uboot/fs/ubifs/lpt_commit.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * SPDX-License-Identifier:     GPL-2.0+
   7 *
   8 * Authors: Adrian Hunter
   9 *          Artem Bityutskiy (Битюцкий Артём)
  10 */
  11
  12/*
  13 * This file implements commit-related functionality of the LEB properties
  14 * subsystem.
  15 */
  16
  17#ifndef __UBOOT__
  18#include <linux/crc16.h>
  19#include <linux/slab.h>
  20#include <linux/random.h>
  21#else
  22#include <linux/compat.h>
  23#include <linux/err.h>
  24#include "crc16.h"
  25#endif
  26#include "ubifs.h"
  27
  28#ifndef __UBOOT__
  29static int dbg_populate_lsave(struct ubifs_info *c);
  30#endif
  31
  32/**
  33 * first_dirty_cnode - find first dirty cnode.
  34 * @c: UBIFS file-system description object
  35 * @nnode: nnode at which to start
  36 *
  37 * This function returns the first dirty cnode or %NULL if there is not one.
  38 */
  39static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
  40{
  41        ubifs_assert(nnode);
  42        while (1) {
  43                int i, cont = 0;
  44
  45                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
  46                        struct ubifs_cnode *cnode;
  47
  48                        cnode = nnode->nbranch[i].cnode;
  49                        if (cnode &&
  50                            test_bit(DIRTY_CNODE, &cnode->flags)) {
  51                                if (cnode->level == 0)
  52                                        return cnode;
  53                                nnode = (struct ubifs_nnode *)cnode;
  54                                cont = 1;
  55                                break;
  56                        }
  57                }
  58                if (!cont)
  59                        return (struct ubifs_cnode *)nnode;
  60        }
  61}
  62
  63/**
  64 * next_dirty_cnode - find next dirty cnode.
  65 * @cnode: cnode from which to begin searching
  66 *
  67 * This function returns the next dirty cnode or %NULL if there is not one.
  68 */
  69static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
  70{
  71        struct ubifs_nnode *nnode;
  72        int i;
  73
  74        ubifs_assert(cnode);
  75        nnode = cnode->parent;
  76        if (!nnode)
  77                return NULL;
  78        for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
  79                cnode = nnode->nbranch[i].cnode;
  80                if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
  81                        if (cnode->level == 0)
  82                                return cnode; /* cnode is a pnode */
  83                        /* cnode is a nnode */
  84                        return first_dirty_cnode((struct ubifs_nnode *)cnode);
  85                }
  86        }
  87        return (struct ubifs_cnode *)nnode;
  88}
  89
  90/**
  91 * get_cnodes_to_commit - create list of dirty cnodes to commit.
  92 * @c: UBIFS file-system description object
  93 *
  94 * This function returns the number of cnodes to commit.
  95 */
  96static int get_cnodes_to_commit(struct ubifs_info *c)
  97{
  98        struct ubifs_cnode *cnode, *cnext;
  99        int cnt = 0;
 100
 101        if (!c->nroot)
 102                return 0;
 103
 104        if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
 105                return 0;
 106
 107        c->lpt_cnext = first_dirty_cnode(c->nroot);
 108        cnode = c->lpt_cnext;
 109        if (!cnode)
 110                return 0;
 111        cnt += 1;
 112        while (1) {
 113                ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
 114                __set_bit(COW_CNODE, &cnode->flags);
 115                cnext = next_dirty_cnode(cnode);
 116                if (!cnext) {
 117                        cnode->cnext = c->lpt_cnext;
 118                        break;
 119                }
 120                cnode->cnext = cnext;
 121                cnode = cnext;
 122                cnt += 1;
 123        }
 124        dbg_cmt("committing %d cnodes", cnt);
 125        dbg_lp("committing %d cnodes", cnt);
 126        ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
 127        return cnt;
 128}
 129
 130/**
 131 * upd_ltab - update LPT LEB properties.
 132 * @c: UBIFS file-system description object
 133 * @lnum: LEB number
 134 * @free: amount of free space
 135 * @dirty: amount of dirty space to add
 136 */
 137static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
 138{
 139        dbg_lp("LEB %d free %d dirty %d to %d +%d",
 140               lnum, c->ltab[lnum - c->lpt_first].free,
 141               c->ltab[lnum - c->lpt_first].dirty, free, dirty);
 142        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 143        c->ltab[lnum - c->lpt_first].free = free;
 144        c->ltab[lnum - c->lpt_first].dirty += dirty;
 145}
 146
 147/**
 148 * alloc_lpt_leb - allocate an LPT LEB that is empty.
 149 * @c: UBIFS file-system description object
 150 * @lnum: LEB number is passed and returned here
 151 *
 152 * This function finds the next empty LEB in the ltab starting from @lnum. If a
 153 * an empty LEB is found it is returned in @lnum and the function returns %0.
 154 * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
 155 * never to run out of space.
 156 */
 157static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
 158{
 159        int i, n;
 160
 161        n = *lnum - c->lpt_first + 1;
 162        for (i = n; i < c->lpt_lebs; i++) {
 163                if (c->ltab[i].tgc || c->ltab[i].cmt)
 164                        continue;
 165                if (c->ltab[i].free == c->leb_size) {
 166                        c->ltab[i].cmt = 1;
 167                        *lnum = i + c->lpt_first;
 168                        return 0;
 169                }
 170        }
 171
 172        for (i = 0; i < n; i++) {
 173                if (c->ltab[i].tgc || c->ltab[i].cmt)
 174                        continue;
 175                if (c->ltab[i].free == c->leb_size) {
 176                        c->ltab[i].cmt = 1;
 177                        *lnum = i + c->lpt_first;
 178                        return 0;
 179                }
 180        }
 181        return -ENOSPC;
 182}
 183
 184/**
 185 * layout_cnodes - layout cnodes for commit.
 186 * @c: UBIFS file-system description object
 187 *
 188 * This function returns %0 on success and a negative error code on failure.
 189 */
 190static int layout_cnodes(struct ubifs_info *c)
 191{
 192        int lnum, offs, len, alen, done_lsave, done_ltab, err;
 193        struct ubifs_cnode *cnode;
 194
 195        err = dbg_chk_lpt_sz(c, 0, 0);
 196        if (err)
 197                return err;
 198        cnode = c->lpt_cnext;
 199        if (!cnode)
 200                return 0;
 201        lnum = c->nhead_lnum;
 202        offs = c->nhead_offs;
 203        /* Try to place lsave and ltab nicely */
 204        done_lsave = !c->big_lpt;
 205        done_ltab = 0;
 206        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 207                done_lsave = 1;
 208                c->lsave_lnum = lnum;
 209                c->lsave_offs = offs;
 210                offs += c->lsave_sz;
 211                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 212        }
 213
 214        if (offs + c->ltab_sz <= c->leb_size) {
 215                done_ltab = 1;
 216                c->ltab_lnum = lnum;
 217                c->ltab_offs = offs;
 218                offs += c->ltab_sz;
 219                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 220        }
 221
 222        do {
 223                if (cnode->level) {
 224                        len = c->nnode_sz;
 225                        c->dirty_nn_cnt -= 1;
 226                } else {
 227                        len = c->pnode_sz;
 228                        c->dirty_pn_cnt -= 1;
 229                }
 230                while (offs + len > c->leb_size) {
 231                        alen = ALIGN(offs, c->min_io_size);
 232                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 233                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 234                        err = alloc_lpt_leb(c, &lnum);
 235                        if (err)
 236                                goto no_space;
 237                        offs = 0;
 238                        ubifs_assert(lnum >= c->lpt_first &&
 239                                     lnum <= c->lpt_last);
 240                        /* Try to place lsave and ltab nicely */
 241                        if (!done_lsave) {
 242                                done_lsave = 1;
 243                                c->lsave_lnum = lnum;
 244                                c->lsave_offs = offs;
 245                                offs += c->lsave_sz;
 246                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 247                                continue;
 248                        }
 249                        if (!done_ltab) {
 250                                done_ltab = 1;
 251                                c->ltab_lnum = lnum;
 252                                c->ltab_offs = offs;
 253                                offs += c->ltab_sz;
 254                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 255                                continue;
 256                        }
 257                        break;
 258                }
 259                if (cnode->parent) {
 260                        cnode->parent->nbranch[cnode->iip].lnum = lnum;
 261                        cnode->parent->nbranch[cnode->iip].offs = offs;
 262                } else {
 263                        c->lpt_lnum = lnum;
 264                        c->lpt_offs = offs;
 265                }
 266                offs += len;
 267                dbg_chk_lpt_sz(c, 1, len);
 268                cnode = cnode->cnext;
 269        } while (cnode && cnode != c->lpt_cnext);
 270
 271        /* Make sure to place LPT's save table */
 272        if (!done_lsave) {
 273                if (offs + c->lsave_sz > c->leb_size) {
 274                        alen = ALIGN(offs, c->min_io_size);
 275                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 276                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 277                        err = alloc_lpt_leb(c, &lnum);
 278                        if (err)
 279                                goto no_space;
 280                        offs = 0;
 281                        ubifs_assert(lnum >= c->lpt_first &&
 282                                     lnum <= c->lpt_last);
 283                }
 284                done_lsave = 1;
 285                c->lsave_lnum = lnum;
 286                c->lsave_offs = offs;
 287                offs += c->lsave_sz;
 288                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 289        }
 290
 291        /* Make sure to place LPT's own lprops table */
 292        if (!done_ltab) {
 293                if (offs + c->ltab_sz > c->leb_size) {
 294                        alen = ALIGN(offs, c->min_io_size);
 295                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 296                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 297                        err = alloc_lpt_leb(c, &lnum);
 298                        if (err)
 299                                goto no_space;
 300                        offs = 0;
 301                        ubifs_assert(lnum >= c->lpt_first &&
 302                                     lnum <= c->lpt_last);
 303                }
 304                c->ltab_lnum = lnum;
 305                c->ltab_offs = offs;
 306                offs += c->ltab_sz;
 307                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 308        }
 309
 310        alen = ALIGN(offs, c->min_io_size);
 311        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 312        dbg_chk_lpt_sz(c, 4, alen - offs);
 313        err = dbg_chk_lpt_sz(c, 3, alen);
 314        if (err)
 315                return err;
 316        return 0;
 317
 318no_space:
 319        ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
 320                  lnum, offs, len, done_ltab, done_lsave);
 321        ubifs_dump_lpt_info(c);
 322        ubifs_dump_lpt_lebs(c);
 323        dump_stack();
 324        return err;
 325}
 326
 327#ifndef __UBOOT__
 328/**
 329 * realloc_lpt_leb - allocate an LPT LEB that is empty.
 330 * @c: UBIFS file-system description object
 331 * @lnum: LEB number is passed and returned here
 332 *
 333 * This function duplicates exactly the results of the function alloc_lpt_leb.
 334 * It is used during end commit to reallocate the same LEB numbers that were
 335 * allocated by alloc_lpt_leb during start commit.
 336 *
 337 * This function finds the next LEB that was allocated by the alloc_lpt_leb
 338 * function starting from @lnum. If a LEB is found it is returned in @lnum and
 339 * the function returns %0. Otherwise the function returns -ENOSPC.
 340 * Note however, that LPT is designed never to run out of space.
 341 */
 342static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
 343{
 344        int i, n;
 345
 346        n = *lnum - c->lpt_first + 1;
 347        for (i = n; i < c->lpt_lebs; i++)
 348                if (c->ltab[i].cmt) {
 349                        c->ltab[i].cmt = 0;
 350                        *lnum = i + c->lpt_first;
 351                        return 0;
 352                }
 353
 354        for (i = 0; i < n; i++)
 355                if (c->ltab[i].cmt) {
 356                        c->ltab[i].cmt = 0;
 357                        *lnum = i + c->lpt_first;
 358                        return 0;
 359                }
 360        return -ENOSPC;
 361}
 362
 363/**
 364 * write_cnodes - write cnodes for commit.
 365 * @c: UBIFS file-system description object
 366 *
 367 * This function returns %0 on success and a negative error code on failure.
 368 */
 369static int write_cnodes(struct ubifs_info *c)
 370{
 371        int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
 372        struct ubifs_cnode *cnode;
 373        void *buf = c->lpt_buf;
 374
 375        cnode = c->lpt_cnext;
 376        if (!cnode)
 377                return 0;
 378        lnum = c->nhead_lnum;
 379        offs = c->nhead_offs;
 380        from = offs;
 381        /* Ensure empty LEB is unmapped */
 382        if (offs == 0) {
 383                err = ubifs_leb_unmap(c, lnum);
 384                if (err)
 385                        return err;
 386        }
 387        /* Try to place lsave and ltab nicely */
 388        done_lsave = !c->big_lpt;
 389        done_ltab = 0;
 390        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 391                done_lsave = 1;
 392                ubifs_pack_lsave(c, buf + offs, c->lsave);
 393                offs += c->lsave_sz;
 394                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 395        }
 396
 397        if (offs + c->ltab_sz <= c->leb_size) {
 398                done_ltab = 1;
 399                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 400                offs += c->ltab_sz;
 401                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 402        }
 403
 404        /* Loop for each cnode */
 405        do {
 406                if (cnode->level)
 407                        len = c->nnode_sz;
 408                else
 409                        len = c->pnode_sz;
 410                while (offs + len > c->leb_size) {
 411                        wlen = offs - from;
 412                        if (wlen) {
 413                                alen = ALIGN(wlen, c->min_io_size);
 414                                memset(buf + offs, 0xff, alen - wlen);
 415                                err = ubifs_leb_write(c, lnum, buf + from, from,
 416                                                       alen);
 417                                if (err)
 418                                        return err;
 419                        }
 420                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 421                        err = realloc_lpt_leb(c, &lnum);
 422                        if (err)
 423                                goto no_space;
 424                        offs = from = 0;
 425                        ubifs_assert(lnum >= c->lpt_first &&
 426                                     lnum <= c->lpt_last);
 427                        err = ubifs_leb_unmap(c, lnum);
 428                        if (err)
 429                                return err;
 430                        /* Try to place lsave and ltab nicely */
 431                        if (!done_lsave) {
 432                                done_lsave = 1;
 433                                ubifs_pack_lsave(c, buf + offs, c->lsave);
 434                                offs += c->lsave_sz;
 435                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 436                                continue;
 437                        }
 438                        if (!done_ltab) {
 439                                done_ltab = 1;
 440                                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 441                                offs += c->ltab_sz;
 442                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 443                                continue;
 444                        }
 445                        break;
 446                }
 447                if (cnode->level)
 448                        ubifs_pack_nnode(c, buf + offs,
 449                                         (struct ubifs_nnode *)cnode);
 450                else
 451                        ubifs_pack_pnode(c, buf + offs,
 452                                         (struct ubifs_pnode *)cnode);
 453                /*
 454                 * The reason for the barriers is the same as in case of TNC.
 455                 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
 456                 * 'dirty_cow_pnode()' are the functions for which this is
 457                 * important.
 458                 */
 459                clear_bit(DIRTY_CNODE, &cnode->flags);
 460                smp_mb__before_atomic();
 461                clear_bit(COW_CNODE, &cnode->flags);
 462                smp_mb__after_atomic();
 463                offs += len;
 464                dbg_chk_lpt_sz(c, 1, len);
 465                cnode = cnode->cnext;
 466        } while (cnode && cnode != c->lpt_cnext);
 467
 468        /* Make sure to place LPT's save table */
 469        if (!done_lsave) {
 470                if (offs + c->lsave_sz > c->leb_size) {
 471                        wlen = offs - from;
 472                        alen = ALIGN(wlen, c->min_io_size);
 473                        memset(buf + offs, 0xff, alen - wlen);
 474                        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 475                        if (err)
 476                                return err;
 477                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 478                        err = realloc_lpt_leb(c, &lnum);
 479                        if (err)
 480                                goto no_space;
 481                        offs = from = 0;
 482                        ubifs_assert(lnum >= c->lpt_first &&
 483                                     lnum <= c->lpt_last);
 484                        err = ubifs_leb_unmap(c, lnum);
 485                        if (err)
 486                                return err;
 487                }
 488                done_lsave = 1;
 489                ubifs_pack_lsave(c, buf + offs, c->lsave);
 490                offs += c->lsave_sz;
 491                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 492        }
 493
 494        /* Make sure to place LPT's own lprops table */
 495        if (!done_ltab) {
 496                if (offs + c->ltab_sz > c->leb_size) {
 497                        wlen = offs - from;
 498                        alen = ALIGN(wlen, c->min_io_size);
 499                        memset(buf + offs, 0xff, alen - wlen);
 500                        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 501                        if (err)
 502                                return err;
 503                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 504                        err = realloc_lpt_leb(c, &lnum);
 505                        if (err)
 506                                goto no_space;
 507                        offs = from = 0;
 508                        ubifs_assert(lnum >= c->lpt_first &&
 509                                     lnum <= c->lpt_last);
 510                        err = ubifs_leb_unmap(c, lnum);
 511                        if (err)
 512                                return err;
 513                }
 514                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 515                offs += c->ltab_sz;
 516                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 517        }
 518
 519        /* Write remaining data in buffer */
 520        wlen = offs - from;
 521        alen = ALIGN(wlen, c->min_io_size);
 522        memset(buf + offs, 0xff, alen - wlen);
 523        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 524        if (err)
 525                return err;
 526
 527        dbg_chk_lpt_sz(c, 4, alen - wlen);
 528        err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
 529        if (err)
 530                return err;
 531
 532        c->nhead_lnum = lnum;
 533        c->nhead_offs = ALIGN(offs, c->min_io_size);
 534
 535        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
 536        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
 537        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
 538        if (c->big_lpt)
 539                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
 540
 541        return 0;
 542
 543no_space:
 544        ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
 545                  lnum, offs, len, done_ltab, done_lsave);
 546        ubifs_dump_lpt_info(c);
 547        ubifs_dump_lpt_lebs(c);
 548        dump_stack();
 549        return err;
 550}
 551#endif
 552
 553/**
 554 * next_pnode_to_dirty - find next pnode to dirty.
 555 * @c: UBIFS file-system description object
 556 * @pnode: pnode
 557 *
 558 * This function returns the next pnode to dirty or %NULL if there are no more
 559 * pnodes.  Note that pnodes that have never been written (lnum == 0) are
 560 * skipped.
 561 */
 562static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
 563                                               struct ubifs_pnode *pnode)
 564{
 565        struct ubifs_nnode *nnode;
 566        int iip;
 567
 568        /* Try to go right */
 569        nnode = pnode->parent;
 570        for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
 571                if (nnode->nbranch[iip].lnum)
 572                        return ubifs_get_pnode(c, nnode, iip);
 573        }
 574
 575        /* Go up while can't go right */
 576        do {
 577                iip = nnode->iip + 1;
 578                nnode = nnode->parent;
 579                if (!nnode)
 580                        return NULL;
 581                for (; iip < UBIFS_LPT_FANOUT; iip++) {
 582                        if (nnode->nbranch[iip].lnum)
 583                                break;
 584                }
 585        } while (iip >= UBIFS_LPT_FANOUT);
 586
 587        /* Go right */
 588        nnode = ubifs_get_nnode(c, nnode, iip);
 589        if (IS_ERR(nnode))
 590                return (void *)nnode;
 591
 592        /* Go down to level 1 */
 593        while (nnode->level > 1) {
 594                for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
 595                        if (nnode->nbranch[iip].lnum)
 596                                break;
 597                }
 598                if (iip >= UBIFS_LPT_FANOUT) {
 599                        /*
 600                         * Should not happen, but we need to keep going
 601                         * if it does.
 602                         */
 603                        iip = 0;
 604                }
 605                nnode = ubifs_get_nnode(c, nnode, iip);
 606                if (IS_ERR(nnode))
 607                        return (void *)nnode;
 608        }
 609
 610        for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
 611                if (nnode->nbranch[iip].lnum)
 612                        break;
 613        if (iip >= UBIFS_LPT_FANOUT)
 614                /* Should not happen, but we need to keep going if it does */
 615                iip = 0;
 616        return ubifs_get_pnode(c, nnode, iip);
 617}
 618
 619/**
 620 * pnode_lookup - lookup a pnode in the LPT.
 621 * @c: UBIFS file-system description object
 622 * @i: pnode number (0 to main_lebs - 1)
 623 *
 624 * This function returns a pointer to the pnode on success or a negative
 625 * error code on failure.
 626 */
 627static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
 628{
 629        int err, h, iip, shft;
 630        struct ubifs_nnode *nnode;
 631
 632        if (!c->nroot) {
 633                err = ubifs_read_nnode(c, NULL, 0);
 634                if (err)
 635                        return ERR_PTR(err);
 636        }
 637        i <<= UBIFS_LPT_FANOUT_SHIFT;
 638        nnode = c->nroot;
 639        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
 640        for (h = 1; h < c->lpt_hght; h++) {
 641                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 642                shft -= UBIFS_LPT_FANOUT_SHIFT;
 643                nnode = ubifs_get_nnode(c, nnode, iip);
 644                if (IS_ERR(nnode))
 645                        return ERR_CAST(nnode);
 646        }
 647        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 648        return ubifs_get_pnode(c, nnode, iip);
 649}
 650
 651/**
 652 * add_pnode_dirt - add dirty space to LPT LEB properties.
 653 * @c: UBIFS file-system description object
 654 * @pnode: pnode for which to add dirt
 655 */
 656static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
 657{
 658        ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
 659                           c->pnode_sz);
 660}
 661
 662/**
 663 * do_make_pnode_dirty - mark a pnode dirty.
 664 * @c: UBIFS file-system description object
 665 * @pnode: pnode to mark dirty
 666 */
 667static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
 668{
 669        /* Assumes cnext list is empty i.e. not called during commit */
 670        if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
 671                struct ubifs_nnode *nnode;
 672
 673                c->dirty_pn_cnt += 1;
 674                add_pnode_dirt(c, pnode);
 675                /* Mark parent and ancestors dirty too */
 676                nnode = pnode->parent;
 677                while (nnode) {
 678                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 679                                c->dirty_nn_cnt += 1;
 680                                ubifs_add_nnode_dirt(c, nnode);
 681                                nnode = nnode->parent;
 682                        } else
 683                                break;
 684                }
 685        }
 686}
 687
 688/**
 689 * make_tree_dirty - mark the entire LEB properties tree dirty.
 690 * @c: UBIFS file-system description object
 691 *
 692 * This function is used by the "small" LPT model to cause the entire LEB
 693 * properties tree to be written.  The "small" LPT model does not use LPT
 694 * garbage collection because it is more efficient to write the entire tree
 695 * (because it is small).
 696 *
 697 * This function returns %0 on success and a negative error code on failure.
 698 */
 699static int make_tree_dirty(struct ubifs_info *c)
 700{
 701        struct ubifs_pnode *pnode;
 702
 703        pnode = pnode_lookup(c, 0);
 704        if (IS_ERR(pnode))
 705                return PTR_ERR(pnode);
 706
 707        while (pnode) {
 708                do_make_pnode_dirty(c, pnode);
 709                pnode = next_pnode_to_dirty(c, pnode);
 710                if (IS_ERR(pnode))
 711                        return PTR_ERR(pnode);
 712        }
 713        return 0;
 714}
 715
 716/**
 717 * need_write_all - determine if the LPT area is running out of free space.
 718 * @c: UBIFS file-system description object
 719 *
 720 * This function returns %1 if the LPT area is running out of free space and %0
 721 * if it is not.
 722 */
 723static int need_write_all(struct ubifs_info *c)
 724{
 725        long long free = 0;
 726        int i;
 727
 728        for (i = 0; i < c->lpt_lebs; i++) {
 729                if (i + c->lpt_first == c->nhead_lnum)
 730                        free += c->leb_size - c->nhead_offs;
 731                else if (c->ltab[i].free == c->leb_size)
 732                        free += c->leb_size;
 733                else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
 734                        free += c->leb_size;
 735        }
 736        /* Less than twice the size left */
 737        if (free <= c->lpt_sz * 2)
 738                return 1;
 739        return 0;
 740}
 741
 742/**
 743 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
 744 * @c: UBIFS file-system description object
 745 *
 746 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 747 * free space and so may be reused as soon as the next commit is completed.
 748 * This function is called during start commit to mark LPT LEBs for trivial GC.
 749 */
 750static void lpt_tgc_start(struct ubifs_info *c)
 751{
 752        int i;
 753
 754        for (i = 0; i < c->lpt_lebs; i++) {
 755                if (i + c->lpt_first == c->nhead_lnum)
 756                        continue;
 757                if (c->ltab[i].dirty > 0 &&
 758                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
 759                        c->ltab[i].tgc = 1;
 760                        c->ltab[i].free = c->leb_size;
 761                        c->ltab[i].dirty = 0;
 762                        dbg_lp("LEB %d", i + c->lpt_first);
 763                }
 764        }
 765}
 766
 767/**
 768 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
 769 * @c: UBIFS file-system description object
 770 *
 771 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 772 * free space and so may be reused as soon as the next commit is completed.
 773 * This function is called after the commit is completed (master node has been
 774 * written) and un-maps LPT LEBs that were marked for trivial GC.
 775 */
 776static int lpt_tgc_end(struct ubifs_info *c)
 777{
 778        int i, err;
 779
 780        for (i = 0; i < c->lpt_lebs; i++)
 781                if (c->ltab[i].tgc) {
 782                        err = ubifs_leb_unmap(c, i + c->lpt_first);
 783                        if (err)
 784                                return err;
 785                        c->ltab[i].tgc = 0;
 786                        dbg_lp("LEB %d", i + c->lpt_first);
 787                }
 788        return 0;
 789}
 790
 791/**
 792 * populate_lsave - fill the lsave array with important LEB numbers.
 793 * @c: the UBIFS file-system description object
 794 *
 795 * This function is only called for the "big" model. It records a small number
 796 * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
 797 * most important to least important): empty, freeable, freeable index, dirty
 798 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
 799 * their pnodes into memory.  That will stop us from having to scan the LPT
 800 * straight away. For the "small" model we assume that scanning the LPT is no
 801 * big deal.
 802 */
 803static void populate_lsave(struct ubifs_info *c)
 804{
 805        struct ubifs_lprops *lprops;
 806        struct ubifs_lpt_heap *heap;
 807        int i, cnt = 0;
 808
 809        ubifs_assert(c->big_lpt);
 810        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
 811                c->lpt_drty_flgs |= LSAVE_DIRTY;
 812                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
 813        }
 814
 815#ifndef __UBOOT__
 816        if (dbg_populate_lsave(c))
 817                return;
 818#endif
 819
 820        list_for_each_entry(lprops, &c->empty_list, list) {
 821                c->lsave[cnt++] = lprops->lnum;
 822                if (cnt >= c->lsave_cnt)
 823                        return;
 824        }
 825        list_for_each_entry(lprops, &c->freeable_list, list) {
 826                c->lsave[cnt++] = lprops->lnum;
 827                if (cnt >= c->lsave_cnt)
 828                        return;
 829        }
 830        list_for_each_entry(lprops, &c->frdi_idx_list, list) {
 831                c->lsave[cnt++] = lprops->lnum;
 832                if (cnt >= c->lsave_cnt)
 833                        return;
 834        }
 835        heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
 836        for (i = 0; i < heap->cnt; i++) {
 837                c->lsave[cnt++] = heap->arr[i]->lnum;
 838                if (cnt >= c->lsave_cnt)
 839                        return;
 840        }
 841        heap = &c->lpt_heap[LPROPS_DIRTY - 1];
 842        for (i = 0; i < heap->cnt; i++) {
 843                c->lsave[cnt++] = heap->arr[i]->lnum;
 844                if (cnt >= c->lsave_cnt)
 845                        return;
 846        }
 847        heap = &c->lpt_heap[LPROPS_FREE - 1];
 848        for (i = 0; i < heap->cnt; i++) {
 849                c->lsave[cnt++] = heap->arr[i]->lnum;
 850                if (cnt >= c->lsave_cnt)
 851                        return;
 852        }
 853        /* Fill it up completely */
 854        while (cnt < c->lsave_cnt)
 855                c->lsave[cnt++] = c->main_first;
 856}
 857
 858/**
 859 * nnode_lookup - lookup a nnode in the LPT.
 860 * @c: UBIFS file-system description object
 861 * @i: nnode number
 862 *
 863 * This function returns a pointer to the nnode on success or a negative
 864 * error code on failure.
 865 */
 866static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
 867{
 868        int err, iip;
 869        struct ubifs_nnode *nnode;
 870
 871        if (!c->nroot) {
 872                err = ubifs_read_nnode(c, NULL, 0);
 873                if (err)
 874                        return ERR_PTR(err);
 875        }
 876        nnode = c->nroot;
 877        while (1) {
 878                iip = i & (UBIFS_LPT_FANOUT - 1);
 879                i >>= UBIFS_LPT_FANOUT_SHIFT;
 880                if (!i)
 881                        break;
 882                nnode = ubifs_get_nnode(c, nnode, iip);
 883                if (IS_ERR(nnode))
 884                        return nnode;
 885        }
 886        return nnode;
 887}
 888
 889/**
 890 * make_nnode_dirty - find a nnode and, if found, make it dirty.
 891 * @c: UBIFS file-system description object
 892 * @node_num: nnode number of nnode to make dirty
 893 * @lnum: LEB number where nnode was written
 894 * @offs: offset where nnode was written
 895 *
 896 * This function is used by LPT garbage collection.  LPT garbage collection is
 897 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 898 * simply involves marking all the nodes in the LEB being garbage-collected as
 899 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 900 * to be reused.
 901 *
 902 * This function returns %0 on success and a negative error code on failure.
 903 */
 904static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 905                            int offs)
 906{
 907        struct ubifs_nnode *nnode;
 908
 909        nnode = nnode_lookup(c, node_num);
 910        if (IS_ERR(nnode))
 911                return PTR_ERR(nnode);
 912        if (nnode->parent) {
 913                struct ubifs_nbranch *branch;
 914
 915                branch = &nnode->parent->nbranch[nnode->iip];
 916                if (branch->lnum != lnum || branch->offs != offs)
 917                        return 0; /* nnode is obsolete */
 918        } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
 919                        return 0; /* nnode is obsolete */
 920        /* Assumes cnext list is empty i.e. not called during commit */
 921        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 922                c->dirty_nn_cnt += 1;
 923                ubifs_add_nnode_dirt(c, nnode);
 924                /* Mark parent and ancestors dirty too */
 925                nnode = nnode->parent;
 926                while (nnode) {
 927                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 928                                c->dirty_nn_cnt += 1;
 929                                ubifs_add_nnode_dirt(c, nnode);
 930                                nnode = nnode->parent;
 931                        } else
 932                                break;
 933                }
 934        }
 935        return 0;
 936}
 937
 938/**
 939 * make_pnode_dirty - find a pnode and, if found, make it dirty.
 940 * @c: UBIFS file-system description object
 941 * @node_num: pnode number of pnode to make dirty
 942 * @lnum: LEB number where pnode was written
 943 * @offs: offset where pnode was written
 944 *
 945 * This function is used by LPT garbage collection.  LPT garbage collection is
 946 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 947 * simply involves marking all the nodes in the LEB being garbage-collected as
 948 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 949 * to be reused.
 950 *
 951 * This function returns %0 on success and a negative error code on failure.
 952 */
 953static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 954                            int offs)
 955{
 956        struct ubifs_pnode *pnode;
 957        struct ubifs_nbranch *branch;
 958
 959        pnode = pnode_lookup(c, node_num);
 960        if (IS_ERR(pnode))
 961                return PTR_ERR(pnode);
 962        branch = &pnode->parent->nbranch[pnode->iip];
 963        if (branch->lnum != lnum || branch->offs != offs)
 964                return 0;
 965        do_make_pnode_dirty(c, pnode);
 966        return 0;
 967}
 968
 969/**
 970 * make_ltab_dirty - make ltab node dirty.
 971 * @c: UBIFS file-system description object
 972 * @lnum: LEB number where ltab was written
 973 * @offs: offset where ltab was written
 974 *
 975 * This function is used by LPT garbage collection.  LPT garbage collection is
 976 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 977 * simply involves marking all the nodes in the LEB being garbage-collected as
 978 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 979 * to be reused.
 980 *
 981 * This function returns %0 on success and a negative error code on failure.
 982 */
 983static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
 984{
 985        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
 986                return 0; /* This ltab node is obsolete */
 987        if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
 988                c->lpt_drty_flgs |= LTAB_DIRTY;
 989                ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
 990        }
 991        return 0;
 992}
 993
 994/**
 995 * make_lsave_dirty - make lsave node dirty.
 996 * @c: UBIFS file-system description object
 997 * @lnum: LEB number where lsave was written
 998 * @offs: offset where lsave was written
 999 *
1000 * This function is used by LPT garbage collection.  LPT garbage collection is
1001 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1002 * simply involves marking all the nodes in the LEB being garbage-collected as
1003 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1004 * to be reused.
1005 *
1006 * This function returns %0 on success and a negative error code on failure.
1007 */
1008static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1009{
1010        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1011                return 0; /* This lsave node is obsolete */
1012        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1013                c->lpt_drty_flgs |= LSAVE_DIRTY;
1014                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1015        }
1016        return 0;
1017}
1018
1019/**
1020 * make_node_dirty - make node dirty.
1021 * @c: UBIFS file-system description object
1022 * @node_type: LPT node type
1023 * @node_num: node number
1024 * @lnum: LEB number where node was written
1025 * @offs: offset where node was written
1026 *
1027 * This function is used by LPT garbage collection.  LPT garbage collection is
1028 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1029 * simply involves marking all the nodes in the LEB being garbage-collected as
1030 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1031 * to be reused.
1032 *
1033 * This function returns %0 on success and a negative error code on failure.
1034 */
1035static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1036                           int lnum, int offs)
1037{
1038        switch (node_type) {
1039        case UBIFS_LPT_NNODE:
1040                return make_nnode_dirty(c, node_num, lnum, offs);
1041        case UBIFS_LPT_PNODE:
1042                return make_pnode_dirty(c, node_num, lnum, offs);
1043        case UBIFS_LPT_LTAB:
1044                return make_ltab_dirty(c, lnum, offs);
1045        case UBIFS_LPT_LSAVE:
1046                return make_lsave_dirty(c, lnum, offs);
1047        }
1048        return -EINVAL;
1049}
1050
1051/**
1052 * get_lpt_node_len - return the length of a node based on its type.
1053 * @c: UBIFS file-system description object
1054 * @node_type: LPT node type
1055 */
1056static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1057{
1058        switch (node_type) {
1059        case UBIFS_LPT_NNODE:
1060                return c->nnode_sz;
1061        case UBIFS_LPT_PNODE:
1062                return c->pnode_sz;
1063        case UBIFS_LPT_LTAB:
1064                return c->ltab_sz;
1065        case UBIFS_LPT_LSAVE:
1066                return c->lsave_sz;
1067        }
1068        return 0;
1069}
1070
1071/**
1072 * get_pad_len - return the length of padding in a buffer.
1073 * @c: UBIFS file-system description object
1074 * @buf: buffer
1075 * @len: length of buffer
1076 */
1077static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1078{
1079        int offs, pad_len;
1080
1081        if (c->min_io_size == 1)
1082                return 0;
1083        offs = c->leb_size - len;
1084        pad_len = ALIGN(offs, c->min_io_size) - offs;
1085        return pad_len;
1086}
1087
1088/**
1089 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1090 * @c: UBIFS file-system description object
1091 * @buf: buffer
1092 * @node_num: node number is returned here
1093 */
1094static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1095                             int *node_num)
1096{
1097        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1098        int pos = 0, node_type;
1099
1100        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1101        *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1102        return node_type;
1103}
1104
1105/**
1106 * is_a_node - determine if a buffer contains a node.
1107 * @c: UBIFS file-system description object
1108 * @buf: buffer
1109 * @len: length of buffer
1110 *
1111 * This function returns %1 if the buffer contains a node or %0 if it does not.
1112 */
1113static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1114{
1115        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1116        int pos = 0, node_type, node_len;
1117        uint16_t crc, calc_crc;
1118
1119        if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1120                return 0;
1121        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1122        if (node_type == UBIFS_LPT_NOT_A_NODE)
1123                return 0;
1124        node_len = get_lpt_node_len(c, node_type);
1125        if (!node_len || node_len > len)
1126                return 0;
1127        pos = 0;
1128        addr = buf;
1129        crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1130        calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1131                         node_len - UBIFS_LPT_CRC_BYTES);
1132        if (crc != calc_crc)
1133                return 0;
1134        return 1;
1135}
1136
1137/**
1138 * lpt_gc_lnum - garbage collect a LPT LEB.
1139 * @c: UBIFS file-system description object
1140 * @lnum: LEB number to garbage collect
1141 *
1142 * LPT garbage collection is used only for the "big" LPT model
1143 * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1144 * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1145 * next commit, after which the LEB is free to be reused.
1146 *
1147 * This function returns %0 on success and a negative error code on failure.
1148 */
1149static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1150{
1151        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1152        void *buf = c->lpt_buf;
1153
1154        dbg_lp("LEB %d", lnum);
1155
1156        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1157        if (err)
1158                return err;
1159
1160        while (1) {
1161                if (!is_a_node(c, buf, len)) {
1162                        int pad_len;
1163
1164                        pad_len = get_pad_len(c, buf, len);
1165                        if (pad_len) {
1166                                buf += pad_len;
1167                                len -= pad_len;
1168                                continue;
1169                        }
1170                        return 0;
1171                }
1172                node_type = get_lpt_node_type(c, buf, &node_num);
1173                node_len = get_lpt_node_len(c, node_type);
1174                offs = c->leb_size - len;
1175                ubifs_assert(node_len != 0);
1176                mutex_lock(&c->lp_mutex);
1177                err = make_node_dirty(c, node_type, node_num, lnum, offs);
1178                mutex_unlock(&c->lp_mutex);
1179                if (err)
1180                        return err;
1181                buf += node_len;
1182                len -= node_len;
1183        }
1184        return 0;
1185}
1186
1187/**
1188 * lpt_gc - LPT garbage collection.
1189 * @c: UBIFS file-system description object
1190 *
1191 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1192 * Returns %0 on success and a negative error code on failure.
1193 */
1194static int lpt_gc(struct ubifs_info *c)
1195{
1196        int i, lnum = -1, dirty = 0;
1197
1198        mutex_lock(&c->lp_mutex);
1199        for (i = 0; i < c->lpt_lebs; i++) {
1200                ubifs_assert(!c->ltab[i].tgc);
1201                if (i + c->lpt_first == c->nhead_lnum ||
1202                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1203                        continue;
1204                if (c->ltab[i].dirty > dirty) {
1205                        dirty = c->ltab[i].dirty;
1206                        lnum = i + c->lpt_first;
1207                }
1208        }
1209        mutex_unlock(&c->lp_mutex);
1210        if (lnum == -1)
1211                return -ENOSPC;
1212        return lpt_gc_lnum(c, lnum);
1213}
1214
1215/**
1216 * ubifs_lpt_start_commit - UBIFS commit starts.
1217 * @c: the UBIFS file-system description object
1218 *
1219 * This function has to be called when UBIFS starts the commit operation.
1220 * This function "freezes" all currently dirty LEB properties and does not
1221 * change them anymore. Further changes are saved and tracked separately
1222 * because they are not part of this commit. This function returns zero in case
1223 * of success and a negative error code in case of failure.
1224 */
1225int ubifs_lpt_start_commit(struct ubifs_info *c)
1226{
1227        int err, cnt;
1228
1229        dbg_lp("");
1230
1231        mutex_lock(&c->lp_mutex);
1232        err = dbg_chk_lpt_free_spc(c);
1233        if (err)
1234                goto out;
1235        err = dbg_check_ltab(c);
1236        if (err)
1237                goto out;
1238
1239        if (c->check_lpt_free) {
1240                /*
1241                 * We ensure there is enough free space in
1242                 * ubifs_lpt_post_commit() by marking nodes dirty. That
1243                 * information is lost when we unmount, so we also need
1244                 * to check free space once after mounting also.
1245                 */
1246                c->check_lpt_free = 0;
1247                while (need_write_all(c)) {
1248                        mutex_unlock(&c->lp_mutex);
1249                        err = lpt_gc(c);
1250                        if (err)
1251                                return err;
1252                        mutex_lock(&c->lp_mutex);
1253                }
1254        }
1255
1256        lpt_tgc_start(c);
1257
1258        if (!c->dirty_pn_cnt) {
1259                dbg_cmt("no cnodes to commit");
1260                err = 0;
1261                goto out;
1262        }
1263
1264        if (!c->big_lpt && need_write_all(c)) {
1265                /* If needed, write everything */
1266                err = make_tree_dirty(c);
1267                if (err)
1268                        goto out;
1269                lpt_tgc_start(c);
1270        }
1271
1272        if (c->big_lpt)
1273                populate_lsave(c);
1274
1275        cnt = get_cnodes_to_commit(c);
1276        ubifs_assert(cnt != 0);
1277
1278        err = layout_cnodes(c);
1279        if (err)
1280                goto out;
1281
1282        /* Copy the LPT's own lprops for end commit to write */
1283        memcpy(c->ltab_cmt, c->ltab,
1284               sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1285        c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1286
1287out:
1288        mutex_unlock(&c->lp_mutex);
1289        return err;
1290}
1291
1292/**
1293 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1294 * @c: UBIFS file-system description object
1295 */
1296static void free_obsolete_cnodes(struct ubifs_info *c)
1297{
1298        struct ubifs_cnode *cnode, *cnext;
1299
1300        cnext = c->lpt_cnext;
1301        if (!cnext)
1302                return;
1303        do {
1304                cnode = cnext;
1305                cnext = cnode->cnext;
1306                if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1307                        kfree(cnode);
1308                else
1309                        cnode->cnext = NULL;
1310        } while (cnext != c->lpt_cnext);
1311        c->lpt_cnext = NULL;
1312}
1313
1314#ifndef __UBOOT__
1315/**
1316 * ubifs_lpt_end_commit - finish the commit operation.
1317 * @c: the UBIFS file-system description object
1318 *
1319 * This function has to be called when the commit operation finishes. It
1320 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1321 * the media. Returns zero in case of success and a negative error code in case
1322 * of failure.
1323 */
1324int ubifs_lpt_end_commit(struct ubifs_info *c)
1325{
1326        int err;
1327
1328        dbg_lp("");
1329
1330        if (!c->lpt_cnext)
1331                return 0;
1332
1333        err = write_cnodes(c);
1334        if (err)
1335                return err;
1336
1337        mutex_lock(&c->lp_mutex);
1338        free_obsolete_cnodes(c);
1339        mutex_unlock(&c->lp_mutex);
1340
1341        return 0;
1342}
1343#endif
1344
1345/**
1346 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1347 * @c: UBIFS file-system description object
1348 *
1349 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1350 * commit for the "big" LPT model.
1351 */
1352int ubifs_lpt_post_commit(struct ubifs_info *c)
1353{
1354        int err;
1355
1356        mutex_lock(&c->lp_mutex);
1357        err = lpt_tgc_end(c);
1358        if (err)
1359                goto out;
1360        if (c->big_lpt)
1361                while (need_write_all(c)) {
1362                        mutex_unlock(&c->lp_mutex);
1363                        err = lpt_gc(c);
1364                        if (err)
1365                                return err;
1366                        mutex_lock(&c->lp_mutex);
1367                }
1368out:
1369        mutex_unlock(&c->lp_mutex);
1370        return err;
1371}
1372
1373/**
1374 * first_nnode - find the first nnode in memory.
1375 * @c: UBIFS file-system description object
1376 * @hght: height of tree where nnode found is returned here
1377 *
1378 * This function returns a pointer to the nnode found or %NULL if no nnode is
1379 * found. This function is a helper to 'ubifs_lpt_free()'.
1380 */
1381static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1382{
1383        struct ubifs_nnode *nnode;
1384        int h, i, found;
1385
1386        nnode = c->nroot;
1387        *hght = 0;
1388        if (!nnode)
1389                return NULL;
1390        for (h = 1; h < c->lpt_hght; h++) {
1391                found = 0;
1392                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1393                        if (nnode->nbranch[i].nnode) {
1394                                found = 1;
1395                                nnode = nnode->nbranch[i].nnode;
1396                                *hght = h;
1397                                break;
1398                        }
1399                }
1400                if (!found)
1401                        break;
1402        }
1403        return nnode;
1404}
1405
1406/**
1407 * next_nnode - find the next nnode in memory.
1408 * @c: UBIFS file-system description object
1409 * @nnode: nnode from which to start.
1410 * @hght: height of tree where nnode is, is passed and returned here
1411 *
1412 * This function returns a pointer to the nnode found or %NULL if no nnode is
1413 * found. This function is a helper to 'ubifs_lpt_free()'.
1414 */
1415static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1416                                      struct ubifs_nnode *nnode, int *hght)
1417{
1418        struct ubifs_nnode *parent;
1419        int iip, h, i, found;
1420
1421        parent = nnode->parent;
1422        if (!parent)
1423                return NULL;
1424        if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1425                *hght -= 1;
1426                return parent;
1427        }
1428        for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1429                nnode = parent->nbranch[iip].nnode;
1430                if (nnode)
1431                        break;
1432        }
1433        if (!nnode) {
1434                *hght -= 1;
1435                return parent;
1436        }
1437        for (h = *hght + 1; h < c->lpt_hght; h++) {
1438                found = 0;
1439                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1440                        if (nnode->nbranch[i].nnode) {
1441                                found = 1;
1442                                nnode = nnode->nbranch[i].nnode;
1443                                *hght = h;
1444                                break;
1445                        }
1446                }
1447                if (!found)
1448                        break;
1449        }
1450        return nnode;
1451}
1452
1453/**
1454 * ubifs_lpt_free - free resources owned by the LPT.
1455 * @c: UBIFS file-system description object
1456 * @wr_only: free only resources used for writing
1457 */
1458void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1459{
1460        struct ubifs_nnode *nnode;
1461        int i, hght;
1462
1463        /* Free write-only things first */
1464
1465        free_obsolete_cnodes(c); /* Leftover from a failed commit */
1466
1467        vfree(c->ltab_cmt);
1468        c->ltab_cmt = NULL;
1469        vfree(c->lpt_buf);
1470        c->lpt_buf = NULL;
1471        kfree(c->lsave);
1472        c->lsave = NULL;
1473
1474        if (wr_only)
1475                return;
1476
1477        /* Now free the rest */
1478
1479        nnode = first_nnode(c, &hght);
1480        while (nnode) {
1481                for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1482                        kfree(nnode->nbranch[i].nnode);
1483                nnode = next_nnode(c, nnode, &hght);
1484        }
1485        for (i = 0; i < LPROPS_HEAP_CNT; i++)
1486                kfree(c->lpt_heap[i].arr);
1487        kfree(c->dirty_idx.arr);
1488        kfree(c->nroot);
1489        vfree(c->ltab);
1490        kfree(c->lpt_nod_buf);
1491}
1492
1493#ifndef __UBOOT__
1494/*
1495 * Everything below is related to debugging.
1496 */
1497
1498/**
1499 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1500 * @buf: buffer
1501 * @len: buffer length
1502 */
1503static int dbg_is_all_ff(uint8_t *buf, int len)
1504{
1505        int i;
1506
1507        for (i = 0; i < len; i++)
1508                if (buf[i] != 0xff)
1509                        return 0;
1510        return 1;
1511}
1512
1513/**
1514 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1515 * @c: the UBIFS file-system description object
1516 * @lnum: LEB number where nnode was written
1517 * @offs: offset where nnode was written
1518 */
1519static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1520{
1521        struct ubifs_nnode *nnode;
1522        int hght;
1523
1524        /* Entire tree is in memory so first_nnode / next_nnode are OK */
1525        nnode = first_nnode(c, &hght);
1526        for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1527                struct ubifs_nbranch *branch;
1528
1529                cond_resched();
1530                if (nnode->parent) {
1531                        branch = &nnode->parent->nbranch[nnode->iip];
1532                        if (branch->lnum != lnum || branch->offs != offs)
1533                                continue;
1534                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1535                                return 1;
1536                        return 0;
1537                } else {
1538                        if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1539                                continue;
1540                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1541                                return 1;
1542                        return 0;
1543                }
1544        }
1545        return 1;
1546}
1547
1548/**
1549 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1550 * @c: the UBIFS file-system description object
1551 * @lnum: LEB number where pnode was written
1552 * @offs: offset where pnode was written
1553 */
1554static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1555{
1556        int i, cnt;
1557
1558        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1559        for (i = 0; i < cnt; i++) {
1560                struct ubifs_pnode *pnode;
1561                struct ubifs_nbranch *branch;
1562
1563                cond_resched();
1564                pnode = pnode_lookup(c, i);
1565                if (IS_ERR(pnode))
1566                        return PTR_ERR(pnode);
1567                branch = &pnode->parent->nbranch[pnode->iip];
1568                if (branch->lnum != lnum || branch->offs != offs)
1569                        continue;
1570                if (test_bit(DIRTY_CNODE, &pnode->flags))
1571                        return 1;
1572                return 0;
1573        }
1574        return 1;
1575}
1576
1577/**
1578 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1579 * @c: the UBIFS file-system description object
1580 * @lnum: LEB number where ltab node was written
1581 * @offs: offset where ltab node was written
1582 */
1583static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1584{
1585        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1586                return 1;
1587        return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1588}
1589
1590/**
1591 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1592 * @c: the UBIFS file-system description object
1593 * @lnum: LEB number where lsave node was written
1594 * @offs: offset where lsave node was written
1595 */
1596static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1597{
1598        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1599                return 1;
1600        return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1601}
1602
1603/**
1604 * dbg_is_node_dirty - determine if a node is dirty.
1605 * @c: the UBIFS file-system description object
1606 * @node_type: node type
1607 * @lnum: LEB number where node was written
1608 * @offs: offset where node was written
1609 */
1610static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1611                             int offs)
1612{
1613        switch (node_type) {
1614        case UBIFS_LPT_NNODE:
1615                return dbg_is_nnode_dirty(c, lnum, offs);
1616        case UBIFS_LPT_PNODE:
1617                return dbg_is_pnode_dirty(c, lnum, offs);
1618        case UBIFS_LPT_LTAB:
1619                return dbg_is_ltab_dirty(c, lnum, offs);
1620        case UBIFS_LPT_LSAVE:
1621                return dbg_is_lsave_dirty(c, lnum, offs);
1622        }
1623        return 1;
1624}
1625
1626/**
1627 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1628 * @c: the UBIFS file-system description object
1629 * @lnum: LEB number where node was written
1630 * @offs: offset where node was written
1631 *
1632 * This function returns %0 on success and a negative error code on failure.
1633 */
1634static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1635{
1636        int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1637        int ret;
1638        void *buf, *p;
1639
1640        if (!dbg_is_chk_lprops(c))
1641                return 0;
1642
1643        buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1644        if (!buf) {
1645                ubifs_err(c, "cannot allocate memory for ltab checking");
1646                return 0;
1647        }
1648
1649        dbg_lp("LEB %d", lnum);
1650
1651        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1652        if (err)
1653                goto out;
1654
1655        while (1) {
1656                if (!is_a_node(c, p, len)) {
1657                        int i, pad_len;
1658
1659                        pad_len = get_pad_len(c, p, len);
1660                        if (pad_len) {
1661                                p += pad_len;
1662                                len -= pad_len;
1663                                dirty += pad_len;
1664                                continue;
1665                        }
1666                        if (!dbg_is_all_ff(p, len)) {
1667                                ubifs_err(c, "invalid empty space in LEB %d at %d",
1668                                          lnum, c->leb_size - len);
1669                                err = -EINVAL;
1670                        }
1671                        i = lnum - c->lpt_first;
1672                        if (len != c->ltab[i].free) {
1673                                ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)",
1674                                          lnum, len, c->ltab[i].free);
1675                                err = -EINVAL;
1676                        }
1677                        if (dirty != c->ltab[i].dirty) {
1678                                ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1679                                          lnum, dirty, c->ltab[i].dirty);
1680                                err = -EINVAL;
1681                        }
1682                        goto out;
1683                }
1684                node_type = get_lpt_node_type(c, p, &node_num);
1685                node_len = get_lpt_node_len(c, node_type);
1686                ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1687                if (ret == 1)
1688                        dirty += node_len;
1689                p += node_len;
1690                len -= node_len;
1691        }
1692
1693        err = 0;
1694out:
1695        vfree(buf);
1696        return err;
1697}
1698
1699/**
1700 * dbg_check_ltab - check the free and dirty space in the ltab.
1701 * @c: the UBIFS file-system description object
1702 *
1703 * This function returns %0 on success and a negative error code on failure.
1704 */
1705int dbg_check_ltab(struct ubifs_info *c)
1706{
1707        int lnum, err, i, cnt;
1708
1709        if (!dbg_is_chk_lprops(c))
1710                return 0;
1711
1712        /* Bring the entire tree into memory */
1713        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1714        for (i = 0; i < cnt; i++) {
1715                struct ubifs_pnode *pnode;
1716
1717                pnode = pnode_lookup(c, i);
1718                if (IS_ERR(pnode))
1719                        return PTR_ERR(pnode);
1720                cond_resched();
1721        }
1722
1723        /* Check nodes */
1724        err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1725        if (err)
1726                return err;
1727
1728        /* Check each LEB */
1729        for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1730                err = dbg_check_ltab_lnum(c, lnum);
1731                if (err) {
1732                        ubifs_err(c, "failed at LEB %d", lnum);
1733                        return err;
1734                }
1735        }
1736
1737        dbg_lp("succeeded");
1738        return 0;
1739}
1740
1741/**
1742 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1743 * @c: the UBIFS file-system description object
1744 *
1745 * This function returns %0 on success and a negative error code on failure.
1746 */
1747int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1748{
1749        long long free = 0;
1750        int i;
1751
1752        if (!dbg_is_chk_lprops(c))
1753                return 0;
1754
1755        for (i = 0; i < c->lpt_lebs; i++) {
1756                if (c->ltab[i].tgc || c->ltab[i].cmt)
1757                        continue;
1758                if (i + c->lpt_first == c->nhead_lnum)
1759                        free += c->leb_size - c->nhead_offs;
1760                else if (c->ltab[i].free == c->leb_size)
1761                        free += c->leb_size;
1762        }
1763        if (free < c->lpt_sz) {
1764                ubifs_err(c, "LPT space error: free %lld lpt_sz %lld",
1765                          free, c->lpt_sz);
1766                ubifs_dump_lpt_info(c);
1767                ubifs_dump_lpt_lebs(c);
1768                dump_stack();
1769                return -EINVAL;
1770        }
1771        return 0;
1772}
1773
1774/**
1775 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1776 * @c: the UBIFS file-system description object
1777 * @action: what to do
1778 * @len: length written
1779 *
1780 * This function returns %0 on success and a negative error code on failure.
1781 * The @action argument may be one of:
1782 *   o %0 - LPT debugging checking starts, initialize debugging variables;
1783 *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1784 *   o %2 - switched to a different LEB and wasted @len bytes;
1785 *   o %3 - check that we've written the right number of bytes.
1786 *   o %4 - wasted @len bytes;
1787 */
1788int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1789{
1790        struct ubifs_debug_info *d = c->dbg;
1791        long long chk_lpt_sz, lpt_sz;
1792        int err = 0;
1793
1794        if (!dbg_is_chk_lprops(c))
1795                return 0;
1796
1797        switch (action) {
1798        case 0:
1799                d->chk_lpt_sz = 0;
1800                d->chk_lpt_sz2 = 0;
1801                d->chk_lpt_lebs = 0;
1802                d->chk_lpt_wastage = 0;
1803                if (c->dirty_pn_cnt > c->pnode_cnt) {
1804                        ubifs_err(c, "dirty pnodes %d exceed max %d",
1805                                  c->dirty_pn_cnt, c->pnode_cnt);
1806                        err = -EINVAL;
1807                }
1808                if (c->dirty_nn_cnt > c->nnode_cnt) {
1809                        ubifs_err(c, "dirty nnodes %d exceed max %d",
1810                                  c->dirty_nn_cnt, c->nnode_cnt);
1811                        err = -EINVAL;
1812                }
1813                return err;
1814        case 1:
1815                d->chk_lpt_sz += len;
1816                return 0;
1817        case 2:
1818                d->chk_lpt_sz += len;
1819                d->chk_lpt_wastage += len;
1820                d->chk_lpt_lebs += 1;
1821                return 0;
1822        case 3:
1823                chk_lpt_sz = c->leb_size;
1824                chk_lpt_sz *= d->chk_lpt_lebs;
1825                chk_lpt_sz += len - c->nhead_offs;
1826                if (d->chk_lpt_sz != chk_lpt_sz) {
1827                        ubifs_err(c, "LPT wrote %lld but space used was %lld",
1828                                  d->chk_lpt_sz, chk_lpt_sz);
1829                        err = -EINVAL;
1830                }
1831                if (d->chk_lpt_sz > c->lpt_sz) {
1832                        ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld",
1833                                  d->chk_lpt_sz, c->lpt_sz);
1834                        err = -EINVAL;
1835                }
1836                if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1837                        ubifs_err(c, "LPT layout size %lld but wrote %lld",
1838                                  d->chk_lpt_sz, d->chk_lpt_sz2);
1839                        err = -EINVAL;
1840                }
1841                if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1842                        ubifs_err(c, "LPT new nhead offs: expected %d was %d",
1843                                  d->new_nhead_offs, len);
1844                        err = -EINVAL;
1845                }
1846                lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1847                lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1848                lpt_sz += c->ltab_sz;
1849                if (c->big_lpt)
1850                        lpt_sz += c->lsave_sz;
1851                if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1852                        ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1853                                  d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1854                        err = -EINVAL;
1855                }
1856                if (err) {
1857                        ubifs_dump_lpt_info(c);
1858                        ubifs_dump_lpt_lebs(c);
1859                        dump_stack();
1860                }
1861                d->chk_lpt_sz2 = d->chk_lpt_sz;
1862                d->chk_lpt_sz = 0;
1863                d->chk_lpt_wastage = 0;
1864                d->chk_lpt_lebs = 0;
1865                d->new_nhead_offs = len;
1866                return err;
1867        case 4:
1868                d->chk_lpt_sz += len;
1869                d->chk_lpt_wastage += len;
1870                return 0;
1871        default:
1872                return -EINVAL;
1873        }
1874}
1875
1876/**
1877 * ubifs_dump_lpt_leb - dump an LPT LEB.
1878 * @c: UBIFS file-system description object
1879 * @lnum: LEB number to dump
1880 *
1881 * This function dumps an LEB from LPT area. Nodes in this area are very
1882 * different to nodes in the main area (e.g., they do not have common headers,
1883 * they do not have 8-byte alignments, etc), so we have a separate function to
1884 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1885 */
1886static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1887{
1888        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1889        void *buf, *p;
1890
1891        pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1892        buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1893        if (!buf) {
1894                ubifs_err(c, "cannot allocate memory to dump LPT");
1895                return;
1896        }
1897
1898        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1899        if (err)
1900                goto out;
1901
1902        while (1) {
1903                offs = c->leb_size - len;
1904                if (!is_a_node(c, p, len)) {
1905                        int pad_len;
1906
1907                        pad_len = get_pad_len(c, p, len);
1908                        if (pad_len) {
1909                                pr_err("LEB %d:%d, pad %d bytes\n",
1910                                       lnum, offs, pad_len);
1911                                p += pad_len;
1912                                len -= pad_len;
1913                                continue;
1914                        }
1915                        if (len)
1916                                pr_err("LEB %d:%d, free %d bytes\n",
1917                                       lnum, offs, len);
1918                        break;
1919                }
1920
1921                node_type = get_lpt_node_type(c, p, &node_num);
1922                switch (node_type) {
1923                case UBIFS_LPT_PNODE:
1924                {
1925                        node_len = c->pnode_sz;
1926                        if (c->big_lpt)
1927                                pr_err("LEB %d:%d, pnode num %d\n",
1928                                       lnum, offs, node_num);
1929                        else
1930                                pr_err("LEB %d:%d, pnode\n", lnum, offs);
1931                        break;
1932                }
1933                case UBIFS_LPT_NNODE:
1934                {
1935                        int i;
1936                        struct ubifs_nnode nnode;
1937
1938                        node_len = c->nnode_sz;
1939                        if (c->big_lpt)
1940                                pr_err("LEB %d:%d, nnode num %d, ",
1941                                       lnum, offs, node_num);
1942                        else
1943                                pr_err("LEB %d:%d, nnode, ",
1944                                       lnum, offs);
1945                        err = ubifs_unpack_nnode(c, p, &nnode);
1946                        if (err) {
1947                                pr_err("failed to unpack_node, error %d\n",
1948                                       err);
1949                                break;
1950                        }
1951                        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1952                                pr_cont("%d:%d", nnode.nbranch[i].lnum,
1953                                       nnode.nbranch[i].offs);
1954                                if (i != UBIFS_LPT_FANOUT - 1)
1955                                        pr_cont(", ");
1956                        }
1957                        pr_cont("\n");
1958                        break;
1959                }
1960                case UBIFS_LPT_LTAB:
1961                        node_len = c->ltab_sz;
1962                        pr_err("LEB %d:%d, ltab\n", lnum, offs);
1963                        break;
1964                case UBIFS_LPT_LSAVE:
1965                        node_len = c->lsave_sz;
1966                        pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1967                        break;
1968                default:
1969                        ubifs_err(c, "LPT node type %d not recognized", node_type);
1970                        goto out;
1971                }
1972
1973                p += node_len;
1974                len -= node_len;
1975        }
1976
1977        pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1978out:
1979        vfree(buf);
1980        return;
1981}
1982
1983/**
1984 * ubifs_dump_lpt_lebs - dump LPT lebs.
1985 * @c: UBIFS file-system description object
1986 *
1987 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1988 * locked.
1989 */
1990void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1991{
1992        int i;
1993
1994        pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1995        for (i = 0; i < c->lpt_lebs; i++)
1996                dump_lpt_leb(c, i + c->lpt_first);
1997        pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1998}
1999
2000/**
2001 * dbg_populate_lsave - debugging version of 'populate_lsave()'
2002 * @c: UBIFS file-system description object
2003 *
2004 * This is a debugging version for 'populate_lsave()' which populates lsave
2005 * with random LEBs instead of useful LEBs, which is good for test coverage.
2006 * Returns zero if lsave has not been populated (this debugging feature is
2007 * disabled) an non-zero if lsave has been populated.
2008 */
2009static int dbg_populate_lsave(struct ubifs_info *c)
2010{
2011        struct ubifs_lprops *lprops;
2012        struct ubifs_lpt_heap *heap;
2013        int i;
2014
2015        if (!dbg_is_chk_gen(c))
2016                return 0;
2017        if (prandom_u32() & 3)
2018                return 0;
2019
2020        for (i = 0; i < c->lsave_cnt; i++)
2021                c->lsave[i] = c->main_first;
2022
2023        list_for_each_entry(lprops, &c->empty_list, list)
2024                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2025        list_for_each_entry(lprops, &c->freeable_list, list)
2026                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2027        list_for_each_entry(lprops, &c->frdi_idx_list, list)
2028                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2029
2030        heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2031        for (i = 0; i < heap->cnt; i++)
2032                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2033        heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2034        for (i = 0; i < heap->cnt; i++)
2035                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2036        heap = &c->lpt_heap[LPROPS_FREE - 1];
2037        for (i = 0; i < heap->cnt; i++)
2038                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2039
2040        return 1;
2041}
2042#endif
2043