uboot/tools/ifdtool.c
<<
>>
Prefs
   1/*
   2 * ifdtool - Manage Intel Firmware Descriptor information
   3 *
   4 * Copyright 2014 Google, Inc
   5 *
   6 * SPDX-License-Identifier:     GPL-2.0
   7 *
   8 * From Coreboot project, but it got a serious code clean-up
   9 * and a few new features
  10 */
  11
  12#include <assert.h>
  13#include <fcntl.h>
  14#include <getopt.h>
  15#include <stdlib.h>
  16#include <stdio.h>
  17#include <string.h>
  18#include <unistd.h>
  19#include <sys/types.h>
  20#include <sys/stat.h>
  21#include <libfdt.h>
  22#include "ifdtool.h"
  23
  24#undef DEBUG
  25
  26#ifdef DEBUG
  27#define debug(fmt, args...)     printf(fmt, ##args)
  28#else
  29#define debug(fmt, args...)
  30#endif
  31
  32#define FD_SIGNATURE            0x0FF0A55A
  33#define FLREG_BASE(reg)         ((reg & 0x00000fff) << 12);
  34#define FLREG_LIMIT(reg)        (((reg & 0x0fff0000) >> 4) | 0xfff);
  35
  36enum input_file_type_t {
  37        IF_normal,
  38        IF_fdt,
  39        IF_uboot,
  40};
  41
  42struct input_file {
  43        char *fname;
  44        unsigned int addr;
  45        enum input_file_type_t type;
  46};
  47
  48/**
  49 * find_fd() - Find the flash description in the ROM image
  50 *
  51 * @image:      Pointer to image
  52 * @size:       Size of image in bytes
  53 * @return pointer to structure, or NULL if not found
  54 */
  55static struct fdbar_t *find_fd(char *image, int size)
  56{
  57        uint32_t *ptr, *end;
  58
  59        /* Scan for FD signature */
  60        for (ptr = (uint32_t *)image, end = ptr + size / 4; ptr < end; ptr++) {
  61                if (*ptr == FD_SIGNATURE)
  62                        break;
  63        }
  64
  65        if (ptr == end) {
  66                printf("No Flash Descriptor found in this image\n");
  67                return NULL;
  68        }
  69
  70        debug("Found Flash Descriptor signature at 0x%08lx\n",
  71              (char *)ptr - image);
  72
  73        return (struct fdbar_t *)ptr;
  74}
  75
  76/**
  77 * get_region() - Get information about the selected region
  78 *
  79 * @frba:               Flash region list
  80 * @region_type:        Type of region (0..MAX_REGIONS-1)
  81 * @region:             Region information is written here
  82 * @return 0 if OK, else -ve
  83 */
  84static int get_region(struct frba_t *frba, int region_type,
  85                      struct region_t *region)
  86{
  87        if (region_type >= MAX_REGIONS) {
  88                fprintf(stderr, "Invalid region type.\n");
  89                return -1;
  90        }
  91
  92        region->base = FLREG_BASE(frba->flreg[region_type]);
  93        region->limit = FLREG_LIMIT(frba->flreg[region_type]);
  94        region->size = region->limit - region->base + 1;
  95
  96        return 0;
  97}
  98
  99static const char *region_name(int region_type)
 100{
 101        static const char *const regions[] = {
 102                "Flash Descriptor",
 103                "BIOS",
 104                "Intel ME",
 105                "GbE",
 106                "Platform Data"
 107        };
 108
 109        assert(region_type < MAX_REGIONS);
 110
 111        return regions[region_type];
 112}
 113
 114static const char *region_filename(int region_type)
 115{
 116        static const char *const region_filenames[] = {
 117                "flashregion_0_flashdescriptor.bin",
 118                "flashregion_1_bios.bin",
 119                "flashregion_2_intel_me.bin",
 120                "flashregion_3_gbe.bin",
 121                "flashregion_4_platform_data.bin"
 122        };
 123
 124        assert(region_type < MAX_REGIONS);
 125
 126        return region_filenames[region_type];
 127}
 128
 129static int dump_region(int num, struct frba_t *frba)
 130{
 131        struct region_t region;
 132        int ret;
 133
 134        ret = get_region(frba, num, &region);
 135        if (ret)
 136                return ret;
 137
 138        printf("  Flash Region %d (%s): %08x - %08x %s\n",
 139               num, region_name(num), region.base, region.limit,
 140               region.size < 1 ? "(unused)" : "");
 141
 142        return ret;
 143}
 144
 145static void dump_frba(struct frba_t *frba)
 146{
 147        int i;
 148
 149        printf("Found Region Section\n");
 150        for (i = 0; i < MAX_REGIONS; i++) {
 151                printf("FLREG%d:    0x%08x\n", i, frba->flreg[i]);
 152                dump_region(i, frba);
 153        }
 154}
 155
 156static void decode_spi_frequency(unsigned int freq)
 157{
 158        switch (freq) {
 159        case SPI_FREQUENCY_20MHZ:
 160                printf("20MHz");
 161                break;
 162        case SPI_FREQUENCY_33MHZ:
 163                printf("33MHz");
 164                break;
 165        case SPI_FREQUENCY_50MHZ:
 166                printf("50MHz");
 167                break;
 168        default:
 169                printf("unknown<%x>MHz", freq);
 170        }
 171}
 172
 173static void decode_component_density(unsigned int density)
 174{
 175        switch (density) {
 176        case COMPONENT_DENSITY_512KB:
 177                printf("512KiB");
 178                break;
 179        case COMPONENT_DENSITY_1MB:
 180                printf("1MiB");
 181                break;
 182        case COMPONENT_DENSITY_2MB:
 183                printf("2MiB");
 184                break;
 185        case COMPONENT_DENSITY_4MB:
 186                printf("4MiB");
 187                break;
 188        case COMPONENT_DENSITY_8MB:
 189                printf("8MiB");
 190                break;
 191        case COMPONENT_DENSITY_16MB:
 192                printf("16MiB");
 193                break;
 194        default:
 195                printf("unknown<%x>MiB", density);
 196        }
 197}
 198
 199static void dump_fcba(struct fcba_t *fcba)
 200{
 201        printf("\nFound Component Section\n");
 202        printf("FLCOMP     0x%08x\n", fcba->flcomp);
 203        printf("  Dual Output Fast Read Support:       %ssupported\n",
 204               (fcba->flcomp & (1 << 30)) ? "" : "not ");
 205        printf("  Read ID/Read Status Clock Frequency: ");
 206        decode_spi_frequency((fcba->flcomp >> 27) & 7);
 207        printf("\n  Write/Erase Clock Frequency:         ");
 208        decode_spi_frequency((fcba->flcomp >> 24) & 7);
 209        printf("\n  Fast Read Clock Frequency:           ");
 210        decode_spi_frequency((fcba->flcomp >> 21) & 7);
 211        printf("\n  Fast Read Support:                   %ssupported",
 212               (fcba->flcomp & (1 << 20)) ? "" : "not ");
 213        printf("\n  Read Clock Frequency:                ");
 214        decode_spi_frequency((fcba->flcomp >> 17) & 7);
 215        printf("\n  Component 2 Density:                 ");
 216        decode_component_density((fcba->flcomp >> 3) & 7);
 217        printf("\n  Component 1 Density:                 ");
 218        decode_component_density(fcba->flcomp & 7);
 219        printf("\n");
 220        printf("FLILL      0x%08x\n", fcba->flill);
 221        printf("  Invalid Instruction 3: 0x%02x\n",
 222               (fcba->flill >> 24) & 0xff);
 223        printf("  Invalid Instruction 2: 0x%02x\n",
 224               (fcba->flill >> 16) & 0xff);
 225        printf("  Invalid Instruction 1: 0x%02x\n",
 226               (fcba->flill >> 8) & 0xff);
 227        printf("  Invalid Instruction 0: 0x%02x\n",
 228               fcba->flill & 0xff);
 229        printf("FLPB       0x%08x\n", fcba->flpb);
 230        printf("  Flash Partition Boundary Address: 0x%06x\n\n",
 231               (fcba->flpb & 0xfff) << 12);
 232}
 233
 234static void dump_fpsba(struct fpsba_t *fpsba)
 235{
 236        int i;
 237
 238        printf("Found PCH Strap Section\n");
 239        for (i = 0; i < MAX_STRAPS; i++)
 240                printf("PCHSTRP%-2d:  0x%08x\n", i, fpsba->pchstrp[i]);
 241}
 242
 243static const char *get_enabled(int flag)
 244{
 245        return flag ? "enabled" : "disabled";
 246}
 247
 248static void decode_flmstr(uint32_t flmstr)
 249{
 250        printf("  Platform Data Region Write Access: %s\n",
 251               get_enabled(flmstr & (1 << 28)));
 252        printf("  GbE Region Write Access:           %s\n",
 253               get_enabled(flmstr & (1 << 27)));
 254        printf("  Intel ME Region Write Access:      %s\n",
 255               get_enabled(flmstr & (1 << 26)));
 256        printf("  Host CPU/BIOS Region Write Access: %s\n",
 257               get_enabled(flmstr & (1 << 25)));
 258        printf("  Flash Descriptor Write Access:     %s\n",
 259               get_enabled(flmstr & (1 << 24)));
 260
 261        printf("  Platform Data Region Read Access:  %s\n",
 262               get_enabled(flmstr & (1 << 20)));
 263        printf("  GbE Region Read Access:            %s\n",
 264               get_enabled(flmstr & (1 << 19)));
 265        printf("  Intel ME Region Read Access:       %s\n",
 266               get_enabled(flmstr & (1 << 18)));
 267        printf("  Host CPU/BIOS Region Read Access:  %s\n",
 268               get_enabled(flmstr & (1 << 17)));
 269        printf("  Flash Descriptor Read Access:      %s\n",
 270               get_enabled(flmstr & (1 << 16)));
 271
 272        printf("  Requester ID:                      0x%04x\n\n",
 273               flmstr & 0xffff);
 274}
 275
 276static void dump_fmba(struct fmba_t *fmba)
 277{
 278        printf("Found Master Section\n");
 279        printf("FLMSTR1:   0x%08x (Host CPU/BIOS)\n", fmba->flmstr1);
 280        decode_flmstr(fmba->flmstr1);
 281        printf("FLMSTR2:   0x%08x (Intel ME)\n", fmba->flmstr2);
 282        decode_flmstr(fmba->flmstr2);
 283        printf("FLMSTR3:   0x%08x (GbE)\n", fmba->flmstr3);
 284        decode_flmstr(fmba->flmstr3);
 285}
 286
 287static void dump_fmsba(struct fmsba_t *fmsba)
 288{
 289        int i;
 290
 291        printf("Found Processor Strap Section\n");
 292        for (i = 0; i < 4; i++)
 293                printf("????:      0x%08x\n", fmsba->data[0]);
 294}
 295
 296static void dump_jid(uint32_t jid)
 297{
 298        printf("    SPI Component Device ID 1:          0x%02x\n",
 299               (jid >> 16) & 0xff);
 300        printf("    SPI Component Device ID 0:          0x%02x\n",
 301               (jid >> 8) & 0xff);
 302        printf("    SPI Component Vendor ID:            0x%02x\n",
 303               jid & 0xff);
 304}
 305
 306static void dump_vscc(uint32_t vscc)
 307{
 308        printf("    Lower Erase Opcode:                 0x%02x\n",
 309               vscc >> 24);
 310        printf("    Lower Write Enable on Write Status: 0x%02x\n",
 311               vscc & (1 << 20) ? 0x06 : 0x50);
 312        printf("    Lower Write Status Required:        %s\n",
 313               vscc & (1 << 19) ? "Yes" : "No");
 314        printf("    Lower Write Granularity:            %d bytes\n",
 315               vscc & (1 << 18) ? 64 : 1);
 316        printf("    Lower Block / Sector Erase Size:    ");
 317        switch ((vscc >> 16) & 0x3) {
 318        case 0:
 319                printf("256 Byte\n");
 320                break;
 321        case 1:
 322                printf("4KB\n");
 323                break;
 324        case 2:
 325                printf("8KB\n");
 326                break;
 327        case 3:
 328                printf("64KB\n");
 329                break;
 330        }
 331
 332        printf("    Upper Erase Opcode:                 0x%02x\n",
 333               (vscc >> 8) & 0xff);
 334        printf("    Upper Write Enable on Write Status: 0x%02x\n",
 335               vscc & (1 << 4) ? 0x06 : 0x50);
 336        printf("    Upper Write Status Required:        %s\n",
 337               vscc & (1 << 3) ? "Yes" : "No");
 338        printf("    Upper Write Granularity:            %d bytes\n",
 339               vscc & (1 << 2) ? 64 : 1);
 340        printf("    Upper Block / Sector Erase Size:    ");
 341        switch (vscc & 0x3) {
 342        case 0:
 343                printf("256 Byte\n");
 344                break;
 345        case 1:
 346                printf("4KB\n");
 347                break;
 348        case 2:
 349                printf("8KB\n");
 350                break;
 351        case 3:
 352                printf("64KB\n");
 353                break;
 354        }
 355}
 356
 357static void dump_vtba(struct vtba_t *vtba, int vtl)
 358{
 359        int i;
 360        int num = (vtl >> 1) < 8 ? (vtl >> 1) : 8;
 361
 362        printf("ME VSCC table:\n");
 363        for (i = 0; i < num; i++) {
 364                printf("  JID%d:  0x%08x\n", i, vtba->entry[i].jid);
 365                dump_jid(vtba->entry[i].jid);
 366                printf("  VSCC%d: 0x%08x\n", i, vtba->entry[i].vscc);
 367                dump_vscc(vtba->entry[i].vscc);
 368        }
 369        printf("\n");
 370}
 371
 372static void dump_oem(uint8_t *oem)
 373{
 374        int i, j;
 375        printf("OEM Section:\n");
 376        for (i = 0; i < 4; i++) {
 377                printf("%02x:", i << 4);
 378                for (j = 0; j < 16; j++)
 379                        printf(" %02x", oem[(i<<4)+j]);
 380                printf("\n");
 381        }
 382        printf("\n");
 383}
 384
 385/**
 386 * dump_fd() - Display a dump of the full flash description
 387 *
 388 * @image:      Pointer to image
 389 * @size:       Size of image in bytes
 390 * @return 0 if OK, -1 on error
 391 */
 392static int dump_fd(char *image, int size)
 393{
 394        struct fdbar_t *fdb = find_fd(image, size);
 395
 396        if (!fdb)
 397                return -1;
 398
 399        printf("FLMAP0:    0x%08x\n", fdb->flmap0);
 400        printf("  NR:      %d\n", (fdb->flmap0 >> 24) & 7);
 401        printf("  FRBA:    0x%x\n", ((fdb->flmap0 >> 16) & 0xff) << 4);
 402        printf("  NC:      %d\n", ((fdb->flmap0 >> 8) & 3) + 1);
 403        printf("  FCBA:    0x%x\n", ((fdb->flmap0) & 0xff) << 4);
 404
 405        printf("FLMAP1:    0x%08x\n", fdb->flmap1);
 406        printf("  ISL:     0x%02x\n", (fdb->flmap1 >> 24) & 0xff);
 407        printf("  FPSBA:   0x%x\n", ((fdb->flmap1 >> 16) & 0xff) << 4);
 408        printf("  NM:      %d\n", (fdb->flmap1 >> 8) & 3);
 409        printf("  FMBA:    0x%x\n", ((fdb->flmap1) & 0xff) << 4);
 410
 411        printf("FLMAP2:    0x%08x\n", fdb->flmap2);
 412        printf("  PSL:     0x%04x\n", (fdb->flmap2 >> 8) & 0xffff);
 413        printf("  FMSBA:   0x%x\n", ((fdb->flmap2) & 0xff) << 4);
 414
 415        printf("FLUMAP1:   0x%08x\n", fdb->flumap1);
 416        printf("  Intel ME VSCC Table Length (VTL):        %d\n",
 417               (fdb->flumap1 >> 8) & 0xff);
 418        printf("  Intel ME VSCC Table Base Address (VTBA): 0x%06x\n\n",
 419               (fdb->flumap1 & 0xff) << 4);
 420        dump_vtba((struct vtba_t *)
 421                        (image + ((fdb->flumap1 & 0xff) << 4)),
 422                        (fdb->flumap1 >> 8) & 0xff);
 423        dump_oem((uint8_t *)image + 0xf00);
 424        dump_frba((struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff)
 425                        << 4)));
 426        dump_fcba((struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4)));
 427        dump_fpsba((struct fpsba_t *)
 428                        (image + (((fdb->flmap1 >> 16) & 0xff) << 4)));
 429        dump_fmba((struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4)));
 430        dump_fmsba((struct fmsba_t *)(image + (((fdb->flmap2) & 0xff) << 4)));
 431
 432        return 0;
 433}
 434
 435/**
 436 * write_regions() - Write each region from an image to its own file
 437 *
 438 * The filename to use in each case is fixed - see region_filename()
 439 *
 440 * @image:      Pointer to image
 441 * @size:       Size of image in bytes
 442 * @return 0 if OK, -ve on error
 443 */
 444static int write_regions(char *image, int size)
 445{
 446        struct fdbar_t *fdb;
 447        struct frba_t *frba;
 448        int ret = 0;
 449        int i;
 450
 451        fdb =  find_fd(image, size);
 452        if (!fdb)
 453                return -1;
 454
 455        frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
 456
 457        for (i = 0; i < MAX_REGIONS; i++) {
 458                struct region_t region;
 459                int region_fd;
 460
 461                ret = get_region(frba, i, &region);
 462                if (ret)
 463                        return ret;
 464                dump_region(i, frba);
 465                if (region.size <= 0)
 466                        continue;
 467                region_fd = open(region_filename(i),
 468                                 O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
 469                                 S_IWUSR | S_IRGRP | S_IROTH);
 470                if (write(region_fd, image + region.base, region.size) !=
 471                                region.size) {
 472                        perror("Error while writing");
 473                        ret = -1;
 474                }
 475                close(region_fd);
 476        }
 477
 478        return ret;
 479}
 480
 481static int perror_fname(const char *fmt, const char *fname)
 482{
 483        char msg[strlen(fmt) + strlen(fname) + 1];
 484
 485        sprintf(msg, fmt, fname);
 486        perror(msg);
 487
 488        return -1;
 489}
 490
 491/**
 492 * write_image() - Write the image to a file
 493 *
 494 * @filename:   Filename to use for the image
 495 * @image:      Pointer to image
 496 * @size:       Size of image in bytes
 497 * @return 0 if OK, -ve on error
 498 */
 499static int write_image(char *filename, char *image, int size)
 500{
 501        int new_fd;
 502
 503        debug("Writing new image to %s\n", filename);
 504
 505        new_fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
 506                      S_IWUSR | S_IRGRP | S_IROTH);
 507        if (new_fd < 0)
 508                return perror_fname("Could not open file '%s'", filename);
 509        if (write(new_fd, image, size) != size)
 510                return perror_fname("Could not write file '%s'", filename);
 511        close(new_fd);
 512
 513        return 0;
 514}
 515
 516/**
 517 * set_spi_frequency() - Set the SPI frequency to use when booting
 518 *
 519 * Several frequencies are supported, some of which work with fast devices.
 520 * For SPI emulators, the slowest (SPI_FREQUENCY_20MHZ) is often used. The
 521 * Intel boot system uses this information somehow on boot.
 522 *
 523 * The image is updated with the supplied value
 524 *
 525 * @image:      Pointer to image
 526 * @size:       Size of image in bytes
 527 * @freq:       SPI frequency to use
 528 */
 529static void set_spi_frequency(char *image, int size, enum spi_frequency freq)
 530{
 531        struct fdbar_t *fdb = find_fd(image, size);
 532        struct fcba_t *fcba;
 533
 534        fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
 535
 536        /* clear bits 21-29 */
 537        fcba->flcomp &= ~0x3fe00000;
 538        /* Read ID and Read Status Clock Frequency */
 539        fcba->flcomp |= freq << 27;
 540        /* Write and Erase Clock Frequency */
 541        fcba->flcomp |= freq << 24;
 542        /* Fast Read Clock Frequency */
 543        fcba->flcomp |= freq << 21;
 544}
 545
 546/**
 547 * set_em100_mode() - Set a SPI frequency that will work with Dediprog EM100
 548 *
 549 * @image:      Pointer to image
 550 * @size:       Size of image in bytes
 551 */
 552static void set_em100_mode(char *image, int size)
 553{
 554        struct fdbar_t *fdb = find_fd(image, size);
 555        struct fcba_t *fcba;
 556
 557        fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
 558        fcba->flcomp &= ~(1 << 30);
 559        set_spi_frequency(image, size, SPI_FREQUENCY_20MHZ);
 560}
 561
 562/**
 563 * lock_descriptor() - Lock the NE descriptor so it cannot be updated
 564 *
 565 * @image:      Pointer to image
 566 * @size:       Size of image in bytes
 567 */
 568static void lock_descriptor(char *image, int size)
 569{
 570        struct fdbar_t *fdb = find_fd(image, size);
 571        struct fmba_t *fmba;
 572
 573        /*
 574         * TODO: Dynamically take Platform Data Region and GbE Region into
 575         * account.
 576         */
 577        fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
 578        fmba->flmstr1 = 0x0a0b0000;
 579        fmba->flmstr2 = 0x0c0d0000;
 580        fmba->flmstr3 = 0x08080118;
 581}
 582
 583/**
 584 * unlock_descriptor() - Lock the NE descriptor so it can be updated
 585 *
 586 * @image:      Pointer to image
 587 * @size:       Size of image in bytes
 588 */
 589static void unlock_descriptor(char *image, int size)
 590{
 591        struct fdbar_t *fdb = find_fd(image, size);
 592        struct fmba_t *fmba;
 593
 594        fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
 595        fmba->flmstr1 = 0xffff0000;
 596        fmba->flmstr2 = 0xffff0000;
 597        fmba->flmstr3 = 0x08080118;
 598}
 599
 600/**
 601 * open_for_read() - Open a file for reading
 602 *
 603 * @fname:      Filename to open
 604 * @sizep:      Returns file size in bytes
 605 * @return 0 if OK, -1 on error
 606 */
 607int open_for_read(const char *fname, int *sizep)
 608{
 609        int fd = open(fname, O_RDONLY);
 610        struct stat buf;
 611
 612        if (fd == -1)
 613                return perror_fname("Could not open file '%s'", fname);
 614        if (fstat(fd, &buf) == -1)
 615                return perror_fname("Could not stat file '%s'", fname);
 616        *sizep = buf.st_size;
 617        debug("File %s is %d bytes\n", fname, *sizep);
 618
 619        return fd;
 620}
 621
 622/**
 623 * inject_region() - Add a file to an image region
 624 *
 625 * This puts a file into a particular region of the flash. Several pre-defined
 626 * regions are used.
 627 *
 628 * @image:              Pointer to image
 629 * @size:               Size of image in bytes
 630 * @region_type:        Region where the file should be added
 631 * @region_fname:       Filename to add to the image
 632 * @return 0 if OK, -ve on error
 633 */
 634int inject_region(char *image, int size, int region_type, char *region_fname)
 635{
 636        struct fdbar_t *fdb = find_fd(image, size);
 637        struct region_t region;
 638        struct frba_t *frba;
 639        int region_size;
 640        int offset = 0;
 641        int region_fd;
 642        int ret;
 643
 644        if (!fdb)
 645                exit(EXIT_FAILURE);
 646        frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
 647
 648        ret = get_region(frba, region_type, &region);
 649        if (ret)
 650                return -1;
 651        if (region.size <= 0xfff) {
 652                fprintf(stderr, "Region %s is disabled in target. Not injecting.\n",
 653                        region_name(region_type));
 654                return -1;
 655        }
 656
 657        region_fd = open_for_read(region_fname, &region_size);
 658        if (region_fd < 0)
 659                return region_fd;
 660
 661        if ((region_size > region.size) ||
 662            ((region_type != 1) && (region_size > region.size))) {
 663                fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x)  bytes. Not injecting.\n",
 664                        region_name(region_type), region.size,
 665                        region.size, region_size, region_size);
 666                return -1;
 667        }
 668
 669        if ((region_type == 1) && (region_size < region.size)) {
 670                fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Padding before injecting.\n",
 671                        region_name(region_type), region.size,
 672                        region.size, region_size, region_size);
 673                offset = region.size - region_size;
 674                memset(image + region.base, 0xff, offset);
 675        }
 676
 677        if (size < region.base + offset + region_size) {
 678                fprintf(stderr, "Output file is too small. (%d < %d)\n",
 679                        size, region.base + offset + region_size);
 680                return -1;
 681        }
 682
 683        if (read(region_fd, image + region.base + offset, region_size)
 684                                                        != region_size) {
 685                perror("Could not read file");
 686                return -1;
 687        }
 688
 689        close(region_fd);
 690
 691        debug("Adding %s as the %s section\n", region_fname,
 692              region_name(region_type));
 693
 694        return 0;
 695}
 696
 697/**
 698 * write_data() - Write some raw data into a region
 699 *
 700 * This puts a file into a particular place in the flash, ignoring the
 701 * regions. Be careful not to overwrite something important.
 702 *
 703 * @image:              Pointer to image
 704 * @size:               Size of image in bytes
 705 * @addr:               x86 ROM address to put file. The ROM ends at
 706 *                      0xffffffff so use an address relative to that. For an
 707 *                      8MB ROM the start address is 0xfff80000.
 708 * @write_fname:        Filename to add to the image
 709 * @offset_uboot_top:   Offset of the top of U-Boot
 710 * @offset_uboot_start: Offset of the start of U-Boot
 711 * @return number of bytes written if OK, -ve on error
 712 */
 713static int write_data(char *image, int size, unsigned int addr,
 714                      const char *write_fname, int offset_uboot_top,
 715                      int offset_uboot_start)
 716{
 717        int write_fd, write_size;
 718        int offset;
 719
 720        write_fd = open_for_read(write_fname, &write_size);
 721        if (write_fd < 0)
 722                return write_fd;
 723
 724        offset = (uint32_t)(addr + size);
 725        if (offset_uboot_top) {
 726                if (offset_uboot_start < offset &&
 727                    offset_uboot_top >= offset) {
 728                        fprintf(stderr, "U-Boot image overlaps with region '%s'\n",
 729                                write_fname);
 730                        fprintf(stderr,
 731                                "U-Boot finishes at offset %x, file starts at %x\n",
 732                                offset_uboot_top, offset);
 733                        return -EXDEV;
 734                }
 735                if (offset_uboot_start > offset &&
 736                    offset_uboot_start <= offset + write_size) {
 737                        fprintf(stderr, "U-Boot image overlaps with region '%s'\n",
 738                                write_fname);
 739                        fprintf(stderr,
 740                                "U-Boot starts at offset %x, file finishes at %x\n",
 741                                offset_uboot_start, offset + write_size);
 742                        return -EXDEV;
 743                }
 744        }
 745        debug("Writing %s to offset %#x\n", write_fname, offset);
 746
 747        if (offset < 0 || offset + write_size > size) {
 748                fprintf(stderr, "Output file is too small. (%d < %d)\n",
 749                        size, offset + write_size);
 750                return -1;
 751        }
 752
 753        if (read(write_fd, image + offset, write_size) != write_size) {
 754                perror("Could not read file");
 755                return -1;
 756        }
 757
 758        close(write_fd);
 759
 760        return write_size;
 761}
 762
 763static int scan_ucode(const void *blob, char *ucode_base, int *countp,
 764                      const char **datap, int *data_sizep)
 765{
 766        const char *data = NULL;
 767        int node, count;
 768        int data_size;
 769        char *ucode;
 770
 771        for (node = 0, count = 0, ucode = ucode_base; node >= 0; count++) {
 772                node = fdt_node_offset_by_compatible(blob, node,
 773                                                     "intel,microcode");
 774                if (node < 0)
 775                        break;
 776
 777                data = fdt_getprop(blob, node, "data", &data_size);
 778                if (!data) {
 779                        debug("Missing microcode data in FDT '%s': %s\n",
 780                              fdt_get_name(blob, node, NULL),
 781                              fdt_strerror(data_size));
 782                        return -ENOENT;
 783                }
 784
 785                if (ucode_base)
 786                        memcpy(ucode, data, data_size);
 787                ucode += data_size;
 788        }
 789
 790        if (countp)
 791                *countp = count;
 792        if (datap)
 793                *datap = data;
 794        if (data_sizep)
 795                *data_sizep = data_size;
 796
 797        return ucode - ucode_base;
 798}
 799
 800static int remove_ucode(char *blob)
 801{
 802        int node, count;
 803        int ret;
 804
 805        /* Keep going until we find no more microcode to remove */
 806        do {
 807                for (node = 0, count = 0; node >= 0;) {
 808                        int ret;
 809
 810                        node = fdt_node_offset_by_compatible(blob, node,
 811                                                             "intel,microcode");
 812                        if (node < 0)
 813                                break;
 814
 815                        ret = fdt_delprop(blob, node, "data");
 816
 817                        /*
 818                         * -FDT_ERR_NOTFOUND means we already removed the
 819                         * data for this one, so we just continue.
 820                         * 0 means we did remove it, so offsets may have
 821                         * changed and we need to restart our scan.
 822                         * Anything else indicates an error we should report.
 823                         */
 824                        if (ret == -FDT_ERR_NOTFOUND)
 825                                continue;
 826                        else if (!ret)
 827                                node = 0;
 828                        else
 829                                return ret;
 830                }
 831        } while (count);
 832
 833        /* Pack down to remove excees space */
 834        ret = fdt_pack(blob);
 835        if (ret)
 836                return ret;
 837
 838        return fdt_totalsize(blob);
 839}
 840
 841static int write_ucode(char *image, int size, struct input_file *fdt,
 842                       int fdt_size, unsigned int ucode_ptr,
 843                       int collate_ucode)
 844{
 845        const char *data = NULL;
 846        char *ucode_buf;
 847        const void *blob;
 848        char *ucode_base;
 849        uint32_t *ptr;
 850        int ucode_size;
 851        int data_size;
 852        int offset;
 853        int count;
 854        int ret;
 855
 856        blob = (void *)image + (uint32_t)(fdt->addr + size);
 857
 858        debug("DTB at %lx\n", (char *)blob - image);
 859
 860        /* Find out about the micrcode we have */
 861        ucode_size = scan_ucode(blob, NULL, &count, &data, &data_size);
 862        if (ucode_size < 0)
 863                return ucode_size;
 864        if (!count) {
 865                debug("No microcode found in FDT\n");
 866                return -ENOENT;
 867        }
 868
 869        if (count > 1 && !collate_ucode) {
 870                fprintf(stderr,
 871                        "Cannot handle multiple microcode blocks - please use -C flag to collate them\n");
 872                return -EMLINK;
 873        }
 874
 875        /*
 876         * Collect the microcode into a buffer, remove it from the device
 877         * tree and place it immediately above the (now smaller) device tree.
 878         */
 879        if (collate_ucode && count > 1) {
 880                ucode_buf = malloc(ucode_size);
 881                if (!ucode_buf) {
 882                        fprintf(stderr,
 883                                "Out of memory for microcode (%d bytes)\n",
 884                                ucode_size);
 885                        return -ENOMEM;
 886                }
 887                ret = scan_ucode(blob, ucode_buf, NULL, NULL, NULL);
 888                if (ret < 0)
 889                        return ret;
 890
 891                /* Remove the microcode from the device tree */
 892                ret = remove_ucode((char *)blob);
 893                if (ret < 0) {
 894                        debug("Could not remove FDT microcode: %s\n",
 895                              fdt_strerror(ret));
 896                        return -EINVAL;
 897                }
 898                debug("Collated %d microcode block(s)\n", count);
 899                debug("Device tree reduced from %x to %x bytes\n",
 900                      fdt_size, ret);
 901                fdt_size = ret;
 902
 903                /*
 904                 * Place microcode area immediately above the FDT, aligned
 905                 * to a 16-byte boundary.
 906                 */
 907                ucode_base = (char *)(((unsigned long)blob + fdt_size + 15) &
 908                                ~15);
 909
 910                data = ucode_base;
 911                data_size = ucode_size;
 912                memcpy(ucode_base, ucode_buf, ucode_size);
 913                free(ucode_buf);
 914        }
 915
 916        offset = (uint32_t)(ucode_ptr + size);
 917        ptr = (void *)image + offset;
 918
 919        ptr[0] = (data - image) - size;
 920        ptr[1] = data_size;
 921        debug("Wrote microcode pointer at %x: addr=%x, size=%x\n", ucode_ptr,
 922              ptr[0], ptr[1]);
 923
 924        return (collate_ucode ? data + data_size : (char *)blob + fdt_size) -
 925                        image;
 926}
 927
 928/**
 929 * write_uboot() - Write U-Boot, device tree and microcode pointer
 930 *
 931 * This writes U-Boot into a place in the flash, followed by its device tree.
 932 * The microcode pointer is written so that U-Boot can find the microcode in
 933 * the device tree very early in boot.
 934 *
 935 * @image:      Pointer to image
 936 * @size:       Size of image in bytes
 937 * @uboot:      Input file information for u-boot.bin
 938 * @fdt:        Input file information for u-boot.dtb
 939 * @ucode_ptr:  Address in U-Boot where the microcode pointer should be placed
 940 * @return 0 if OK, -ve on error
 941 */
 942static int write_uboot(char *image, int size, struct input_file *uboot,
 943                       struct input_file *fdt, unsigned int ucode_ptr,
 944                       int collate_ucode, int *offset_uboot_top,
 945                       int *offset_uboot_start)
 946{
 947        int uboot_size, fdt_size;
 948        int uboot_top;
 949
 950        uboot_size = write_data(image, size, uboot->addr, uboot->fname, 0, 0);
 951        if (uboot_size < 0)
 952                return uboot_size;
 953        fdt->addr = uboot->addr + uboot_size;
 954        debug("U-Boot size %#x, FDT at %#x\n", uboot_size, fdt->addr);
 955        fdt_size = write_data(image, size, fdt->addr, fdt->fname, 0, 0);
 956        if (fdt_size < 0)
 957                return fdt_size;
 958
 959        uboot_top = (uint32_t)(fdt->addr + size) + fdt_size;
 960
 961        if (ucode_ptr) {
 962                uboot_top = write_ucode(image, size, fdt, fdt_size, ucode_ptr,
 963                                        collate_ucode);
 964                if (uboot_top < 0)
 965                        return uboot_top;
 966        }
 967
 968        if (offset_uboot_top && offset_uboot_start) {
 969                *offset_uboot_top = uboot_top;
 970                *offset_uboot_start = (uint32_t)(uboot->addr + size);
 971        }
 972
 973        return 0;
 974}
 975
 976static void print_version(void)
 977{
 978        printf("ifdtool v%s -- ", IFDTOOL_VERSION);
 979        printf("Copyright (C) 2014 Google Inc.\n\n");
 980        printf("SPDX-License-Identifier:        GPL-2.0+\n");
 981}
 982
 983static void print_usage(const char *name)
 984{
 985        printf("usage: %s [-vhdix?] <filename> [<outfile>]\n", name);
 986        printf("\n"
 987               "   -d | --dump:                      dump intel firmware descriptor\n"
 988               "   -x | --extract:                   extract intel fd modules\n"
 989               "   -i | --inject <region>:<module>   inject file <module> into region <region>\n"
 990               "   -w | --write <addr>:<file>        write file to appear at memory address <addr>\n"
 991               "                                     multiple files can be written simultaneously\n"
 992               "   -s | --spifreq <20|33|50>         set the SPI frequency\n"
 993               "   -e | --em100                      set SPI frequency to 20MHz and disable\n"
 994               "                                     Dual Output Fast Read Support\n"
 995               "   -l | --lock                       Lock firmware descriptor and ME region\n"
 996               "   -u | --unlock                     Unlock firmware descriptor and ME region\n"
 997               "   -r | --romsize                    Specify ROM size\n"
 998               "   -D | --write-descriptor <file>    Write descriptor at base\n"
 999               "   -c | --create                     Create a new empty image\n"
1000               "   -v | --version:                   print the version\n"
1001               "   -h | --help:                      print this help\n\n"
1002               "<region> is one of Descriptor, BIOS, ME, GbE, Platform\n"
1003               "\n");
1004}
1005
1006/**
1007 * get_two_words() - Convert a string into two words separated by :
1008 *
1009 * The supplied string is split at ':', two substrings are allocated and
1010 * returned.
1011 *
1012 * @str:        String to split
1013 * @firstp:     Returns first string
1014 * @secondp:    Returns second string
1015 * @return 0 if OK, -ve if @str does not have a :
1016 */
1017static int get_two_words(const char *str, char **firstp, char **secondp)
1018{
1019        const char *p;
1020
1021        p = strchr(str, ':');
1022        if (!p)
1023                return -1;
1024        *firstp = strdup(str);
1025        (*firstp)[p - str] = '\0';
1026        *secondp = strdup(p + 1);
1027
1028        return 0;
1029}
1030
1031int main(int argc, char *argv[])
1032{
1033        int opt, option_index = 0;
1034        int mode_dump = 0, mode_extract = 0, mode_inject = 0;
1035        int mode_spifreq = 0, mode_em100 = 0, mode_locked = 0;
1036        int mode_unlocked = 0, mode_write = 0, mode_write_descriptor = 0;
1037        int create = 0, collate_ucode = 0;
1038        char *region_type_string = NULL, *inject_fname = NULL;
1039        char *desc_fname = NULL, *addr_str = NULL;
1040        int region_type = -1, inputfreq = 0;
1041        enum spi_frequency spifreq = SPI_FREQUENCY_20MHZ;
1042        struct input_file input_file[WRITE_MAX], *ifile, *fdt = NULL;
1043        unsigned char wr_idx, wr_num = 0;
1044        int rom_size = -1;
1045        bool write_it;
1046        char *filename;
1047        char *outfile = NULL;
1048        struct stat buf;
1049        int size = 0;
1050        unsigned int ucode_ptr = 0;
1051        bool have_uboot = false;
1052        int bios_fd;
1053        char *image;
1054        int ret;
1055        static struct option long_options[] = {
1056                {"create", 0, NULL, 'c'},
1057                {"collate-microcode", 0, NULL, 'C'},
1058                {"dump", 0, NULL, 'd'},
1059                {"descriptor", 1, NULL, 'D'},
1060                {"em100", 0, NULL, 'e'},
1061                {"extract", 0, NULL, 'x'},
1062                {"fdt", 1, NULL, 'f'},
1063                {"inject", 1, NULL, 'i'},
1064                {"lock", 0, NULL, 'l'},
1065                {"microcode", 1, NULL, 'm'},
1066                {"romsize", 1, NULL, 'r'},
1067                {"spifreq", 1, NULL, 's'},
1068                {"unlock", 0, NULL, 'u'},
1069                {"uboot", 1, NULL, 'U'},
1070                {"write", 1, NULL, 'w'},
1071                {"version", 0, NULL, 'v'},
1072                {"help", 0, NULL, 'h'},
1073                {0, 0, 0, 0}
1074        };
1075
1076        while ((opt = getopt_long(argc, argv, "cCdD:ef:hi:lm:r:s:uU:vw:x?",
1077                                  long_options, &option_index)) != EOF) {
1078                switch (opt) {
1079                case 'c':
1080                        create = 1;
1081                        break;
1082                case 'C':
1083                        collate_ucode = 1;
1084                        break;
1085                case 'd':
1086                        mode_dump = 1;
1087                        break;
1088                case 'D':
1089                        mode_write_descriptor = 1;
1090                        desc_fname = optarg;
1091                        break;
1092                case 'e':
1093                        mode_em100 = 1;
1094                        break;
1095                case 'i':
1096                        if (get_two_words(optarg, &region_type_string,
1097                                          &inject_fname)) {
1098                                print_usage(argv[0]);
1099                                exit(EXIT_FAILURE);
1100                        }
1101                        if (!strcasecmp("Descriptor", region_type_string))
1102                                region_type = 0;
1103                        else if (!strcasecmp("BIOS", region_type_string))
1104                                region_type = 1;
1105                        else if (!strcasecmp("ME", region_type_string))
1106                                region_type = 2;
1107                        else if (!strcasecmp("GbE", region_type_string))
1108                                region_type = 3;
1109                        else if (!strcasecmp("Platform", region_type_string))
1110                                region_type = 4;
1111                        if (region_type == -1) {
1112                                fprintf(stderr, "No such region type: '%s'\n\n",
1113                                        region_type_string);
1114                                print_usage(argv[0]);
1115                                exit(EXIT_FAILURE);
1116                        }
1117                        mode_inject = 1;
1118                        break;
1119                case 'l':
1120                        mode_locked = 1;
1121                        break;
1122                case 'm':
1123                        ucode_ptr = strtoul(optarg, NULL, 0);
1124                        break;
1125                case 'r':
1126                        rom_size = strtol(optarg, NULL, 0);
1127                        debug("ROM size %d\n", rom_size);
1128                        break;
1129                case 's':
1130                        /* Parse the requested SPI frequency */
1131                        inputfreq = strtol(optarg, NULL, 0);
1132                        switch (inputfreq) {
1133                        case 20:
1134                                spifreq = SPI_FREQUENCY_20MHZ;
1135                                break;
1136                        case 33:
1137                                spifreq = SPI_FREQUENCY_33MHZ;
1138                                break;
1139                        case 50:
1140                                spifreq = SPI_FREQUENCY_50MHZ;
1141                                break;
1142                        default:
1143                                fprintf(stderr, "Invalid SPI Frequency: %d\n",
1144                                        inputfreq);
1145                                print_usage(argv[0]);
1146                                exit(EXIT_FAILURE);
1147                        }
1148                        mode_spifreq = 1;
1149                        break;
1150                case 'u':
1151                        mode_unlocked = 1;
1152                        break;
1153                case 'v':
1154                        print_version();
1155                        exit(EXIT_SUCCESS);
1156                        break;
1157                case 'w':
1158                case 'U':
1159                case 'f':
1160                        ifile = &input_file[wr_num];
1161                        mode_write = 1;
1162                        if (wr_num < WRITE_MAX) {
1163                                if (get_two_words(optarg, &addr_str,
1164                                                  &ifile->fname)) {
1165                                        print_usage(argv[0]);
1166                                        exit(EXIT_FAILURE);
1167                                }
1168                                ifile->addr = strtoll(optarg, NULL, 0);
1169                                ifile->type = opt == 'f' ? IF_fdt :
1170                                        opt == 'U' ? IF_uboot : IF_normal;
1171                                if (ifile->type == IF_fdt)
1172                                        fdt = ifile;
1173                                else if (ifile->type == IF_uboot)
1174                                        have_uboot = true;
1175                                wr_num++;
1176                        } else {
1177                                fprintf(stderr,
1178                                        "The number of files to write simultaneously exceeds the limitation (%d)\n",
1179                                        WRITE_MAX);
1180                        }
1181                        break;
1182                case 'x':
1183                        mode_extract = 1;
1184                        break;
1185                case 'h':
1186                case '?':
1187                default:
1188                        print_usage(argv[0]);
1189                        exit(EXIT_SUCCESS);
1190                        break;
1191                }
1192        }
1193
1194        if (mode_locked == 1 && mode_unlocked == 1) {
1195                fprintf(stderr, "Locking/Unlocking FD and ME are mutually exclusive\n");
1196                exit(EXIT_FAILURE);
1197        }
1198
1199        if (mode_inject == 1 && mode_write == 1) {
1200                fprintf(stderr, "Inject/Write are mutually exclusive\n");
1201                exit(EXIT_FAILURE);
1202        }
1203
1204        if ((mode_dump + mode_extract + mode_inject +
1205                (mode_spifreq | mode_em100 | mode_unlocked |
1206                 mode_locked)) > 1) {
1207                fprintf(stderr, "You may not specify more than one mode.\n\n");
1208                print_usage(argv[0]);
1209                exit(EXIT_FAILURE);
1210        }
1211
1212        if ((mode_dump + mode_extract + mode_inject + mode_spifreq +
1213             mode_em100 + mode_locked + mode_unlocked + mode_write +
1214             mode_write_descriptor) == 0 && !create) {
1215                fprintf(stderr, "You need to specify a mode.\n\n");
1216                print_usage(argv[0]);
1217                exit(EXIT_FAILURE);
1218        }
1219
1220        if (create && rom_size == -1) {
1221                fprintf(stderr, "You need to specify a rom size when creating.\n\n");
1222                exit(EXIT_FAILURE);
1223        }
1224
1225        if (optind + 1 != argc) {
1226                fprintf(stderr, "You need to specify a file.\n\n");
1227                print_usage(argv[0]);
1228                exit(EXIT_FAILURE);
1229        }
1230
1231        if (have_uboot && !fdt) {
1232                fprintf(stderr,
1233                        "You must supply a device tree file for U-Boot\n\n");
1234                print_usage(argv[0]);
1235                exit(EXIT_FAILURE);
1236        }
1237
1238        filename = argv[optind];
1239        if (optind + 2 != argc)
1240                outfile = argv[optind + 1];
1241
1242        if (create)
1243                bios_fd = open(filename, O_WRONLY | O_CREAT, 0666);
1244        else
1245                bios_fd = open(filename, outfile ? O_RDONLY : O_RDWR);
1246
1247        if (bios_fd == -1) {
1248                perror("Could not open file");
1249                exit(EXIT_FAILURE);
1250        }
1251
1252        if (!create) {
1253                if (fstat(bios_fd, &buf) == -1) {
1254                        perror("Could not stat file");
1255                        exit(EXIT_FAILURE);
1256                }
1257                size = buf.st_size;
1258        }
1259
1260        debug("File %s is %d bytes\n", filename, size);
1261
1262        if (rom_size == -1)
1263                rom_size = size;
1264
1265        image = malloc(rom_size);
1266        if (!image) {
1267                printf("Out of memory.\n");
1268                exit(EXIT_FAILURE);
1269        }
1270
1271        memset(image, '\xff', rom_size);
1272        if (!create && read(bios_fd, image, size) != size) {
1273                perror("Could not read file");
1274                exit(EXIT_FAILURE);
1275        }
1276        if (size != rom_size) {
1277                debug("ROM size changed to %d bytes\n", rom_size);
1278                size = rom_size;
1279        }
1280
1281        write_it = true;
1282        ret = 0;
1283        if (mode_dump) {
1284                ret = dump_fd(image, size);
1285                write_it = false;
1286        }
1287
1288        if (mode_extract) {
1289                ret = write_regions(image, size);
1290                write_it = false;
1291        }
1292
1293        if (mode_write_descriptor)
1294                ret = write_data(image, size, -size, desc_fname, 0, 0);
1295
1296        if (mode_inject)
1297                ret = inject_region(image, size, region_type, inject_fname);
1298
1299        if (mode_write) {
1300                int offset_uboot_top = 0;
1301                int offset_uboot_start = 0;
1302
1303                for (wr_idx = 0; wr_idx < wr_num; wr_idx++) {
1304                        ifile = &input_file[wr_idx];
1305                        if (ifile->type == IF_fdt) {
1306                                continue;
1307                        } else if (ifile->type == IF_uboot) {
1308                                ret = write_uboot(image, size, ifile, fdt,
1309                                                  ucode_ptr, collate_ucode,
1310                                                  &offset_uboot_top,
1311                                                  &offset_uboot_start);
1312                        } else {
1313                                ret = write_data(image, size, ifile->addr,
1314                                                 ifile->fname, offset_uboot_top,
1315                                                 offset_uboot_start);
1316                        }
1317                        if (ret < 0)
1318                                break;
1319                }
1320        }
1321
1322        if (mode_spifreq)
1323                set_spi_frequency(image, size, spifreq);
1324
1325        if (mode_em100)
1326                set_em100_mode(image, size);
1327
1328        if (mode_locked)
1329                lock_descriptor(image, size);
1330
1331        if (mode_unlocked)
1332                unlock_descriptor(image, size);
1333
1334        if (write_it) {
1335                if (outfile) {
1336                        ret = write_image(outfile, image, size);
1337                } else {
1338                        if (lseek(bios_fd, 0, SEEK_SET)) {
1339                                perror("Error while seeking");
1340                                ret = -1;
1341                        }
1342                        if (write(bios_fd, image, size) != size) {
1343                                perror("Error while writing");
1344                                ret = -1;
1345                        }
1346                }
1347        }
1348
1349        free(image);
1350        close(bios_fd);
1351
1352        return ret < 0 ? 1 : 0;
1353}
1354