1
2
3
4
5
6
7
8
9
10
11
12#include <common.h>
13#include <asm/emif.h>
14#include <asm/arch/clock.h>
15#include <asm/arch/sys_proto.h>
16#include <asm/omap_common.h>
17#include <asm/utils.h>
18#include <linux/compiler.h>
19
20static int emif1_enabled = -1, emif2_enabled = -1;
21
22void set_lpmode_selfrefresh(u32 base)
23{
24 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25 u32 reg;
26
27 reg = readl(&emif->emif_pwr_mgmt_ctrl);
28 reg &= ~EMIF_REG_LP_MODE_MASK;
29 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30 reg &= ~EMIF_REG_SR_TIM_MASK;
31 writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33
34 readl(&emif->emif_pwr_mgmt_ctrl);
35}
36
37void force_emif_self_refresh()
38{
39 set_lpmode_selfrefresh(EMIF1_BASE);
40 set_lpmode_selfrefresh(EMIF2_BASE);
41}
42
43inline u32 emif_num(u32 base)
44{
45 if (base == EMIF1_BASE)
46 return 1;
47 else if (base == EMIF2_BASE)
48 return 2;
49 else
50 return 0;
51}
52
53static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
54{
55 u32 mr;
56 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
57
58 mr_addr |= cs << EMIF_REG_CS_SHIFT;
59 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
60 if (omap_revision() == OMAP4430_ES2_0)
61 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
62 else
63 mr = readl(&emif->emif_lpddr2_mode_reg_data);
64 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
65 cs, mr_addr, mr);
66 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
67 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
68 ((mr & 0xff000000) >> 24) == (mr & 0xff))
69 return mr & 0xff;
70 else
71 return mr;
72}
73
74static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
75{
76 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
77
78 mr_addr |= cs << EMIF_REG_CS_SHIFT;
79 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
80 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
81}
82
83void emif_reset_phy(u32 base)
84{
85 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
86 u32 iodft;
87
88 iodft = readl(&emif->emif_iodft_tlgc);
89 iodft |= EMIF_REG_RESET_PHY_MASK;
90 writel(iodft, &emif->emif_iodft_tlgc);
91}
92
93static void do_lpddr2_init(u32 base, u32 cs)
94{
95 u32 mr_addr;
96 const struct lpddr2_mr_regs *mr_regs;
97
98 get_lpddr2_mr_regs(&mr_regs);
99
100 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
101 ;
102 set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
103
104
105
106
107
108 sdelay(2000);
109
110 set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
111 set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
112
113
114
115
116
117 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
118 set_mr(base, cs, mr_addr, mr_regs->mr2);
119
120 if (mr_regs->mr3 > 0)
121 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
122}
123
124static void lpddr2_init(u32 base, const struct emif_regs *regs)
125{
126 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
127
128
129 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
130
131
132
133
134
135 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
136
137
138
139
140
141 writel(regs->sdram_config_init, &emif->emif_sdram_config);
142 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
143
144 do_ext_phy_settings(base, regs);
145
146 do_lpddr2_init(base, CS0);
147 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
148 do_lpddr2_init(base, CS1);
149
150 writel(regs->sdram_config, &emif->emif_sdram_config);
151 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
152
153
154 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
155
156 }
157
158__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
159{
160}
161
162void emif_update_timings(u32 base, const struct emif_regs *regs)
163{
164 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
165
166 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
167 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
168 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
169 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
170 if (omap_revision() == OMAP4430_ES1_0) {
171
172 writel(0, &emif->emif_pwr_mgmt_ctrl);
173 } else {
174 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
175 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
176 }
177 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
178 writel(regs->zq_config, &emif->emif_zq_config);
179 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
180 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
181
182 if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
183 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
184 &emif->emif_l3_config);
185 } else if (omap_revision() >= OMAP4460_ES1_0) {
186 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
187 &emif->emif_l3_config);
188 } else {
189 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
190 &emif->emif_l3_config);
191 }
192}
193
194static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
195{
196 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
197
198
199 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
200 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
201 __udelay(130);
202
203
204
205
206
207
208
209
210
211 writel(regs->emif_ddr_phy_ctlr_1,
212 &emif->emif_ddr_phy_ctrl_1);
213
214 writel(regs->emif_ddr_phy_ctlr_1,
215 &emif->emif_ddr_phy_ctrl_1_shdw);
216 __udelay(130);
217
218 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
219 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
220
221
222 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
223
224
225 readl(&emif->emif_rd_wr_lvl_ctl);
226 __udelay(130);
227
228
229 config_data_eye_leveling_samples(base);
230
231
232
233
234
235 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
236 &emif->emif_rd_wr_lvl_ctl);
237
238 __udelay(130);
239
240
241 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
242 __udelay(130);
243}
244
245static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
246{
247 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
248 u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
249 u32 reg, i;
250
251 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
252
253
254 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
255 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
256 reg = readl(emif_phy_status++);
257 writel(reg, emif_ext_phy_ctrl_reg++);
258 writel(reg, emif_ext_phy_ctrl_reg++);
259 }
260
261
262 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
263 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
264 reg = readl(emif_phy_status++);
265 writel(reg, emif_ext_phy_ctrl_reg++);
266 writel(reg, emif_ext_phy_ctrl_reg++);
267 }
268
269
270 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
271 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
272 reg = readl(emif_phy_status++);
273 writel(reg, emif_ext_phy_ctrl_reg++);
274 writel(reg, emif_ext_phy_ctrl_reg++);
275 }
276
277
278 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
279 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
280 writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
281}
282
283static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
284{
285 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
286
287
288 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
289 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
290 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
291
292 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
293 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
294 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
295
296
297 clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
298 EMIF_REG_INITREF_DIS_MASK);
299
300
301 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
302
303 __udelay(300);
304
305
306 if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
307 printf("Leveling timeout on EMIF%d\n", emif_num(base));
308 return;
309 }
310
311
312 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
313
314 debug("HW leveling success\n");
315
316
317
318
319 update_hwleveling_output(base, regs);
320}
321
322static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
323{
324 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
325
326 if (warm_reset())
327 emif_reset_phy(base);
328 do_ext_phy_settings(base, regs);
329
330 writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
331 &emif->emif_sdram_ref_ctrl);
332
333 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
334 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
335 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
336
337 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
338 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
339 writel(regs->zq_config, &emif->emif_zq_config);
340 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
341 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
342 writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
343
344 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
345 writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
346
347 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
348
349 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
350 writel(regs->sdram_config_init, &emif->emif_sdram_config);
351
352 __udelay(1000);
353
354 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
355
356 if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
357 dra7_ddr3_leveling(base, regs);
358}
359
360static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
361{
362 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
363
364 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
365 writel(regs->sdram_config_init, &emif->emif_sdram_config);
366
367
368
369
370
371
372 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
373
374
375 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
376 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
377 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
378
379 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
380
381 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
382 writel(regs->sdram_config_init, &emif->emif_sdram_config);
383 do_ext_phy_settings(base, regs);
384
385 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
386 omap5_ddr3_leveling(base, regs);
387}
388
389static void ddr3_init(u32 base, const struct emif_regs *regs)
390{
391 if (is_omap54xx())
392 omap5_ddr3_init(base, regs);
393 else
394 dra7_ddr3_init(base, regs);
395}
396
397#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
398#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
399
400
401
402
403
404const struct lpddr2_addressing addressing_table[] = {
405
406 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },
407 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },
408 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },
409 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },
410 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },
411 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },
412 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },
413 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },
414 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },
415 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },
416};
417
418static const u32 lpddr2_density_2_size_in_mbytes[] = {
419 8,
420 16,
421 32,
422 64,
423 128,
424 256,
425 512,
426 1024,
427 2048,
428 4096
429};
430
431
432
433
434
435static void set_ddr_clk_period(u32 freq)
436{
437
438
439
440
441 *T_num = 1000000000;
442 *T_den = freq;
443 cancel_out(T_num, T_den, 200);
444
445}
446
447
448
449
450static inline u32 ns_2_cycles(u32 ns)
451{
452 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
453}
454
455
456
457
458
459
460static inline u32 ns_x2_2_cycles(u32 ns)
461{
462 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
463}
464
465
466
467
468
469s8 addressing_table_index(u8 type, u8 density, u8 width)
470{
471 u8 index;
472 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
473 return -1;
474
475
476
477
478
479
480
481
482 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
483 index = ADDR_TABLE_INDEX1GS2;
484 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
485 index = ADDR_TABLE_INDEX2GS2;
486 else
487 index = density;
488
489 debug("emif: addressing table index %d\n", index);
490
491 return index;
492}
493
494
495
496
497
498static const struct lpddr2_ac_timings *get_timings_table(const struct
499 lpddr2_ac_timings const *const *device_timings,
500 u32 freq)
501{
502 u32 i, temp, freq_nearest;
503 const struct lpddr2_ac_timings *timings = 0;
504
505 emif_assert(freq <= MAX_LPDDR2_FREQ);
506 emif_assert(device_timings);
507
508
509
510
511 freq_nearest = MAX_LPDDR2_FREQ;
512
513
514
515
516
517 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
518 temp = device_timings[i]->max_freq;
519 if ((temp >= freq) && (temp <= freq_nearest)) {
520 freq_nearest = temp;
521 timings = device_timings[i];
522 }
523 }
524 debug("emif: timings table: %d\n", freq_nearest);
525 return timings;
526}
527
528
529
530
531
532
533
534
535
536static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
537 const struct lpddr2_device_details *cs1_device,
538 const struct lpddr2_addressing *addressing,
539 u8 RL)
540{
541 u32 config_reg = 0;
542
543 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
544 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
545 EMIF_REG_IBANK_POS_SHIFT;
546
547 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
548
549 config_reg |= RL << EMIF_REG_CL_SHIFT;
550
551 config_reg |= addressing->row_sz[cs0_device->io_width] <<
552 EMIF_REG_ROWSIZE_SHIFT;
553
554 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
555
556 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
557 EMIF_REG_EBANK_SHIFT;
558
559 config_reg |= addressing->col_sz[cs0_device->io_width] <<
560 EMIF_REG_PAGESIZE_SHIFT;
561
562 return config_reg;
563}
564
565static u32 get_sdram_ref_ctrl(u32 freq,
566 const struct lpddr2_addressing *addressing)
567{
568 u32 ref_ctrl = 0, val = 0, freq_khz;
569 freq_khz = freq / 1000;
570
571
572
573
574 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
575 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
576
577 return ref_ctrl;
578}
579
580static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
581 const struct lpddr2_min_tck *min_tck,
582 const struct lpddr2_addressing *addressing)
583{
584 u32 tim1 = 0, val = 0;
585 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
586 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
587
588 if (addressing->num_banks == BANKS8)
589 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
590 (4 * (*T_num)) - 1;
591 else
592 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
593
594 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
595
596 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
597 tim1 |= val << EMIF_REG_T_RC_SHIFT;
598
599 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
600 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
601
602 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
603 tim1 |= val << EMIF_REG_T_WR_SHIFT;
604
605 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
606 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
607
608 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
609 tim1 |= val << EMIF_REG_T_RP_SHIFT;
610
611 return tim1;
612}
613
614static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
615 const struct lpddr2_min_tck *min_tck)
616{
617 u32 tim2 = 0, val = 0;
618 val = max(min_tck->tCKE, timings->tCKE) - 1;
619 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
620
621 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
622 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
623
624
625
626
627
628 val = ns_2_cycles(timings->tXSR) - 1;
629 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
630 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
631
632 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
633 tim2 |= val << EMIF_REG_T_XP_SHIFT;
634
635 return tim2;
636}
637
638static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
639 const struct lpddr2_min_tck *min_tck,
640 const struct lpddr2_addressing *addressing)
641{
642 u32 tim3 = 0, val = 0;
643 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
644 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
645
646 val = ns_2_cycles(timings->tRFCab) - 1;
647 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
648
649 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
650 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
651
652 val = ns_2_cycles(timings->tZQCS) - 1;
653 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
654
655 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
656 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
657
658 return tim3;
659}
660
661static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
662 const struct lpddr2_addressing *addressing,
663 u8 volt_ramp)
664{
665 u32 zq = 0, val = 0;
666 if (volt_ramp)
667 val =
668 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
669 addressing->t_REFI_us_x10;
670 else
671 val =
672 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
673 addressing->t_REFI_us_x10;
674 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
675
676 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
677
678 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
679
680 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
681
682
683
684
685
686
687
688
689
690 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
691
692 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
693
694 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
695
696 return zq;
697}
698
699static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
700 const struct lpddr2_addressing *addressing,
701 u8 is_derated)
702{
703 u32 alert = 0, interval;
704 interval =
705 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
706 if (is_derated)
707 interval *= 4;
708 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
709
710 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
711
712 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
713
714 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
715
716 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
717
718 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
719
720 return alert;
721}
722
723static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
724{
725 u32 idle = 0, val = 0;
726 if (volt_ramp)
727 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
728 else
729
730 val = 0x1FF;
731 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
732
733 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
734
735 return idle;
736}
737
738static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
739{
740 u32 phy = 0, val = 0;
741
742 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
743
744 if (freq <= 100000000)
745 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
746 else if (freq <= 200000000)
747 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
748 else
749 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
750 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
751
752
753 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
754 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
755
756 return phy;
757}
758
759static u32 get_emif_mem_size(u32 base)
760{
761 u32 size_mbytes = 0, temp;
762 struct emif_device_details dev_details;
763 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
764 u32 emif_nr = emif_num(base);
765
766 emif_reset_phy(base);
767 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
768 &cs0_dev_details);
769 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
770 &cs1_dev_details);
771 emif_reset_phy(base);
772
773 if (dev_details.cs0_device_details) {
774 temp = dev_details.cs0_device_details->density;
775 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
776 }
777
778 if (dev_details.cs1_device_details) {
779 temp = dev_details.cs1_device_details->density;
780 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
781 }
782
783 return size_mbytes << 20;
784}
785
786
787u32 get_dmm_section_size_map(u32 section_size)
788{
789
790
791
792
793
794
795
796
797
798
799
800 section_size >>= 24;
801 return log_2_n_round_down(section_size);
802}
803
804static void emif_calculate_regs(
805 const struct emif_device_details *emif_dev_details,
806 u32 freq, struct emif_regs *regs)
807{
808 u32 temp, sys_freq;
809 const struct lpddr2_addressing *addressing;
810 const struct lpddr2_ac_timings *timings;
811 const struct lpddr2_min_tck *min_tck;
812 const struct lpddr2_device_details *cs0_dev_details =
813 emif_dev_details->cs0_device_details;
814 const struct lpddr2_device_details *cs1_dev_details =
815 emif_dev_details->cs1_device_details;
816 const struct lpddr2_device_timings *cs0_dev_timings =
817 emif_dev_details->cs0_device_timings;
818
819 emif_assert(emif_dev_details);
820 emif_assert(regs);
821
822
823
824
825
826 emif_assert(cs0_dev_details);
827 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
828
829
830
831
832 emif_assert((cs1_dev_details == NULL) ||
833 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
834 (cs0_dev_details->type == cs1_dev_details->type));
835 emif_assert(freq <= MAX_LPDDR2_FREQ);
836
837 set_ddr_clk_period(freq);
838
839
840
841
842
843
844
845 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
846 emif_assert(timings);
847 min_tck = cs0_dev_timings->min_tck;
848
849 temp = addressing_table_index(cs0_dev_details->type,
850 cs0_dev_details->density,
851 cs0_dev_details->io_width);
852
853 emif_assert((temp >= 0));
854 addressing = &(addressing_table[temp]);
855 emif_assert(addressing);
856
857 sys_freq = get_sys_clk_freq();
858
859 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
860 cs1_dev_details,
861 addressing, RL_BOOT);
862
863 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
864 cs1_dev_details,
865 addressing, RL_FINAL);
866
867 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
868
869 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
870
871 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
872
873 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
874
875 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
876
877 regs->temp_alert_config =
878 get_temp_alert_config(cs1_dev_details, addressing, 0);
879
880 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
881 LPDDR2_VOLTAGE_STABLE);
882
883 regs->emif_ddr_phy_ctlr_1_init =
884 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
885
886 regs->emif_ddr_phy_ctlr_1 =
887 get_ddr_phy_ctrl_1(freq, RL_FINAL);
888
889 regs->freq = freq;
890
891 print_timing_reg(regs->sdram_config_init);
892 print_timing_reg(regs->sdram_config);
893 print_timing_reg(regs->ref_ctrl);
894 print_timing_reg(regs->sdram_tim1);
895 print_timing_reg(regs->sdram_tim2);
896 print_timing_reg(regs->sdram_tim3);
897 print_timing_reg(regs->read_idle_ctrl);
898 print_timing_reg(regs->temp_alert_config);
899 print_timing_reg(regs->zq_config);
900 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
901 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
902}
903#endif
904
905#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
906const char *get_lpddr2_type(u8 type_id)
907{
908 switch (type_id) {
909 case LPDDR2_TYPE_S4:
910 return "LPDDR2-S4";
911 case LPDDR2_TYPE_S2:
912 return "LPDDR2-S2";
913 default:
914 return NULL;
915 }
916}
917
918const char *get_lpddr2_io_width(u8 width_id)
919{
920 switch (width_id) {
921 case LPDDR2_IO_WIDTH_8:
922 return "x8";
923 case LPDDR2_IO_WIDTH_16:
924 return "x16";
925 case LPDDR2_IO_WIDTH_32:
926 return "x32";
927 default:
928 return NULL;
929 }
930}
931
932const char *get_lpddr2_manufacturer(u32 manufacturer)
933{
934 switch (manufacturer) {
935 case LPDDR2_MANUFACTURER_SAMSUNG:
936 return "Samsung";
937 case LPDDR2_MANUFACTURER_QIMONDA:
938 return "Qimonda";
939 case LPDDR2_MANUFACTURER_ELPIDA:
940 return "Elpida";
941 case LPDDR2_MANUFACTURER_ETRON:
942 return "Etron";
943 case LPDDR2_MANUFACTURER_NANYA:
944 return "Nanya";
945 case LPDDR2_MANUFACTURER_HYNIX:
946 return "Hynix";
947 case LPDDR2_MANUFACTURER_MOSEL:
948 return "Mosel";
949 case LPDDR2_MANUFACTURER_WINBOND:
950 return "Winbond";
951 case LPDDR2_MANUFACTURER_ESMT:
952 return "ESMT";
953 case LPDDR2_MANUFACTURER_SPANSION:
954 return "Spansion";
955 case LPDDR2_MANUFACTURER_SST:
956 return "SST";
957 case LPDDR2_MANUFACTURER_ZMOS:
958 return "ZMOS";
959 case LPDDR2_MANUFACTURER_INTEL:
960 return "Intel";
961 case LPDDR2_MANUFACTURER_NUMONYX:
962 return "Numonyx";
963 case LPDDR2_MANUFACTURER_MICRON:
964 return "Micron";
965 default:
966 return NULL;
967 }
968}
969
970static void display_sdram_details(u32 emif_nr, u32 cs,
971 struct lpddr2_device_details *device)
972{
973 const char *mfg_str;
974 const char *type_str;
975 char density_str[10];
976 u32 density;
977
978 debug("EMIF%d CS%d\t", emif_nr, cs);
979
980 if (!device) {
981 debug("None\n");
982 return;
983 }
984
985 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
986 type_str = get_lpddr2_type(device->type);
987
988 density = lpddr2_density_2_size_in_mbytes[device->density];
989 if ((density / 1024 * 1024) == density) {
990 density /= 1024;
991 sprintf(density_str, "%d GB", density);
992 } else
993 sprintf(density_str, "%d MB", density);
994 if (mfg_str && type_str)
995 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
996}
997
998static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
999 struct lpddr2_device_details *lpddr2_device)
1000{
1001 u32 mr = 0, temp;
1002
1003 mr = get_mr(base, cs, LPDDR2_MR0);
1004 if (mr > 0xFF) {
1005
1006 return 0;
1007 }
1008
1009 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1010 if (temp) {
1011
1012 return 0;
1013 }
1014 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1015
1016 if (temp) {
1017
1018 return 0;
1019 }
1020
1021 mr = get_mr(base, cs, LPDDR2_MR4);
1022 if (mr > 0xFF) {
1023
1024 return 0;
1025 }
1026
1027 mr = get_mr(base, cs, LPDDR2_MR5);
1028 if (mr > 0xFF) {
1029
1030 return 0;
1031 }
1032
1033 if (!get_lpddr2_manufacturer(mr)) {
1034
1035 return 0;
1036 }
1037 lpddr2_device->manufacturer = mr;
1038
1039 mr = get_mr(base, cs, LPDDR2_MR6);
1040 if (mr >= 0xFF) {
1041
1042 return 0;
1043 }
1044
1045 mr = get_mr(base, cs, LPDDR2_MR7);
1046 if (mr >= 0xFF) {
1047
1048 return 0;
1049 }
1050
1051 mr = get_mr(base, cs, LPDDR2_MR8);
1052 if (mr >= 0xFF) {
1053
1054 return 0;
1055 }
1056
1057 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1058 if (!get_lpddr2_type(temp)) {
1059
1060 return 0;
1061 }
1062 lpddr2_device->type = temp;
1063
1064 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1065 if (temp > LPDDR2_DENSITY_32Gb) {
1066
1067 return 0;
1068 }
1069 lpddr2_device->density = temp;
1070
1071 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1072 if (!get_lpddr2_io_width(temp)) {
1073
1074 return 0;
1075 }
1076 lpddr2_device->io_width = temp;
1077
1078
1079
1080
1081
1082 return 1;
1083}
1084
1085struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1086 struct lpddr2_device_details *lpddr2_dev_details)
1087{
1088 u32 phy;
1089 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1090
1091 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1092
1093 if (!lpddr2_dev_details)
1094 return NULL;
1095
1096
1097 if (!(running_from_sdram() || warm_reset())) {
1098 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1099 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1100 }
1101
1102 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1103 return NULL;
1104
1105 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1106
1107 return lpddr2_dev_details;
1108}
1109#endif
1110
1111static void do_sdram_init(u32 base)
1112{
1113 const struct emif_regs *regs;
1114 u32 in_sdram, emif_nr;
1115
1116 debug(">>do_sdram_init() %x\n", base);
1117
1118 in_sdram = running_from_sdram();
1119 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1120
1121#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1122 emif_get_reg_dump(emif_nr, ®s);
1123 if (!regs) {
1124 debug("EMIF: reg dump not provided\n");
1125 return;
1126 }
1127#else
1128
1129
1130
1131
1132 struct emif_device_details dev_details;
1133 struct emif_regs calculated_regs;
1134
1135
1136
1137
1138
1139
1140 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1141 emif_reset_phy(base);
1142 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1143 &cs0_dev_details);
1144 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1145 &cs1_dev_details);
1146 emif_reset_phy(base);
1147
1148
1149 if (!dev_details.cs0_device_details &&
1150 !dev_details.cs1_device_details) {
1151 return;
1152 }
1153
1154
1155
1156
1157
1158
1159
1160 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1161 &dev_details.cs1_device_timings);
1162
1163
1164 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1165 regs = &calculated_regs;
1166#endif
1167
1168
1169
1170
1171
1172
1173 if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1174 if (emif_sdram_type(regs->sdram_config) ==
1175 EMIF_SDRAM_TYPE_LPDDR2)
1176 lpddr2_init(base, regs);
1177 else
1178 ddr3_init(base, regs);
1179 }
1180 if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1181 EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1182 set_lpmode_selfrefresh(base);
1183 emif_reset_phy(base);
1184 omap5_ddr3_leveling(base, regs);
1185 }
1186
1187
1188 emif_update_timings(base, regs);
1189
1190 debug("<<do_sdram_init() %x\n", base);
1191}
1192
1193void emif_post_init_config(u32 base)
1194{
1195 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1196 u32 omap_rev = omap_revision();
1197
1198
1199 if (omap_rev == OMAP4430_ES2_0)
1200 emif_reset_phy(base);
1201
1202
1203 if (omap_rev == OMAP4430_ES1_0)
1204 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1205}
1206
1207void dmm_init(u32 base)
1208{
1209 const struct dmm_lisa_map_regs *lisa_map_regs;
1210 u32 i, section, valid;
1211
1212#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1213 emif_get_dmm_regs(&lisa_map_regs);
1214#else
1215 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1216 u32 section_cnt, sys_addr;
1217 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1218
1219 mapped_size = 0;
1220 section_cnt = 3;
1221 sys_addr = CONFIG_SYS_SDRAM_BASE;
1222 emif1_size = get_emif_mem_size(EMIF1_BASE);
1223 emif2_size = get_emif_mem_size(EMIF2_BASE);
1224 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1225
1226 if (!emif1_size && !emif2_size)
1227 return;
1228
1229
1230 if (emif1_size && emif2_size) {
1231 mapped_size = min(emif1_size, emif2_size);
1232 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1233 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1234
1235 section_map |= (sys_addr >> 24) <<
1236 EMIF_SYS_ADDR_SHIFT;
1237 section_map |= get_dmm_section_size_map(mapped_size * 2)
1238 << EMIF_SYS_SIZE_SHIFT;
1239 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1240 emif1_size -= mapped_size;
1241 emif2_size -= mapped_size;
1242 sys_addr += (mapped_size * 2);
1243 section_cnt--;
1244 }
1245
1246
1247
1248
1249
1250 if (emif1_size) {
1251 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1252 section_map |= get_dmm_section_size_map(emif1_size)
1253 << EMIF_SYS_SIZE_SHIFT;
1254
1255 section_map |= (mapped_size >> 24) <<
1256 EMIF_SDRC_ADDR_SHIFT;
1257
1258 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1259 section_cnt--;
1260 }
1261 if (emif2_size) {
1262 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1263 section_map |= get_dmm_section_size_map(emif2_size) <<
1264 EMIF_SYS_SIZE_SHIFT;
1265
1266 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1267
1268 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1269 section_cnt--;
1270 }
1271
1272 if (section_cnt == 2) {
1273
1274 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1275 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1276 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1277 } else {
1278
1279 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1280 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1281 }
1282
1283
1284 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1285
1286 if (omap_revision() >= OMAP4460_ES1_0)
1287 lis_map_regs_calculated.is_ma_present = 1;
1288
1289 lisa_map_regs = &lis_map_regs_calculated;
1290#endif
1291 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1292 (struct dmm_lisa_map_regs *)base;
1293
1294 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1295 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1296 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1297 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1298
1299 writel(lisa_map_regs->dmm_lisa_map_3,
1300 &hw_lisa_map_regs->dmm_lisa_map_3);
1301 writel(lisa_map_regs->dmm_lisa_map_2,
1302 &hw_lisa_map_regs->dmm_lisa_map_2);
1303 writel(lisa_map_regs->dmm_lisa_map_1,
1304 &hw_lisa_map_regs->dmm_lisa_map_1);
1305 writel(lisa_map_regs->dmm_lisa_map_0,
1306 &hw_lisa_map_regs->dmm_lisa_map_0);
1307
1308 if (lisa_map_regs->is_ma_present) {
1309 hw_lisa_map_regs =
1310 (struct dmm_lisa_map_regs *)MA_BASE;
1311
1312 writel(lisa_map_regs->dmm_lisa_map_3,
1313 &hw_lisa_map_regs->dmm_lisa_map_3);
1314 writel(lisa_map_regs->dmm_lisa_map_2,
1315 &hw_lisa_map_regs->dmm_lisa_map_2);
1316 writel(lisa_map_regs->dmm_lisa_map_1,
1317 &hw_lisa_map_regs->dmm_lisa_map_1);
1318 writel(lisa_map_regs->dmm_lisa_map_0,
1319 &hw_lisa_map_regs->dmm_lisa_map_0);
1320 }
1321
1322
1323
1324
1325
1326
1327 emif1_enabled = 0;
1328 emif2_enabled = 0;
1329 for (i = 0; i < 4; i++) {
1330 section = __raw_readl(DMM_BASE + i*4);
1331 valid = (section & EMIF_SDRC_MAP_MASK) >>
1332 (EMIF_SDRC_MAP_SHIFT);
1333 if (valid == 3) {
1334 emif1_enabled = 1;
1335 emif2_enabled = 1;
1336 break;
1337 }
1338
1339 if (valid == 1)
1340 emif1_enabled = 1;
1341
1342 if (valid == 2)
1343 emif2_enabled = 1;
1344 }
1345}
1346
1347static void do_bug0039_workaround(u32 base)
1348{
1349 u32 val, i, clkctrl;
1350 struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1351 const struct read_write_regs *bug_00339_regs;
1352 u32 iterations;
1353 u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1354 u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1355
1356 if (is_dra7xx())
1357 phy_status_base++;
1358
1359 bug_00339_regs = get_bug_regs(&iterations);
1360
1361
1362 clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1363 __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1364
1365
1366 for (i = 0; i < iterations; i++) {
1367 val = __raw_readl(phy_status_base +
1368 bug_00339_regs[i].read_reg - 1);
1369
1370 __raw_writel(val, phy_ctrl_base +
1371 ((bug_00339_regs[i].write_reg - 1) << 1));
1372
1373 __raw_writel(val, phy_ctrl_base +
1374 (bug_00339_regs[i].write_reg << 1) - 1);
1375 }
1376
1377
1378 writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1379
1380 __raw_writel(clkctrl, (*prcm)->cm_memif_clkstctrl);
1381}
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400void sdram_init(void)
1401{
1402 u32 in_sdram, size_prog, size_detect;
1403 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1404 u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1405
1406 debug(">>sdram_init()\n");
1407
1408 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1409 return;
1410
1411 in_sdram = running_from_sdram();
1412 debug("in_sdram = %d\n", in_sdram);
1413
1414 if (!in_sdram) {
1415 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1416 bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1417 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1418 writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1419 }
1420
1421 if (!in_sdram)
1422 dmm_init(DMM_BASE);
1423
1424 if (emif1_enabled)
1425 do_sdram_init(EMIF1_BASE);
1426
1427 if (emif2_enabled)
1428 do_sdram_init(EMIF2_BASE);
1429
1430 if (!(in_sdram || warm_reset())) {
1431 if (emif1_enabled)
1432 emif_post_init_config(EMIF1_BASE);
1433 if (emif2_enabled)
1434 emif_post_init_config(EMIF2_BASE);
1435 }
1436
1437
1438 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1439 freq_update_core();
1440
1441
1442 if (!in_sdram) {
1443 size_prog = omap_sdram_size();
1444 size_prog = log_2_n_round_down(size_prog);
1445 size_prog = (1 << size_prog);
1446
1447 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1448 size_prog);
1449
1450 if (size_detect != size_prog) {
1451 printf("SDRAM: identified size not same as expected"
1452 " size identified: %x expected: %x\n",
1453 size_detect,
1454 size_prog);
1455 } else
1456 debug("get_ram_size() successful");
1457 }
1458
1459 if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1460 (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1461 if (emif1_enabled)
1462 do_bug0039_workaround(EMIF1_BASE);
1463 if (emif2_enabled)
1464 do_bug0039_workaround(EMIF2_BASE);
1465 }
1466
1467 debug("<<sdram_init()\n");
1468}
1469