
 628                return -ENOMEM;
 629        }
 630
 631        vid_hdr->vol_type = UBI_VID_DYNAMIC;
 632        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 633        vid_hdr->vol_id = cpu_to_be32(vol_id);
 634        vid_hdr->lnum = cpu_to_be32(lnum);
 635        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 636        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 637
 638retry:
 639        pnum = ubi_wl_get_peb(ubi);
 640        if (pnum < 0) {
 641                ubi_free_vid_hdr(ubi, vid_hdr);
 642                leb_write_unlock(ubi, vol_id, lnum);
 643                return pnum;
 644        }
 645
 646        dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
 647                len, offset, vol_id, lnum, pnum);
 648
 649        err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 650        if (err) {
 651                ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
 652                         vol_id, lnum, pnum);
 653                goto write_error;
 654        }
 655
 656        if (len) {
 657                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 658                if (err) {
 659                        ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
 660                                 len, offset, vol_id, lnum, pnum);
 661                        goto write_error;
 662                }
 663        }
 664
 665        down_read(&ubi->fm_sem);
 666        vol->eba_tbl[lnum] = pnum;
 667        up_read(&ubi->fm_sem);
 668
 669        leb_write_unlock(ubi, vol_id, lnum);
 670        ubi_free_vid_hdr(ubi, vid_hdr);
 671        return 0;
 672
 673write_error:
 674        if (err != -EIO || !ubi->bad_allowed) {
 675                ubi_ro_mode(ubi);
 676                leb_write_unlock(ubi, vol_id, lnum);
 677                ubi_free_vid_hdr(ubi, vid_hdr);
 678                return err;
 679        }
 680
 681        /*
 682         * Fortunately, this is the first write operation to this physical
 683         * eraseblock, so just put it and request a new one. We assume that if
 684         * this physical eraseblock went bad, the erase code will handle that.
 685         */
 686        err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 687        if (err || ++tries > UBI_IO_RETRIES) {
 688                ubi_ro_mode(ubi);
 689                leb_write_unlock(ubi, vol_id, lnum);
 690                ubi_free_vid_hdr(ubi, vid_hdr);
 691                return err;
 692        }
 693
 694        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 695        ubi_msg("try another PEB");
 696        goto retry;
 697}
 698
 699/**
 700 * ubi_eba_write_leb_st - write data to static volume.
 701 * @ubi: UBI device description object
 702 * @vol: volume description object
 703 * @lnum: logical eraseblock number
 704 * @buf: data to write
 705 * @len: how many bytes to write
 706 * @used_ebs: how many logical eraseblocks will this volume contain
 707 *
 708 * This function writes data to logical eraseblock @lnum of static volume
 709 * @vol. The @used_ebs argument should contain total number of logical
 710 * eraseblock in this static volume.
 711 *
 712 * When writing to the last logical eraseblock, the @len argument doesn't have
 713 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
 714 * to the real data size, although the @buf buffer has to contain the
 715 * alignment. In all other cases, @len has to be aligned.
 716 *
 717 * It is prohibited to write more than once to logical eraseblocks of static
 718 * volumes. This function returns zero in case of success and a negative error
 719 * code in case of failure.
 720 */
 721int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
 722                         int lnum, const void *buf, int len, int used_ebs)
 723{
 724        int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
 725        struct ubi_vid_hdr *vid_hdr;
 726        uint32_t crc;
 727
 728        if (ubi->ro_mode)
 729                return -EROFS;
 730
 731        if (lnum == used_ebs - 1)
 732                /* If this is the last LEB @len may be unaligned */
 733                len = ALIGN(data_size, ubi->min_io_size);
 734        else
 735                ubi_assert(!(len & (ubi->min_io_size - 1)));
 736
 737        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 738        if (!vid_hdr)
 739                return -ENOMEM;
 740
 741        err = leb_write_lock(ubi, vol_id, lnum);
 742        if (err) {
 743                ubi_free_vid_hdr(ubi, vid_hdr);
 744                return err;
 745        }
 746
 747        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 748        vid_hdr->vol_id = cpu_to_be32(vol_id);
 749        vid_hdr->lnum = cpu_to_be32(lnum);
 750        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 751        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 752
 753        crc = crc32(UBI_CRC32_INIT, buf, data_size);
 754        vid_hdr->vol_type = UBI_VID_STATIC;
 755        vid_hdr->data_size = cpu_to_be32(data_size);
 756        vid_hdr->used_ebs = cpu_to_be32(used_ebs);
 757        vid_hdr->data_crc = cpu_to_be32(crc);
 758
 759retry:
 760        pnum = ubi_wl_get_peb(ubi);
 761        if (pnum < 0) {
 762                ubi_free_vid_hdr(ubi, vid_hdr);
 763                leb_write_unlock(ubi, vol_id, lnum);
 764                return pnum;
 765        }
 766
 767        dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
 768                len, vol_id, lnum, pnum, used_ebs);
 769
 770        err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 771        if (err) {
 772                ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
 773                         vol_id, lnum, pnum);
 774                goto write_error;
 775        }
 776
 777        err = ubi_io_write_data(ubi, buf, pnum, 0, len);
 778        if (err) {
 779                ubi_warn("failed to write %d bytes of data to PEB %d",
 780                         len, pnum);
 781                goto write_error;
 782        }
 783
 784        ubi_assert(vol->eba_tbl[lnum] < 0);
 785        down_read(&ubi->fm_sem);
 786        vol->eba_tbl[lnum] = pnum;
 787        up_read(&ubi->fm_sem);
 788
 789        leb_write_unlock(ubi, vol_id, lnum);
 790        ubi_free_vid_hdr(ubi, vid_hdr);
 791        return 0;
 792
 793write_error:
 794        if (err != -EIO || !ubi->bad_allowed) {
 795                /*
 796                 * This flash device does not admit of bad eraseblocks or
 797                 * something nasty and unexpected happened. Switch to read-only
 798                 * mode just in case.
 799                 */
 800                ubi_ro_mode(ubi);
 801                leb_write_unlock(ubi, vol_id, lnum);
 802                ubi_free_vid_hdr(ubi, vid_hdr);
 803                return err;
 804        }
 805
 806        err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 807        if (err || ++tries > UBI_IO_RETRIES) {
 808                ubi_ro_mode(ubi);
 809                leb_write_unlock(ubi, vol_id, lnum);
 810                ubi_free_vid_hdr(ubi, vid_hdr);
 811                return err;
 812        }
 813
 814        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 815        ubi_msg("try another PEB");
 816        goto retry;
 817}
 818
 819/*
 820 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
 821 * @ubi: UBI device description object
 822 * @vol: volume description object
 823 * @lnum: logical eraseblock number
 824 * @buf: data to write
 825 * @len: how many bytes to write
 826 *
 827 * This function changes the contents of a logical eraseblock atomically. @buf
 828 * has to contain new logical eraseblock data, and @len - the length of the
 829 * data, which has to be aligned. This function guarantees that in case of an
 830 * unclean reboot the old contents is preserved. Returns zero in case of
 831 * success and a negative error code in case of failure.
 832 *
 833 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
 834 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
 835 */
 836int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
 837                              int lnum, const void *buf, int len)
 838{
 839        int err, pnum, tries = 0, vol_id = vol->vol_id;
 840        struct ubi_vid_hdr *vid_hdr;
 841        uint32_t crc;
 842
 843        if (ubi->ro_mode)
 844                return -EROFS;
 845
 846        if (len == 0) {
 847                /*
 848                 * Special case when data length is zero. In this case the LEB
 849                 * has to be unmapped and mapped somewhere else.
 850                 */
 851                err = ubi_eba_unmap_leb(ubi, vol, lnum);
 852                if (err)
 853                        return err;
 854                return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
 855        }
 856
 857        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 858        if (!vid_hdr)
 859                return -ENOMEM;
 860
 861        mutex_lock(&ubi->alc_mutex);
 862        err = leb_write_lock(ubi, vol_id, lnum);
 863        if (err)
 864                goto out_mutex;
 865
 866        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 867        vid_hdr->vol_id = cpu_to_be32(vol_id);
 868        vid_hdr->lnum = cpu_to_be32(lnum);
 869        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 870        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 871
 872        crc = crc32(UBI_CRC32_INIT, buf, len);
 873        vid_hdr->vol_type = UBI_VID_DYNAMIC;
 874        vid_hdr->data_size = cpu_to_be32(len);
 875        vid_hdr->copy_flag = 1;
 876        vid_hdr->data_crc = cpu_to_be32(crc);
 877
 878retry:
 879        pnum = ubi_wl_get_peb(ubi);
 880        if (pnum < 0) {
 881                err = pnum;
 882                goto out_leb_unlock;
 883        }
 884
 885        dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
 886                vol_id, lnum, vol->eba_tbl[lnum], pnum);
 887
 888        err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 889        if (err) {
 890                ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
 891                         vol_id, lnum, pnum);
 892                goto write_error;
 893        }
 894
 895        err = ubi_io_write_data(ubi, buf, pnum, 0, len);
 896        if (err) {
 897                ubi_warn("failed to write %d bytes of data to PEB %d",
 898                         len, pnum);
 899                goto write_error;
 900        }
 901
 902        if (vol->eba_tbl[lnum] >= 0) {
 903                err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
 904                if (err)
 905                        goto out_leb_unlock;
 906        }
 907
 908        down_read(&ubi->fm_sem);
 909        vol->eba_tbl[lnum] = pnum;
 910        up_read(&ubi->fm_sem);
 911
 912out_leb_unlock:
 913        leb_write_unlock(ubi, vol_id, lnum);
 914out_mutex:
 915        mutex_unlock(&ubi->alc_mutex);
 916        ubi_free_vid_hdr(ubi, vid_hdr);
 917        return err;
 918
 919write_error:
 920        if (err != -EIO || !ubi->bad_allowed) {
 921                /*
 922                 * This flash device does not admit of bad eraseblocks or
 923                 * something nasty and unexpected happened. Switch to read-only
 924                 * mode just in case.
 925                 */
 926                ubi_ro_mode(ubi);
 927                goto out_leb_unlock;
 928        }
 929
 930        err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 931        if (err || ++tries > UBI_IO_RETRIES) {
 932                ubi_ro_mode(ubi);
 933                goto out_leb_unlock;
 934        }
 935
 936        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 937        ubi_msg("try another PEB");
 938        goto retry;
 939}
 940
 941/**
 942 * is_error_sane - check whether a read error is sane.
 943 * @err: code of the error happened during reading
 944 *
 945 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
 946 * cannot read data from the target PEB (an error @err happened). If the error
 947 * code is sane, then we treat this error as non-fatal. Otherwise the error is
 948 * fatal and UBI will be switched to R/O mode later.
 949 *
 950 * The idea is that we try not to switch to R/O mode if the read error is
 951 * something which suggests there was a real read problem. E.g., %-EIO. Or a
 952 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
 953 * mode, simply because we do not know what happened at the MTD level, and we
 954 * cannot handle this. E.g., the underlying driver may have become crazy, and
 955 * it is safer to switch to R/O mode to preserve the data.
 956 *
 957 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
 958 * which we have just written.
 959 */
 960static int is_error_sane(int err)
 961{
 962        if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
 963            err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
 964                return 0;
 965        return 1;
 966}
 967
 968/**
 969 * ubi_eba_copy_leb - copy logical eraseblock.
 970 * @ubi: UBI device description object
 971 * @from: physical eraseblock number from where to copy
 972 * @to: physical eraseblock number where to copy
 973 * @vid_hdr: VID header of the @from physical eraseblock
 974 *
 975 * This function copies logical eraseblock from physical eraseblock @from to
 976 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
 977 * function. Returns:
 978 *   o %0 in case of success;
 979 *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
 980 *   o a negative error code in case of failure.
 981 */
 982int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
 983                     struct ubi_vid_hdr *vid_hdr)
 984{
 985        int err, vol_id, lnum, data_size, aldata_size, idx;
 986        struct ubi_volume *vol;
 987        uint32_t crc;
 988
 989        vol_id = be32_to_cpu(vid_hdr->vol_id);
 990        lnum = be32_to_cpu(vid_hdr->lnum);
 991
 992        dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
 993
 994        if (vid_hdr->vol_type == UBI_VID_STATIC) {
 995                data_size = be32_to_cpu(vid_hdr->data_size);
 996                aldata_size = ALIGN(data_size, ubi->min_io_size);
 997        } else
 998                data_size = aldata_size =
 999                            ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1000
1001        idx = vol_id2idx(ubi, vol_id);
1002        spin_lock(&ubi->volumes_lock);
1003        /*
1004         * Note, we may race with volume deletion, which means that the volume
1005         * this logical eraseblock belongs to might be being deleted. Since the
1006         * volume deletion un-maps all the volume's logical eraseblocks, it will
1007         * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1008         */
1009        vol = ubi->volumes[idx];
1010        spin_unlock(&ubi->volumes_lock);
1011        if (!vol) {
1012                /* No need to do further work, cancel */
1013                dbg_wl("volume %d is being removed, cancel", vol_id);
1014                return MOVE_CANCEL_RACE;
1015        }
1016
1017        /*
1018         * We do not want anybody to write to this logical eraseblock while we
1019         * are moving it, so lock it.
1020         *
1021         * Note, we are using non-waiting locking here, because we cannot sleep
1022         * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1023         * unmapping the LEB which is mapped to the PEB we are going to move
1024         * (@from). This task locks the LEB and goes sleep in the
1025         * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1026         * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1027         * LEB is already locked, we just do not move it and return
1028         * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1029         * we do not know the reasons of the contention - it may be just a
1030         * normal I/O on this LEB, so we want to re-try.
1031         */
1032        err = leb_write_trylock(ubi, vol_id, lnum);
1033        if (err) {
1034                dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1035                return MOVE_RETRY;
1036        }
1037
1038        /*
1039         * The LEB might have been put meanwhile, and the task which put it is
1040         * probably waiting on @ubi->move_mutex. No need to continue the work,
1041         * cancel it.
1042         */
1043        if (vol->eba_tbl[lnum] != from) {
1044                dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1045                       vol_id, lnum, from, vol->eba_tbl[lnum]);
1046                err = MOVE_CANCEL_RACE;
1047                goto out_unlock_leb;
1048        }
1049
1050        /*
1051         * OK, now the LEB is locked and we can safely start moving it. Since
1052         * this function utilizes the @ubi->peb_buf buffer which is shared
1053         * with some other functions - we lock the buffer by taking the
1054         * @ubi->buf_mutex.
1055         */
1056        mutex_lock(&ubi->buf_mutex);
1057        dbg_wl("read %d bytes of data", aldata_size);
1058        err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1059        if (err && err != UBI_IO_BITFLIPS) {
1060                ubi_warn("error %d while reading data from PEB %d",
1061                         err, from);
1062                err = MOVE_SOURCE_RD_ERR;
1063                goto out_unlock_buf;
1064        }
1065
1066        /*
1067         * Now we have got to calculate how much data we have to copy. In
1068         * case of a static volume it is fairly easy - the VID header contains
1069         * the data size. In case of a dynamic volume it is more difficult - we
1070         * have to read the contents, cut 0xFF bytes from the end and copy only
1071         * the first part. We must do this to avoid writing 0xFF bytes as it
1072         * may have some side-effects. And not only this. It is important not
1073         * to include those 0xFFs to CRC because later the they may be filled
1074         * by data.
1075         */
1076        if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1077                aldata_size = data_size =
1078                        ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1079
1080        cond_resched();
1081        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1082        cond_resched();
1083
1084        /*
1085         * It may turn out to be that the whole @from physical eraseblock
1086         * contains only 0xFF bytes. Then we have to only write the VID header
1087         * and do not write any data. This also means we should not set
1088         * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1089         */
1090        if (data_size > 0) {
1091                vid_hdr->copy_flag = 1;
1092                vid_hdr->data_size = cpu_to_be32(data_size);
1093                vid_hdr->data_crc = cpu_to_be32(crc);
1094        }
1095        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1096
1097        err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1098        if (err) {
1099                if (err == -EIO)
1100                        err = MOVE_TARGET_WR_ERR;
1101                goto out_unlock_buf;
1102        }
1103
1104        cond_resched();
1105
1106        /* Read the VID header back and check if it was written correctly */
1107        err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1108        if (err) {
1109                if (err != UBI_IO_BITFLIPS) {
1110                        ubi_warn("error %d while reading VID header back from PEB %d",
1111                                 err, to);
1112                        if (is_error_sane(err))
1113                                err = MOVE_TARGET_RD_ERR;
1114                } else
1115                        err = MOVE_TARGET_BITFLIPS;
1116                goto out_unlock_buf;
1117        }
1118
1119        if (data_size > 0) {
1120                err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1121                if (err) {
1122                        if (err == -EIO)
1123                                err = MOVE_TARGET_WR_ERR;
1124                        goto out_unlock_buf;
1125                }
1126
1127                cond_resched();
1128
1129                /*
1130                 * We've written the data and are going to read it back to make
1131                 * sure it was written correctly.
1132                 */
1133                memset(ubi->peb_buf, 0xFF, aldata_size);
1134                err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1135                if (err) {
1136                        if (err != UBI_IO_BITFLIPS) {
1137                                ubi_warn("error %d while reading data back from PEB %d",
1138                                         err, to);
1139                                if (is_error_sane(err))
1140                                        err = MOVE_TARGET_RD_ERR;
1141                        } else
1142                                err = MOVE_TARGET_BITFLIPS;
1143                        goto out_unlock_buf;
1144                }
1145
1146                cond_resched();
1147
1148                if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1149                        ubi_warn("read data back from PEB %d and it is different",
1150                                 to);
1151                        err = -EINVAL;
1152                        goto out_unlock_buf;
1153                }
1154        }
1155
1156        ubi_assert(vol->eba_tbl[lnum] == from);
1157        down_read(&ubi->fm_sem);
1158        vol->eba_tbl[lnum] = to;
1159        up_read(&ubi->fm_sem);
1160
1161out_unlock_buf:
1162        mutex_unlock(&ubi->buf_mutex);
1163out_unlock_leb:
1164        leb_write_unlock(ubi, vol_id, lnum);
1165        return err;
1166}
1167
1168/**
1169 * print_rsvd_warning - warn about not having enough reserved PEBs.
1170 * @ubi: UBI device description object
1171 *
1172 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1173 * cannot reserve enough PEBs for bad block handling. This function makes a
1174 * decision whether we have to print a warning or not. The algorithm is as
1175 * follows:
1176 *   o if this is a new UBI image, then just print the warning
1177 *   o if this is an UBI image which has already been used for some time, print
1178 *     a warning only if we can reserve less than 10% of the expected amount of
1179 *     the reserved PEB.
1180 *
1181 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1182 * of PEBs becomes smaller, which is normal and we do not want to scare users
1183 * with a warning every time they attach the MTD device. This was an issue
1184 * reported by real users.
1185 */
1186static void print_rsvd_warning(struct ubi_device *ubi,
1187                               struct ubi_attach_info *ai)
1188{
1189        /*
1190         * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1191         * large number to distinguish between newly flashed and used images.
1192         */
1193        if (ai->max_sqnum > (1 << 18)) {
1194                int min = ubi->beb_rsvd_level / 10;
1195
1196                if (!min)
1197                        min = 1;
1198                if (ubi->beb_rsvd_pebs > min)
1199                        return;
1200        }
1201
1202        ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1203                 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1204        if (ubi->corr_peb_count)
1205                ubi_warn("%d PEBs are corrupted and not used",
1206                         ubi->corr_peb_count);
1207}
1208
1209/**
1210 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1211 * @ubi: UBI device description object
1212 * @ai_fastmap: UBI attach info object created by fastmap
1213 * @ai_scan: UBI attach info object created by scanning
1214 *
1215 * Returns < 0 in case of an internal error, 0 otherwise.
1216 * If a bad EBA table entry was found it will be printed out and
1217 * ubi_assert() triggers.
1218 */
1219int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1220                   struct ubi_attach_info *ai_scan)
1221{
1222        int i, j, num_volumes, ret = 0;
1223        int **scan_eba, **fm_eba;
1224        struct ubi_ainf_volume *av;
1225        struct ubi_volume *vol;
1226        struct ubi_ainf_peb *aeb;
1227        struct rb_node *rb;
1228
1229        num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1230
1231        scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1232        if (!scan_eba)
1233                return -ENOMEM;
1234
1235        fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1236        if (!fm_eba) {
1237                kfree(scan_eba);
1238                return -ENOMEM;
1239        }
1240
1241        for (i = 0; i < num_volumes; i++) {
1242                vol = ubi->volumes[i];
1243                if (!vol)
1244                        continue;
1245
1246                scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1247                                      GFP_KERNEL);
1248                if (!scan_eba[i]) {
1249                        ret = -ENOMEM;
1250                        goto out_free;
1251                }
1252
1253                fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1254                                    GFP_KERNEL);
1255                if (!fm_eba[i]) {
1256                        ret = -ENOMEM;
1257                        goto out_free;
1258                }
1259
1260                for (j = 0; j < vol->reserved_pebs; j++)
1261                        scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1262
1263                av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1264                if (!av)
1265                        continue;
1266
1267                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1268                        scan_eba[i][aeb->lnum] = aeb->pnum;
1269
1270                av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1271                if (!av)
1272                        continue;
1273
1274                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1275                        fm_eba[i][aeb->lnum] = aeb->pnum;
1276
1277                for (j = 0; j < vol->reserved_pebs; j++) {
1278                        if (scan_eba[i][j] != fm_eba[i][j]) {
1279                                if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1280                                        fm_eba[i][j] == UBI_LEB_UNMAPPED)
1281                                        continue;
1282
1283                                ubi_err("LEB:%i:%i is PEB:%i instead of %i!",
1284                                        vol->vol_id, i, fm_eba[i][j],
1285                                        scan_eba[i][j]);
1286                                ubi_assert(0);
1287                        }
1288                }
1289        }
1290
1291out_free:
1292        for (i = 0; i < num_volumes; i++) {
1293                if (!ubi->volumes[i])
1294                        continue;
1295
1296                kfree(scan_eba[i]);
1297                kfree(fm_eba[i]);
1298        }
1299
1300        kfree(scan_eba);
1301        kfree(fm_eba);
1302        return ret;
1303}
1304
1305/**
1306 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1307 * @ubi: UBI device description object
1308 * @ai: attaching information
1309 *
1310 * This function returns zero in case of success and a negative error code in
1311 * case of failure.
1312 */
1313int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1314{
1315        int i, j, err, num_volumes;
1316        struct ubi_ainf_volume *av;
1317        struct ubi_volume *vol;
1318        struct ubi_ainf_peb *aeb;
1319        struct rb_node *rb;
1320
1321        dbg_eba("initialize EBA sub-system");
1322
1323        spin_lock_init(&ubi->ltree_lock);
1324        mutex_init(&ubi->alc_mutex);
1325        ubi->ltree = RB_ROOT;
1326
1327        ubi->global_sqnum = ai->max_sqnum + 1;
1328        num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1329
1330        for (i = 0; i < num_volumes; i++) {
1331                vol = ubi->volumes[i];
1332                if (!vol)
1333                        continue;
1334
1335                cond_resched();
1336
1337                vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1338                                       GFP_KERNEL);
1339                if (!vol->eba_tbl) {
1340                        err = -ENOMEM;
1341                        goto out_free;
1342                }
1343
1344                for (j = 0; j < vol->reserved_pebs; j++)
1345                        vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1346
1347                av = ubi_find_av(ai, idx2vol_id(ubi, i));
1348                if (!av)
1349                        continue;
1350
1351                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1352                        if (aeb->lnum >= vol->reserved_pebs)
1353                                /*
1354                                 * This may happen in case of an unclean reboot
1355                                 * during re-size.
1356                                 */
1357                                ubi_move_aeb_to_list(av, aeb, &ai->erase);
1358                        vol->eba_tbl[aeb->lnum] = aeb->pnum;
1359                }
1360        }
1361
1362        if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1363                ubi_err("no enough physical eraseblocks (%d, need %d)",
1364                        ubi->avail_pebs, EBA_RESERVED_PEBS);
1365                if (ubi->corr_peb_count)
1366                        ubi_err("%d PEBs are corrupted and not used",
1367                                ubi->corr_peb_count);
1368                err = -ENOSPC;
1369                goto out_free;
1370        }
1371        ubi->avail_pebs -= EBA_RESERVED_PEBS;
1372        ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1373
1374        if (ubi->bad_allowed) {
1375                ubi_calculate_reserved(ubi);
1376
1377                if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1378                        /* No enough free physical eraseblocks */
1379                        ubi->beb_rsvd_pebs = ubi->avail_pebs;
1380                        print_rsvd_warning(ubi, ai);
1381                } else
1382                        ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1383
1384                ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1385                ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1386        }
1387
1388        dbg_eba("EBA sub-system is initialized");
1389        return 0;
1390
1391out_free:
1392        for (i = 0; i < num_volumes; i++) {
1393                if (!ubi->volumes[i])
1394                        continue;
1395                kfree(ubi->volumes[i]->eba_tbl);
1396                ubi->volumes[i]->eba_tbl = NULL;
1397        }
1398        return err;
1399}
1400