uboot/arch/arm/cpu/armv7/omap-common/emif-common.c
<<
>>
Prefs
   1/*
   2 * EMIF programming
   3 *
   4 * (C) Copyright 2010
   5 * Texas Instruments, <www.ti.com>
   6 *
   7 * Aneesh V <aneesh@ti.com>
   8 *
   9 * SPDX-License-Identifier:     GPL-2.0+
  10 */
  11
  12#include <common.h>
  13#include <asm/emif.h>
  14#include <asm/arch/clock.h>
  15#include <asm/arch/sys_proto.h>
  16#include <asm/omap_common.h>
  17#include <asm/utils.h>
  18#include <linux/compiler.h>
  19
  20static int emif1_enabled = -1, emif2_enabled = -1;
  21
  22void set_lpmode_selfrefresh(u32 base)
  23{
  24        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  25        u32 reg;
  26
  27        reg = readl(&emif->emif_pwr_mgmt_ctrl);
  28        reg &= ~EMIF_REG_LP_MODE_MASK;
  29        reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
  30        reg &= ~EMIF_REG_SR_TIM_MASK;
  31        writel(reg, &emif->emif_pwr_mgmt_ctrl);
  32
  33        /* dummy read for the new SR_TIM to be loaded */
  34        readl(&emif->emif_pwr_mgmt_ctrl);
  35}
  36
  37void force_emif_self_refresh()
  38{
  39        set_lpmode_selfrefresh(EMIF1_BASE);
  40        set_lpmode_selfrefresh(EMIF2_BASE);
  41}
  42
  43inline u32 emif_num(u32 base)
  44{
  45        if (base == EMIF1_BASE)
  46                return 1;
  47        else if (base == EMIF2_BASE)
  48                return 2;
  49        else
  50                return 0;
  51}
  52
  53static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
  54{
  55        u32 mr;
  56        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  57
  58        mr_addr |= cs << EMIF_REG_CS_SHIFT;
  59        writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
  60        if (omap_revision() == OMAP4430_ES2_0)
  61                mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
  62        else
  63                mr = readl(&emif->emif_lpddr2_mode_reg_data);
  64        debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
  65              cs, mr_addr, mr);
  66        if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
  67            ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
  68            ((mr & 0xff000000) >> 24) == (mr & 0xff))
  69                return mr & 0xff;
  70        else
  71                return mr;
  72}
  73
  74static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
  75{
  76        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  77
  78        mr_addr |= cs << EMIF_REG_CS_SHIFT;
  79        writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
  80        writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
  81}
  82
  83void emif_reset_phy(u32 base)
  84{
  85        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
  86        u32 iodft;
  87
  88        iodft = readl(&emif->emif_iodft_tlgc);
  89        iodft |= EMIF_REG_RESET_PHY_MASK;
  90        writel(iodft, &emif->emif_iodft_tlgc);
  91}
  92
  93static void do_lpddr2_init(u32 base, u32 cs)
  94{
  95        u32 mr_addr;
  96        const struct lpddr2_mr_regs *mr_regs;
  97
  98        get_lpddr2_mr_regs(&mr_regs);
  99        /* Wait till device auto initialization is complete */
 100        while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
 101                ;
 102        set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
 103        /*
 104         * tZQINIT = 1 us
 105         * Enough loops assuming a maximum of 2GHz
 106         */
 107
 108        sdelay(2000);
 109
 110        set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
 111        set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
 112
 113        /*
 114         * Enable refresh along with writing MR2
 115         * Encoding of RL in MR2 is (RL - 2)
 116         */
 117        mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
 118        set_mr(base, cs, mr_addr, mr_regs->mr2);
 119
 120        if (mr_regs->mr3 > 0)
 121                set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
 122}
 123
 124static void lpddr2_init(u32 base, const struct emif_regs *regs)
 125{
 126        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 127
 128        /* Not NVM */
 129        clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
 130
 131        /*
 132         * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
 133         * when EMIF_SDRAM_CONFIG register is written
 134         */
 135        setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
 136
 137        /*
 138         * Set the SDRAM_CONFIG and PHY_CTRL for the
 139         * un-locked frequency & default RL
 140         */
 141        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 142        writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
 143
 144        do_ext_phy_settings(base, regs);
 145
 146        do_lpddr2_init(base, CS0);
 147        if (regs->sdram_config & EMIF_REG_EBANK_MASK)
 148                do_lpddr2_init(base, CS1);
 149
 150        writel(regs->sdram_config, &emif->emif_sdram_config);
 151        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
 152
 153        /* Enable refresh now */
 154        clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
 155
 156        }
 157
 158__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
 159{
 160}
 161
 162void emif_update_timings(u32 base, const struct emif_regs *regs)
 163{
 164        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 165
 166        writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
 167        writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
 168        writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
 169        writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
 170        if (omap_revision() == OMAP4430_ES1_0) {
 171                /* ES1 bug EMIF should be in force idle during freq_update */
 172                writel(0, &emif->emif_pwr_mgmt_ctrl);
 173        } else {
 174                writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
 175                writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
 176        }
 177        writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
 178        writel(regs->zq_config, &emif->emif_zq_config);
 179        writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
 180        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
 181
 182        if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
 183                writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
 184                        &emif->emif_l3_config);
 185        } else if (omap_revision() >= OMAP4460_ES1_0) {
 186                writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
 187                        &emif->emif_l3_config);
 188        } else {
 189                writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
 190                        &emif->emif_l3_config);
 191        }
 192}
 193
 194static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
 195{
 196        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 197
 198        /* keep sdram in self-refresh */
 199        writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
 200                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
 201        __udelay(130);
 202
 203        /*
 204         * Set invert_clkout (if activated)--DDR_PHYCTRL_1
 205         * Invert clock adds an additional half cycle delay on the
 206         * command interface.  The additional half cycle, is usually
 207         * meant to enable leveling in the situation that DQS is later
 208         * than CK on the board.It also helps provide some additional
 209         * margin for leveling.
 210         */
 211        writel(regs->emif_ddr_phy_ctlr_1,
 212               &emif->emif_ddr_phy_ctrl_1);
 213
 214        writel(regs->emif_ddr_phy_ctlr_1,
 215               &emif->emif_ddr_phy_ctrl_1_shdw);
 216        __udelay(130);
 217
 218        writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
 219               & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
 220
 221        /* Launch Full leveling */
 222        writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
 223
 224        /* Wait till full leveling is complete */
 225        readl(&emif->emif_rd_wr_lvl_ctl);
 226              __udelay(130);
 227
 228        /* Read data eye leveling no of samples */
 229        config_data_eye_leveling_samples(base);
 230
 231        /*
 232         * Launch 8 incremental WR_LVL- to compensate for
 233         * PHY limitation.
 234         */
 235        writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
 236               &emif->emif_rd_wr_lvl_ctl);
 237
 238        __udelay(130);
 239
 240        /* Launch Incremental leveling */
 241        writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
 242               __udelay(130);
 243}
 244
 245static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
 246{
 247        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 248        u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
 249        u32 reg, i;
 250
 251        emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
 252
 253        /* Update PHY_REG_RDDQS_RATIO */
 254        emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
 255        for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
 256                reg = readl(emif_phy_status++);
 257                writel(reg, emif_ext_phy_ctrl_reg++);
 258                writel(reg, emif_ext_phy_ctrl_reg++);
 259        }
 260
 261        /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
 262        emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
 263        for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
 264                reg = readl(emif_phy_status++);
 265                writel(reg, emif_ext_phy_ctrl_reg++);
 266                writel(reg, emif_ext_phy_ctrl_reg++);
 267        }
 268
 269        /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
 270        emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
 271        for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
 272                reg = readl(emif_phy_status++);
 273                writel(reg, emif_ext_phy_ctrl_reg++);
 274                writel(reg, emif_ext_phy_ctrl_reg++);
 275        }
 276
 277        /* Disable Leveling */
 278        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
 279        writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
 280        writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
 281}
 282
 283static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
 284{
 285        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 286
 287        /* Clear Error Status */
 288        clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
 289                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
 290                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
 291
 292        clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
 293                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
 294                        EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
 295
 296        /* Disable refreshed before leveling */
 297        clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
 298                        EMIF_REG_INITREF_DIS_MASK);
 299
 300        /* Start Full leveling */
 301        writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
 302
 303        __udelay(300);
 304
 305        /* Check for leveling timeout */
 306        if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
 307                printf("Leveling timeout on EMIF%d\n", emif_num(base));
 308                return;
 309        }
 310
 311        /* Enable refreshes after leveling */
 312        clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
 313
 314        debug("HW leveling success\n");
 315        /*
 316         * Update slave ratios in EXT_PHY_CTRLx registers
 317         * as per HW leveling output
 318         */
 319        update_hwleveling_output(base, regs);
 320}
 321
 322static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
 323{
 324        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 325
 326        if (warm_reset())
 327                emif_reset_phy(base);
 328        do_ext_phy_settings(base, regs);
 329
 330        writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
 331               &emif->emif_sdram_ref_ctrl);
 332        /* Update timing registers */
 333        writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
 334        writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
 335        writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
 336
 337        writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
 338        writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
 339        writel(regs->zq_config, &emif->emif_zq_config);
 340        writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
 341        writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
 342        writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
 343
 344        writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
 345        writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
 346
 347        writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
 348
 349        writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
 350        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 351
 352        __udelay(1000);
 353
 354        writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
 355
 356        if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
 357                dra7_ddr3_leveling(base, regs);
 358}
 359
 360static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
 361{
 362        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
 363
 364        writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
 365        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 366        /*
 367         * Set SDRAM_CONFIG and PHY control registers to locked frequency
 368         * and RL =7. As the default values of the Mode Registers are not
 369         * defined, contents of mode Registers must be fully initialized.
 370         * H/W takes care of this initialization
 371         */
 372        writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
 373
 374        /* Update timing registers */
 375        writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
 376        writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
 377        writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
 378
 379        writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
 380
 381        writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
 382        writel(regs->sdram_config_init, &emif->emif_sdram_config);
 383        do_ext_phy_settings(base, regs);
 384
 385        writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
 386        omap5_ddr3_leveling(base, regs);
 387}
 388
 389static void ddr3_init(u32 base, const struct emif_regs *regs)
 390{
 391        if (is_omap54xx())
 392                omap5_ddr3_init(base, regs);
 393        else
 394                dra7_ddr3_init(base, regs);
 395}
 396
 397#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
 398#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
 399
 400/*
 401 * Organization and refresh requirements for LPDDR2 devices of different
 402 * types and densities. Derived from JESD209-2 section 2.4
 403 */
 404const struct lpddr2_addressing addressing_table[] = {
 405        /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
 406        {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
 407        {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
 408        {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
 409        {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
 410        {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
 411        {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
 412        {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
 413        {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
 414        {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
 415        {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
 416};
 417
 418static const u32 lpddr2_density_2_size_in_mbytes[] = {
 419        8,                      /* 64Mb */
 420        16,                     /* 128Mb */
 421        32,                     /* 256Mb */
 422        64,                     /* 512Mb */
 423        128,                    /* 1Gb   */
 424        256,                    /* 2Gb   */
 425        512,                    /* 4Gb   */
 426        1024,                   /* 8Gb   */
 427        2048,                   /* 16Gb  */
 428        4096                    /* 32Gb  */
 429};
 430
 431/*
 432 * Calculate the period of DDR clock from frequency value and set the
 433 * denominator and numerator in global variables for easy access later
 434 */
 435static void set_ddr_clk_period(u32 freq)
 436{
 437        /*
 438         * period = 1/freq
 439         * period_in_ns = 10^9/freq
 440         */
 441        *T_num = 1000000000;
 442        *T_den = freq;
 443        cancel_out(T_num, T_den, 200);
 444
 445}
 446
 447/*
 448 * Convert time in nano seconds to number of cycles of DDR clock
 449 */
 450static inline u32 ns_2_cycles(u32 ns)
 451{
 452        return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
 453}
 454
 455/*
 456 * ns_2_cycles with the difference that the time passed is 2 times the actual
 457 * value(to avoid fractions). The cycles returned is for the original value of
 458 * the timing parameter
 459 */
 460static inline u32 ns_x2_2_cycles(u32 ns)
 461{
 462        return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
 463}
 464
 465/*
 466 * Find addressing table index based on the device's type(S2 or S4) and
 467 * density
 468 */
 469s8 addressing_table_index(u8 type, u8 density, u8 width)
 470{
 471        u8 index;
 472        if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
 473                return -1;
 474
 475        /*
 476         * Look at the way ADDR_TABLE_INDEX* values have been defined
 477         * in emif.h compared to LPDDR2_DENSITY_* values
 478         * The table is layed out in the increasing order of density
 479         * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
 480         * at the end
 481         */
 482        if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
 483                index = ADDR_TABLE_INDEX1GS2;
 484        else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
 485                index = ADDR_TABLE_INDEX2GS2;
 486        else
 487                index = density;
 488
 489        debug("emif: addressing table index %d\n", index);
 490
 491        return index;
 492}
 493
 494/*
 495 * Find the the right timing table from the array of timing
 496 * tables of the device using DDR clock frequency
 497 */
 498static const struct lpddr2_ac_timings *get_timings_table(const struct
 499                        lpddr2_ac_timings const *const *device_timings,
 500                        u32 freq)
 501{
 502        u32 i, temp, freq_nearest;
 503        const struct lpddr2_ac_timings *timings = 0;
 504
 505        emif_assert(freq <= MAX_LPDDR2_FREQ);
 506        emif_assert(device_timings);
 507
 508        /*
 509         * Start with the maximum allowed frequency - that is always safe
 510         */
 511        freq_nearest = MAX_LPDDR2_FREQ;
 512        /*
 513         * Find the timings table that has the max frequency value:
 514         *   i.  Above or equal to the DDR frequency - safe
 515         *   ii. The lowest that satisfies condition (i) - optimal
 516         */
 517        for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
 518                temp = device_timings[i]->max_freq;
 519                if ((temp >= freq) && (temp <= freq_nearest)) {
 520                        freq_nearest = temp;
 521                        timings = device_timings[i];
 522                }
 523        }
 524        debug("emif: timings table: %d\n", freq_nearest);
 525        return timings;
 526}
 527
 528/*
 529 * Finds the value of emif_sdram_config_reg
 530 * All parameters are programmed based on the device on CS0.
 531 * If there is a device on CS1, it will be same as that on CS0 or
 532 * it will be NVM. We don't support NVM yet.
 533 * If cs1_device pointer is NULL it is assumed that there is no device
 534 * on CS1
 535 */
 536static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
 537                                const struct lpddr2_device_details *cs1_device,
 538                                const struct lpddr2_addressing *addressing,
 539                                u8 RL)
 540{
 541        u32 config_reg = 0;
 542
 543        config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
 544        config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
 545                        EMIF_REG_IBANK_POS_SHIFT;
 546
 547        config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
 548
 549        config_reg |= RL << EMIF_REG_CL_SHIFT;
 550
 551        config_reg |= addressing->row_sz[cs0_device->io_width] <<
 552                        EMIF_REG_ROWSIZE_SHIFT;
 553
 554        config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
 555
 556        config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
 557                        EMIF_REG_EBANK_SHIFT;
 558
 559        config_reg |= addressing->col_sz[cs0_device->io_width] <<
 560                        EMIF_REG_PAGESIZE_SHIFT;
 561
 562        return config_reg;
 563}
 564
 565static u32 get_sdram_ref_ctrl(u32 freq,
 566                              const struct lpddr2_addressing *addressing)
 567{
 568        u32 ref_ctrl = 0, val = 0, freq_khz;
 569        freq_khz = freq / 1000;
 570        /*
 571         * refresh rate to be set is 'tREFI * freq in MHz
 572         * division by 10000 to account for khz and x10 in t_REFI_us_x10
 573         */
 574        val = addressing->t_REFI_us_x10 * freq_khz / 10000;
 575        ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
 576
 577        return ref_ctrl;
 578}
 579
 580static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
 581                               const struct lpddr2_min_tck *min_tck,
 582                               const struct lpddr2_addressing *addressing)
 583{
 584        u32 tim1 = 0, val = 0;
 585        val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
 586        tim1 |= val << EMIF_REG_T_WTR_SHIFT;
 587
 588        if (addressing->num_banks == BANKS8)
 589                val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
 590                                                        (4 * (*T_num)) - 1;
 591        else
 592                val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
 593
 594        tim1 |= val << EMIF_REG_T_RRD_SHIFT;
 595
 596        val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
 597        tim1 |= val << EMIF_REG_T_RC_SHIFT;
 598
 599        val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
 600        tim1 |= val << EMIF_REG_T_RAS_SHIFT;
 601
 602        val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
 603        tim1 |= val << EMIF_REG_T_WR_SHIFT;
 604
 605        val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
 606        tim1 |= val << EMIF_REG_T_RCD_SHIFT;
 607
 608        val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
 609        tim1 |= val << EMIF_REG_T_RP_SHIFT;
 610
 611        return tim1;
 612}
 613
 614static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
 615                               const struct lpddr2_min_tck *min_tck)
 616{
 617        u32 tim2 = 0, val = 0;
 618        val = max(min_tck->tCKE, timings->tCKE) - 1;
 619        tim2 |= val << EMIF_REG_T_CKE_SHIFT;
 620
 621        val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
 622        tim2 |= val << EMIF_REG_T_RTP_SHIFT;
 623
 624        /*
 625         * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
 626         * same value
 627         */
 628        val = ns_2_cycles(timings->tXSR) - 1;
 629        tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
 630        tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
 631
 632        val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
 633        tim2 |= val << EMIF_REG_T_XP_SHIFT;
 634
 635        return tim2;
 636}
 637
 638static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
 639                               const struct lpddr2_min_tck *min_tck,
 640                               const struct lpddr2_addressing *addressing)
 641{
 642        u32 tim3 = 0, val = 0;
 643        val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
 644        tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
 645
 646        val = ns_2_cycles(timings->tRFCab) - 1;
 647        tim3 |= val << EMIF_REG_T_RFC_SHIFT;
 648
 649        val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
 650        tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
 651
 652        val = ns_2_cycles(timings->tZQCS) - 1;
 653        tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
 654
 655        val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
 656        tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
 657
 658        return tim3;
 659}
 660
 661static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
 662                             const struct lpddr2_addressing *addressing,
 663                             u8 volt_ramp)
 664{
 665        u32 zq = 0, val = 0;
 666        if (volt_ramp)
 667                val =
 668                    EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
 669                    addressing->t_REFI_us_x10;
 670        else
 671                val =
 672                    EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
 673                    addressing->t_REFI_us_x10;
 674        zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
 675
 676        zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
 677
 678        zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
 679
 680        zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
 681
 682        /*
 683         * Assuming that two chipselects have a single calibration resistor
 684         * If there are indeed two calibration resistors, then this flag should
 685         * be enabled to take advantage of dual calibration feature.
 686         * This data should ideally come from board files. But considering
 687         * that none of the boards today have calibration resistors per CS,
 688         * it would be an unnecessary overhead.
 689         */
 690        zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
 691
 692        zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
 693
 694        zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
 695
 696        return zq;
 697}
 698
 699static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
 700                                 const struct lpddr2_addressing *addressing,
 701                                 u8 is_derated)
 702{
 703        u32 alert = 0, interval;
 704        interval =
 705            TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
 706        if (is_derated)
 707                interval *= 4;
 708        alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
 709
 710        alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
 711
 712        alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
 713
 714        alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
 715
 716        alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
 717
 718        alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
 719
 720        return alert;
 721}
 722
 723static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
 724{
 725        u32 idle = 0, val = 0;
 726        if (volt_ramp)
 727                val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
 728        else
 729                /*Maximum value in normal conditions - suggested by hw team */
 730                val = 0x1FF;
 731        idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
 732
 733        idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
 734
 735        return idle;
 736}
 737
 738static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
 739{
 740        u32 phy = 0, val = 0;
 741
 742        phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
 743
 744        if (freq <= 100000000)
 745                val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
 746        else if (freq <= 200000000)
 747                val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
 748        else
 749                val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
 750        phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
 751
 752        /* Other fields are constant magic values. Hardcode them together */
 753        phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
 754                EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
 755
 756        return phy;
 757}
 758
 759static u32 get_emif_mem_size(u32 base)
 760{
 761        u32 size_mbytes = 0, temp;
 762        struct emif_device_details dev_details;
 763        struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
 764        u32 emif_nr = emif_num(base);
 765
 766        emif_reset_phy(base);
 767        dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
 768                                                &cs0_dev_details);
 769        dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
 770                                                &cs1_dev_details);
 771        emif_reset_phy(base);
 772
 773        if (dev_details.cs0_device_details) {
 774                temp = dev_details.cs0_device_details->density;
 775                size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
 776        }
 777
 778        if (dev_details.cs1_device_details) {
 779                temp = dev_details.cs1_device_details->density;
 780                size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
 781        }
 782        /* convert to bytes */
 783        return size_mbytes << 20;
 784}
 785
 786/* Gets the encoding corresponding to a given DMM section size */
 787u32 get_dmm_section_size_map(u32 section_size)
 788{
 789        /*
 790         * Section size mapping:
 791         * 0x0: 16-MiB section
 792         * 0x1: 32-MiB section
 793         * 0x2: 64-MiB section
 794         * 0x3: 128-MiB section
 795         * 0x4: 256-MiB section
 796         * 0x5: 512-MiB section
 797         * 0x6: 1-GiB section
 798         * 0x7: 2-GiB section
 799         */
 800        section_size >>= 24; /* divide by 16 MB */
 801        return log_2_n_round_down(section_size);
 802}
 803
 804static void emif_calculate_regs(
 805                const struct emif_device_details *emif_dev_details,
 806                u32 freq, struct emif_regs *regs)
 807{
 808        u32 temp, sys_freq;
 809        const struct lpddr2_addressing *addressing;
 810        const struct lpddr2_ac_timings *timings;
 811        const struct lpddr2_min_tck *min_tck;
 812        const struct lpddr2_device_details *cs0_dev_details =
 813                                        emif_dev_details->cs0_device_details;
 814        const struct lpddr2_device_details *cs1_dev_details =
 815                                        emif_dev_details->cs1_device_details;
 816        const struct lpddr2_device_timings *cs0_dev_timings =
 817                                        emif_dev_details->cs0_device_timings;
 818
 819        emif_assert(emif_dev_details);
 820        emif_assert(regs);
 821        /*
 822         * You can not have a device on CS1 without one on CS0
 823         * So configuring EMIF without a device on CS0 doesn't
 824         * make sense
 825         */
 826        emif_assert(cs0_dev_details);
 827        emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
 828        /*
 829         * If there is a device on CS1 it should be same type as CS0
 830         * (or NVM. But NVM is not supported in this driver yet)
 831         */
 832        emif_assert((cs1_dev_details == NULL) ||
 833                    (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
 834                    (cs0_dev_details->type == cs1_dev_details->type));
 835        emif_assert(freq <= MAX_LPDDR2_FREQ);
 836
 837        set_ddr_clk_period(freq);
 838
 839        /*
 840         * The device on CS0 is used for all timing calculations
 841         * There is only one set of registers for timings per EMIF. So, if the
 842         * second CS(CS1) has a device, it should have the same timings as the
 843         * device on CS0
 844         */
 845        timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
 846        emif_assert(timings);
 847        min_tck = cs0_dev_timings->min_tck;
 848
 849        temp = addressing_table_index(cs0_dev_details->type,
 850                                      cs0_dev_details->density,
 851                                      cs0_dev_details->io_width);
 852
 853        emif_assert((temp >= 0));
 854        addressing = &(addressing_table[temp]);
 855        emif_assert(addressing);
 856
 857        sys_freq = get_sys_clk_freq();
 858
 859        regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
 860                                                        cs1_dev_details,
 861                                                        addressing, RL_BOOT);
 862
 863        regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
 864                                                cs1_dev_details,
 865                                                addressing, RL_FINAL);
 866
 867        regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
 868
 869        regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
 870
 871        regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
 872
 873        regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
 874
 875        regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
 876
 877        regs->temp_alert_config =
 878            get_temp_alert_config(cs1_dev_details, addressing, 0);
 879
 880        regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
 881                                            LPDDR2_VOLTAGE_STABLE);
 882
 883        regs->emif_ddr_phy_ctlr_1_init =
 884                        get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
 885
 886        regs->emif_ddr_phy_ctlr_1 =
 887                        get_ddr_phy_ctrl_1(freq, RL_FINAL);
 888
 889        regs->freq = freq;
 890
 891        print_timing_reg(regs->sdram_config_init);
 892        print_timing_reg(regs->sdram_config);
 893        print_timing_reg(regs->ref_ctrl);
 894        print_timing_reg(regs->sdram_tim1);
 895        print_timing_reg(regs->sdram_tim2);
 896        print_timing_reg(regs->sdram_tim3);
 897        print_timing_reg(regs->read_idle_ctrl);
 898        print_timing_reg(regs->temp_alert_config);
 899        print_timing_reg(regs->zq_config);
 900        print_timing_reg(regs->emif_ddr_phy_ctlr_1);
 901        print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
 902}
 903#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
 904
 905#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
 906const char *get_lpddr2_type(u8 type_id)
 907{
 908        switch (type_id) {
 909        case LPDDR2_TYPE_S4:
 910                return "LPDDR2-S4";
 911        case LPDDR2_TYPE_S2:
 912                return "LPDDR2-S2";
 913        default:
 914                return NULL;
 915        }
 916}
 917
 918const char *get_lpddr2_io_width(u8 width_id)
 919{
 920        switch (width_id) {
 921        case LPDDR2_IO_WIDTH_8:
 922                return "x8";
 923        case LPDDR2_IO_WIDTH_16:
 924                return "x16";
 925        case LPDDR2_IO_WIDTH_32:
 926                return "x32";
 927        default:
 928                return NULL;
 929        }
 930}
 931
 932const char *get_lpddr2_manufacturer(u32 manufacturer)
 933{
 934        switch (manufacturer) {
 935        case LPDDR2_MANUFACTURER_SAMSUNG:
 936                return "Samsung";
 937        case LPDDR2_MANUFACTURER_QIMONDA:
 938                return "Qimonda";
 939        case LPDDR2_MANUFACTURER_ELPIDA:
 940                return "Elpida";
 941        case LPDDR2_MANUFACTURER_ETRON:
 942                return "Etron";
 943        case LPDDR2_MANUFACTURER_NANYA:
 944                return "Nanya";
 945        case LPDDR2_MANUFACTURER_HYNIX:
 946                return "Hynix";
 947        case LPDDR2_MANUFACTURER_MOSEL:
 948                return "Mosel";
 949        case LPDDR2_MANUFACTURER_WINBOND:
 950                return "Winbond";
 951        case LPDDR2_MANUFACTURER_ESMT:
 952                return "ESMT";
 953        case LPDDR2_MANUFACTURER_SPANSION:
 954                return "Spansion";
 955        case LPDDR2_MANUFACTURER_SST:
 956                return "SST";
 957        case LPDDR2_MANUFACTURER_ZMOS:
 958                return "ZMOS";
 959        case LPDDR2_MANUFACTURER_INTEL:
 960                return "Intel";
 961        case LPDDR2_MANUFACTURER_NUMONYX:
 962                return "Numonyx";
 963        case LPDDR2_MANUFACTURER_MICRON:
 964                return "Micron";
 965        default:
 966                return NULL;
 967        }
 968}
 969
 970static void display_sdram_details(u32 emif_nr, u32 cs,
 971                                  struct lpddr2_device_details *device)
 972{
 973        const char *mfg_str;
 974        const char *type_str;
 975        char density_str[10];
 976        u32 density;
 977
 978        debug("EMIF%d CS%d\t", emif_nr, cs);
 979
 980        if (!device) {
 981                debug("None\n");
 982                return;
 983        }
 984
 985        mfg_str = get_lpddr2_manufacturer(device->manufacturer);
 986        type_str = get_lpddr2_type(device->type);
 987
 988        density = lpddr2_density_2_size_in_mbytes[device->density];
 989        if ((density / 1024 * 1024) == density) {
 990                density /= 1024;
 991                sprintf(density_str, "%d GB", density);
 992        } else
 993                sprintf(density_str, "%d MB", density);
 994        if (mfg_str && type_str)
 995                debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
 996}
 997
 998static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
 999                                  struct lpddr2_device_details *lpddr2_device)
1000{
1001        u32 mr = 0, temp;
1002
1003        mr = get_mr(base, cs, LPDDR2_MR0);
1004        if (mr > 0xFF) {
1005                /* Mode register value bigger than 8 bit */
1006                return 0;
1007        }
1008
1009        temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1010        if (temp) {
1011                /* Not SDRAM */
1012                return 0;
1013        }
1014        temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1015
1016        if (temp) {
1017                /* DNV supported - But DNV is only supported for NVM */
1018                return 0;
1019        }
1020
1021        mr = get_mr(base, cs, LPDDR2_MR4);
1022        if (mr > 0xFF) {
1023                /* Mode register value bigger than 8 bit */
1024                return 0;
1025        }
1026
1027        mr = get_mr(base, cs, LPDDR2_MR5);
1028        if (mr > 0xFF) {
1029                /* Mode register value bigger than 8 bit */
1030                return 0;
1031        }
1032
1033        if (!get_lpddr2_manufacturer(mr)) {
1034                /* Manufacturer not identified */
1035                return 0;
1036        }
1037        lpddr2_device->manufacturer = mr;
1038
1039        mr = get_mr(base, cs, LPDDR2_MR6);
1040        if (mr >= 0xFF) {
1041                /* Mode register value bigger than 8 bit */
1042                return 0;
1043        }
1044
1045        mr = get_mr(base, cs, LPDDR2_MR7);
1046        if (mr >= 0xFF) {
1047                /* Mode register value bigger than 8 bit */
1048                return 0;
1049        }
1050
1051        mr = get_mr(base, cs, LPDDR2_MR8);
1052        if (mr >= 0xFF) {
1053                /* Mode register value bigger than 8 bit */
1054                return 0;
1055        }
1056
1057        temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1058        if (!get_lpddr2_type(temp)) {
1059                /* Not SDRAM */
1060                return 0;
1061        }
1062        lpddr2_device->type = temp;
1063
1064        temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1065        if (temp > LPDDR2_DENSITY_32Gb) {
1066                /* Density not supported */
1067                return 0;
1068        }
1069        lpddr2_device->density = temp;
1070
1071        temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1072        if (!get_lpddr2_io_width(temp)) {
1073                /* IO width unsupported value */
1074                return 0;
1075        }
1076        lpddr2_device->io_width = temp;
1077
1078        /*
1079         * If all the above tests pass we should
1080         * have a device on this chip-select
1081         */
1082        return 1;
1083}
1084
1085struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1086                        struct lpddr2_device_details *lpddr2_dev_details)
1087{
1088        u32 phy;
1089        u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1090
1091        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1092
1093        if (!lpddr2_dev_details)
1094                return NULL;
1095
1096        /* Do the minimum init for mode register accesses */
1097        if (!(running_from_sdram() || warm_reset())) {
1098                phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1099                writel(phy, &emif->emif_ddr_phy_ctrl_1);
1100        }
1101
1102        if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1103                return NULL;
1104
1105        display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1106
1107        return lpddr2_dev_details;
1108}
1109#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1110
1111static void do_sdram_init(u32 base)
1112{
1113        const struct emif_regs *regs;
1114        u32 in_sdram, emif_nr;
1115
1116        debug(">>do_sdram_init() %x\n", base);
1117
1118        in_sdram = running_from_sdram();
1119        emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1120
1121#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1122        emif_get_reg_dump(emif_nr, &regs);
1123        if (!regs) {
1124                debug("EMIF: reg dump not provided\n");
1125                return;
1126        }
1127#else
1128        /*
1129         * The user has not provided the register values. We need to
1130         * calculate it based on the timings and the DDR frequency
1131         */
1132        struct emif_device_details dev_details;
1133        struct emif_regs calculated_regs;
1134
1135        /*
1136         * Get device details:
1137         * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1138         * - Obtained from user otherwise
1139         */
1140        struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1141        emif_reset_phy(base);
1142        dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1143                                                &cs0_dev_details);
1144        dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1145                                                &cs1_dev_details);
1146        emif_reset_phy(base);
1147
1148        /* Return if no devices on this EMIF */
1149        if (!dev_details.cs0_device_details &&
1150            !dev_details.cs1_device_details) {
1151                return;
1152        }
1153
1154        /*
1155         * Get device timings:
1156         * - Default timings specified by JESD209-2 if
1157         *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1158         * - Obtained from user otherwise
1159         */
1160        emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1161                                &dev_details.cs1_device_timings);
1162
1163        /* Calculate the register values */
1164        emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1165        regs = &calculated_regs;
1166#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1167
1168        /*
1169         * Initializing the LPDDR2 device can not happen from SDRAM.
1170         * Changing the timing registers in EMIF can happen(going from one
1171         * OPP to another)
1172         */
1173        if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1174                if (emif_sdram_type(regs->sdram_config) ==
1175                    EMIF_SDRAM_TYPE_LPDDR2)
1176                        lpddr2_init(base, regs);
1177                else
1178                        ddr3_init(base, regs);
1179        }
1180        if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1181            EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1182                set_lpmode_selfrefresh(base);
1183                emif_reset_phy(base);
1184                omap5_ddr3_leveling(base, regs);
1185        }
1186
1187        /* Write to the shadow registers */
1188        emif_update_timings(base, regs);
1189
1190        debug("<<do_sdram_init() %x\n", base);
1191}
1192
1193void emif_post_init_config(u32 base)
1194{
1195        struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1196        u32 omap_rev = omap_revision();
1197
1198        /* reset phy on ES2.0 */
1199        if (omap_rev == OMAP4430_ES2_0)
1200                emif_reset_phy(base);
1201
1202        /* Put EMIF back in smart idle on ES1.0 */
1203        if (omap_rev == OMAP4430_ES1_0)
1204                writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1205}
1206
1207void dmm_init(u32 base)
1208{
1209        const struct dmm_lisa_map_regs *lisa_map_regs;
1210        u32 i, section, valid;
1211
1212#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1213        emif_get_dmm_regs(&lisa_map_regs);
1214#else
1215        u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1216        u32 section_cnt, sys_addr;
1217        struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1218
1219        mapped_size = 0;
1220        section_cnt = 3;
1221        sys_addr = CONFIG_SYS_SDRAM_BASE;
1222        emif1_size = get_emif_mem_size(EMIF1_BASE);
1223        emif2_size = get_emif_mem_size(EMIF2_BASE);
1224        debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1225
1226        if (!emif1_size && !emif2_size)
1227                return;
1228
1229        /* symmetric interleaved section */
1230        if (emif1_size && emif2_size) {
1231                mapped_size = min(emif1_size, emif2_size);
1232                section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1233                section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1234                /* only MSB */
1235                section_map |= (sys_addr >> 24) <<
1236                                EMIF_SYS_ADDR_SHIFT;
1237                section_map |= get_dmm_section_size_map(mapped_size * 2)
1238                                << EMIF_SYS_SIZE_SHIFT;
1239                lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1240                emif1_size -= mapped_size;
1241                emif2_size -= mapped_size;
1242                sys_addr += (mapped_size * 2);
1243                section_cnt--;
1244        }
1245
1246        /*
1247         * Single EMIF section(we can have a maximum of 1 single EMIF
1248         * section- either EMIF1 or EMIF2 or none, but not both)
1249         */
1250        if (emif1_size) {
1251                section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1252                section_map |= get_dmm_section_size_map(emif1_size)
1253                                << EMIF_SYS_SIZE_SHIFT;
1254                /* only MSB */
1255                section_map |= (mapped_size >> 24) <<
1256                                EMIF_SDRC_ADDR_SHIFT;
1257                /* only MSB */
1258                section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1259                section_cnt--;
1260        }
1261        if (emif2_size) {
1262                section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1263                section_map |= get_dmm_section_size_map(emif2_size) <<
1264                                EMIF_SYS_SIZE_SHIFT;
1265                /* only MSB */
1266                section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1267                /* only MSB */
1268                section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1269                section_cnt--;
1270        }
1271
1272        if (section_cnt == 2) {
1273                /* Only 1 section - either symmetric or single EMIF */
1274                lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1275                lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1276                lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1277        } else {
1278                /* 2 sections - 1 symmetric, 1 single EMIF */
1279                lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1280                lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1281        }
1282
1283        /* TRAP for invalid TILER mappings in section 0 */
1284        lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1285
1286        if (omap_revision() >= OMAP4460_ES1_0)
1287                lis_map_regs_calculated.is_ma_present = 1;
1288
1289        lisa_map_regs = &lis_map_regs_calculated;
1290#endif
1291        struct dmm_lisa_map_regs *hw_lisa_map_regs =
1292            (struct dmm_lisa_map_regs *)base;
1293
1294        writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1295        writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1296        writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1297        writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1298
1299        writel(lisa_map_regs->dmm_lisa_map_3,
1300                &hw_lisa_map_regs->dmm_lisa_map_3);
1301        writel(lisa_map_regs->dmm_lisa_map_2,
1302                &hw_lisa_map_regs->dmm_lisa_map_2);
1303        writel(lisa_map_regs->dmm_lisa_map_1,
1304                &hw_lisa_map_regs->dmm_lisa_map_1);
1305        writel(lisa_map_regs->dmm_lisa_map_0,
1306                &hw_lisa_map_regs->dmm_lisa_map_0);
1307
1308        if (lisa_map_regs->is_ma_present) {
1309                hw_lisa_map_regs =
1310                    (struct dmm_lisa_map_regs *)MA_BASE;
1311
1312                writel(lisa_map_regs->dmm_lisa_map_3,
1313                        &hw_lisa_map_regs->dmm_lisa_map_3);
1314                writel(lisa_map_regs->dmm_lisa_map_2,
1315                        &hw_lisa_map_regs->dmm_lisa_map_2);
1316                writel(lisa_map_regs->dmm_lisa_map_1,
1317                        &hw_lisa_map_regs->dmm_lisa_map_1);
1318                writel(lisa_map_regs->dmm_lisa_map_0,
1319                        &hw_lisa_map_regs->dmm_lisa_map_0);
1320        }
1321
1322        /*
1323         * EMIF should be configured only when
1324         * memory is mapped on it. Using emif1_enabled
1325         * and emif2_enabled variables for this.
1326         */
1327        emif1_enabled = 0;
1328        emif2_enabled = 0;
1329        for (i = 0; i < 4; i++) {
1330                section = __raw_readl(DMM_BASE + i*4);
1331                valid = (section & EMIF_SDRC_MAP_MASK) >>
1332                        (EMIF_SDRC_MAP_SHIFT);
1333                if (valid == 3) {
1334                        emif1_enabled = 1;
1335                        emif2_enabled = 1;
1336                        break;
1337                }
1338
1339                if (valid == 1)
1340                        emif1_enabled = 1;
1341
1342                if (valid == 2)
1343                        emif2_enabled = 1;
1344        }
1345}
1346
1347static void do_bug0039_workaround(u32 base)
1348{
1349        u32 val, i, clkctrl;
1350        struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1351        const struct read_write_regs *bug_00339_regs;
1352        u32 iterations;
1353        u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1354        u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1355
1356        if (is_dra7xx())
1357                phy_status_base++;
1358
1359        bug_00339_regs = get_bug_regs(&iterations);
1360
1361        /* Put EMIF in to idle */
1362        clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1363        __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1364
1365        /* Copy the phy status registers in to phy ctrl shadow registers */
1366        for (i = 0; i < iterations; i++) {
1367                val = __raw_readl(phy_status_base +
1368                                  bug_00339_regs[i].read_reg - 1);
1369
1370                __raw_writel(val, phy_ctrl_base +
1371                             ((bug_00339_regs[i].write_reg - 1) << 1));
1372
1373                __raw_writel(val, phy_ctrl_base +
1374                             (bug_00339_regs[i].write_reg << 1) - 1);
1375        }
1376
1377        /* Disable leveling */
1378        writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1379
1380        __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1381}
1382
1383/*
1384 * SDRAM initialization:
1385 * SDRAM initialization has two parts:
1386 * 1. Configuring the SDRAM device
1387 * 2. Update the AC timings related parameters in the EMIF module
1388 * (1) should be done only once and should not be done while we are
1389 * running from SDRAM.
1390 * (2) can and should be done more than once if OPP changes.
1391 * Particularly, this may be needed when we boot without SPL and
1392 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1393 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1394 * the frequency. So,
1395 * Doing (1) and (2) makes sense - first time initialization
1396 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1397 * Doing (1) and not (2) doen't make sense
1398 * See do_sdram_init() for the details
1399 */
1400void sdram_init(void)
1401{
1402        u32 in_sdram, size_prog, size_detect;
1403        struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1404        u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1405
1406        debug(">>sdram_init()\n");
1407
1408        if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1409                return;
1410
1411        in_sdram = running_from_sdram();
1412        debug("in_sdram = %d\n", in_sdram);
1413
1414        if (!in_sdram) {
1415                if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1416                        bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1417                else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1418                        writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1419        }
1420
1421        if (!in_sdram)
1422                dmm_init(DMM_BASE);
1423
1424        if (emif1_enabled)
1425                do_sdram_init(EMIF1_BASE);
1426
1427        if (emif2_enabled)
1428                do_sdram_init(EMIF2_BASE);
1429
1430        if (!(in_sdram || warm_reset())) {
1431                if (emif1_enabled)
1432                        emif_post_init_config(EMIF1_BASE);
1433                if (emif2_enabled)
1434                        emif_post_init_config(EMIF2_BASE);
1435        }
1436
1437        /* for the shadow registers to take effect */
1438        if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1439                freq_update_core();
1440
1441        /* Do some testing after the init */
1442        if (!in_sdram) {
1443                size_prog = omap_sdram_size();
1444                size_prog = log_2_n_round_down(size_prog);
1445                size_prog = (1 << size_prog);
1446
1447                size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1448                                                size_prog);
1449                /* Compare with the size programmed */
1450                if (size_detect != size_prog) {
1451                        printf("SDRAM: identified size not same as expected"
1452                                " size identified: %x expected: %x\n",
1453                                size_detect,
1454                                size_prog);
1455                } else
1456                        debug("get_ram_size() successful");
1457        }
1458
1459        if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1460            (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1461                if (emif1_enabled)
1462                        do_bug0039_workaround(EMIF1_BASE);
1463                if (emif2_enabled)
1464                        do_bug0039_workaround(EMIF2_BASE);
1465        }
1466
1467        debug("<<sdram_init()\n");
1468}
1469