1
2
3
4
5
6
7
8
9#include <common.h>
10
11#include <nand.h>
12#include <asm/io.h>
13#include <asm/jz4740.h>
14
15#define JZ_NAND_DATA_ADDR ((void __iomem *)0xB8000000)
16#define JZ_NAND_CMD_ADDR (JZ_NAND_DATA_ADDR + 0x8000)
17#define JZ_NAND_ADDR_ADDR (JZ_NAND_DATA_ADDR + 0x10000)
18
19#define JZ_NAND_ECC_CTRL_ENCODING BIT(3)
20#define JZ_NAND_ECC_CTRL_RS BIT(2)
21#define JZ_NAND_ECC_CTRL_RESET BIT(1)
22#define JZ_NAND_ECC_CTRL_ENABLE BIT(0)
23
24#define EMC_SMCR1_OPT_NAND 0x094c4400
25
26
27static struct jz4740_emc * emc = (struct jz4740_emc *)JZ4740_EMC_BASE;
28
29static struct nand_ecclayout qi_lb60_ecclayout_2gb = {
30 .eccbytes = 72,
31 .eccpos = {
32 12, 13, 14, 15, 16, 17, 18, 19,
33 20, 21, 22, 23, 24, 25, 26, 27,
34 28, 29, 30, 31, 32, 33, 34, 35,
35 36, 37, 38, 39, 40, 41, 42, 43,
36 44, 45, 46, 47, 48, 49, 50, 51,
37 52, 53, 54, 55, 56, 57, 58, 59,
38 60, 61, 62, 63, 64, 65, 66, 67,
39 68, 69, 70, 71, 72, 73, 74, 75,
40 76, 77, 78, 79, 80, 81, 82, 83 },
41 .oobfree = {
42 {.offset = 2,
43 .length = 10 },
44 {.offset = 84,
45 .length = 44 } }
46};
47
48static int is_reading;
49
50static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
51{
52 struct nand_chip *this = mtd->priv;
53 uint32_t reg;
54
55 if (ctrl & NAND_CTRL_CHANGE) {
56 if (ctrl & NAND_ALE)
57 this->IO_ADDR_W = JZ_NAND_ADDR_ADDR;
58 else if (ctrl & NAND_CLE)
59 this->IO_ADDR_W = JZ_NAND_CMD_ADDR;
60 else
61 this->IO_ADDR_W = JZ_NAND_DATA_ADDR;
62
63 reg = readl(&emc->nfcsr);
64 if (ctrl & NAND_NCE)
65 reg |= EMC_NFCSR_NFCE1;
66 else
67 reg &= ~EMC_NFCSR_NFCE1;
68 writel(reg, &emc->nfcsr);
69 }
70
71 if (cmd != NAND_CMD_NONE)
72 writeb(cmd, this->IO_ADDR_W);
73}
74
75static int jz_nand_device_ready(struct mtd_info *mtd)
76{
77 return (readl(GPIO_PXPIN(2)) & 0x40000000) ? 1 : 0;
78}
79
80void board_nand_select_device(struct nand_chip *nand, int chip)
81{
82
83
84
85
86}
87
88static int jz_nand_rs_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
89 u_char *ecc_code)
90{
91 uint32_t status;
92 int i;
93
94 if (is_reading)
95 return 0;
96
97 do {
98 status = readl(&emc->nfints);
99 } while (!(status & EMC_NFINTS_ENCF));
100
101
102 writel(readl(&emc->nfecr) & ~EMC_NFECR_ECCE, &emc->nfecr);
103
104 for (i = 0; i < 9; i++)
105 ecc_code[i] = readb(&emc->nfpar[i]);
106
107 return 0;
108}
109
110static void jz_nand_hwctl(struct mtd_info *mtd, int mode)
111{
112 uint32_t reg;
113
114 writel(0, &emc->nfints);
115 reg = readl(&emc->nfecr);
116 reg |= JZ_NAND_ECC_CTRL_RESET;
117 reg |= JZ_NAND_ECC_CTRL_ENABLE;
118 reg |= JZ_NAND_ECC_CTRL_RS;
119
120 switch (mode) {
121 case NAND_ECC_READ:
122 reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
123 is_reading = 1;
124 break;
125 case NAND_ECC_WRITE:
126 reg |= JZ_NAND_ECC_CTRL_ENCODING;
127 is_reading = 0;
128 break;
129 default:
130 break;
131 }
132
133 writel(reg, &emc->nfecr);
134}
135
136
137static void jz_rs_correct(unsigned char *dat, int idx, int mask)
138{
139 int i;
140
141 idx--;
142
143 i = idx + (idx >> 3);
144 if (i >= 512)
145 return;
146
147 mask <<= (idx & 0x7);
148
149 dat[i] ^= mask & 0xff;
150 if (i < 511)
151 dat[i + 1] ^= (mask >> 8) & 0xff;
152}
153
154static int jz_nand_rs_correct_data(struct mtd_info *mtd, u_char *dat,
155 u_char *read_ecc, u_char *calc_ecc)
156{
157 int k;
158 uint32_t errcnt, index, mask, status;
159
160
161 const uint8_t all_ff_ecc[] = {
162 0xcd, 0x9d, 0x90, 0x58, 0xf4, 0x8b, 0xff, 0xb7, 0x6f };
163
164 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff &&
165 read_ecc[2] == 0xff && read_ecc[3] == 0xff &&
166 read_ecc[4] == 0xff && read_ecc[5] == 0xff &&
167 read_ecc[6] == 0xff && read_ecc[7] == 0xff &&
168 read_ecc[8] == 0xff) {
169 for (k = 0; k < 9; k++)
170 writeb(all_ff_ecc[k], &emc->nfpar[k]);
171 } else {
172 for (k = 0; k < 9; k++)
173 writeb(read_ecc[k], &emc->nfpar[k]);
174 }
175
176 writel(readl(&emc->nfecr) | EMC_NFECR_PRDY, &emc->nfecr);
177
178
179 do {
180 status = readl(&emc->nfints);
181 } while (!(status & EMC_NFINTS_DECF));
182
183
184 writel(readl(&emc->nfecr) & ~EMC_NFECR_ECCE, &emc->nfecr);
185
186
187 if (!(status & EMC_NFINTS_ERR))
188 return 0;
189
190 if (status & EMC_NFINTS_UNCOR) {
191 printf("uncorrectable ecc\n");
192 return -1;
193 }
194
195 errcnt = (status & EMC_NFINTS_ERRCNT_MASK) >> EMC_NFINTS_ERRCNT_BIT;
196
197 switch (errcnt) {
198 case 4:
199 index = (readl(&emc->nferr[3]) & EMC_NFERR_INDEX_MASK) >>
200 EMC_NFERR_INDEX_BIT;
201 mask = (readl(&emc->nferr[3]) & EMC_NFERR_MASK_MASK) >>
202 EMC_NFERR_MASK_BIT;
203 jz_rs_correct(dat, index, mask);
204 case 3:
205 index = (readl(&emc->nferr[2]) & EMC_NFERR_INDEX_MASK) >>
206 EMC_NFERR_INDEX_BIT;
207 mask = (readl(&emc->nferr[2]) & EMC_NFERR_MASK_MASK) >>
208 EMC_NFERR_MASK_BIT;
209 jz_rs_correct(dat, index, mask);
210 case 2:
211 index = (readl(&emc->nferr[1]) & EMC_NFERR_INDEX_MASK) >>
212 EMC_NFERR_INDEX_BIT;
213 mask = (readl(&emc->nferr[1]) & EMC_NFERR_MASK_MASK) >>
214 EMC_NFERR_MASK_BIT;
215 jz_rs_correct(dat, index, mask);
216 case 1:
217 index = (readl(&emc->nferr[0]) & EMC_NFERR_INDEX_MASK) >>
218 EMC_NFERR_INDEX_BIT;
219 mask = (readl(&emc->nferr[0]) & EMC_NFERR_MASK_MASK) >>
220 EMC_NFERR_MASK_BIT;
221 jz_rs_correct(dat, index, mask);
222 default:
223 break;
224 }
225
226 return errcnt;
227}
228
229
230
231
232int board_nand_init(struct nand_chip *nand)
233{
234 uint32_t reg;
235
236 reg = readl(&emc->nfcsr);
237 reg |= EMC_NFCSR_NFE1;
238 writel(reg, &emc->nfcsr);
239
240 writel(EMC_SMCR1_OPT_NAND, &emc->smcr[1]);
241
242 nand->IO_ADDR_R = JZ_NAND_DATA_ADDR;
243 nand->IO_ADDR_W = JZ_NAND_DATA_ADDR;
244 nand->cmd_ctrl = jz_nand_cmd_ctrl;
245 nand->dev_ready = jz_nand_device_ready;
246 nand->ecc.hwctl = jz_nand_hwctl;
247 nand->ecc.correct = jz_nand_rs_correct_data;
248 nand->ecc.calculate = jz_nand_rs_calculate_ecc;
249 nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
250 nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
251 nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
252 nand->ecc.strength = 4;
253 nand->ecc.layout = &qi_lb60_ecclayout_2gb;
254 nand->chip_delay = 50;
255 nand->bbt_options |= NAND_BBT_USE_FLASH;
256
257 return 0;
258}
259