1
2
3
4
5
6
7
8
9
10
11
12#include <common.h>
13#include <asm/emif.h>
14#include <asm/arch/clock.h>
15#include <asm/arch/sys_proto.h>
16#include <asm/omap_common.h>
17#include <asm/utils.h>
18#include <linux/compiler.h>
19
20static int emif1_enabled = -1, emif2_enabled = -1;
21
22void set_lpmode_selfrefresh(u32 base)
23{
24 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25 u32 reg;
26
27 reg = readl(&emif->emif_pwr_mgmt_ctrl);
28 reg &= ~EMIF_REG_LP_MODE_MASK;
29 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30 reg &= ~EMIF_REG_SR_TIM_MASK;
31 writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33
34 readl(&emif->emif_pwr_mgmt_ctrl);
35}
36
37void force_emif_self_refresh()
38{
39 set_lpmode_selfrefresh(EMIF1_BASE);
40 set_lpmode_selfrefresh(EMIF2_BASE);
41}
42
43inline u32 emif_num(u32 base)
44{
45 if (base == EMIF1_BASE)
46 return 1;
47 else if (base == EMIF2_BASE)
48 return 2;
49 else
50 return 0;
51}
52
53static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
54{
55 u32 mr;
56 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
57
58 mr_addr |= cs << EMIF_REG_CS_SHIFT;
59 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
60 if (omap_revision() == OMAP4430_ES2_0)
61 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
62 else
63 mr = readl(&emif->emif_lpddr2_mode_reg_data);
64 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
65 cs, mr_addr, mr);
66 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
67 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
68 ((mr & 0xff000000) >> 24) == (mr & 0xff))
69 return mr & 0xff;
70 else
71 return mr;
72}
73
74static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
75{
76 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
77
78 mr_addr |= cs << EMIF_REG_CS_SHIFT;
79 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
80 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
81}
82
83void emif_reset_phy(u32 base)
84{
85 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
86 u32 iodft;
87
88 iodft = readl(&emif->emif_iodft_tlgc);
89 iodft |= EMIF_REG_RESET_PHY_MASK;
90 writel(iodft, &emif->emif_iodft_tlgc);
91}
92
93static void do_lpddr2_init(u32 base, u32 cs)
94{
95 u32 mr_addr;
96 const struct lpddr2_mr_regs *mr_regs;
97
98 get_lpddr2_mr_regs(&mr_regs);
99
100 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
101 ;
102 set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
103
104
105
106
107
108 sdelay(2000);
109
110 set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
111 set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
112
113
114
115
116
117 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
118 set_mr(base, cs, mr_addr, mr_regs->mr2);
119
120 if (mr_regs->mr3 > 0)
121 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
122}
123
124static void lpddr2_init(u32 base, const struct emif_regs *regs)
125{
126 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
127
128
129 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
130
131
132
133
134
135 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
136
137
138
139
140
141 writel(regs->sdram_config_init, &emif->emif_sdram_config);
142 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
143
144 do_ext_phy_settings(base, regs);
145
146 do_lpddr2_init(base, CS0);
147 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
148 do_lpddr2_init(base, CS1);
149
150 writel(regs->sdram_config, &emif->emif_sdram_config);
151 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
152
153
154 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
155
156 }
157
158__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
159{
160}
161
162void emif_update_timings(u32 base, const struct emif_regs *regs)
163{
164 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
165
166 if (!is_dra7xx())
167 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
168 else
169 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
170
171 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
172 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
173 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
174 if (omap_revision() == OMAP4430_ES1_0) {
175
176 writel(0, &emif->emif_pwr_mgmt_ctrl);
177 } else {
178 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
179 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
180 }
181 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
182 writel(regs->zq_config, &emif->emif_zq_config);
183 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
184 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
185
186 if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
187 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
188 &emif->emif_l3_config);
189 } else if (omap_revision() >= OMAP4460_ES1_0) {
190 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
191 &emif->emif_l3_config);
192 } else {
193 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
194 &emif->emif_l3_config);
195 }
196}
197
198#ifndef CONFIG_OMAP44XX
199static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
200{
201 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
202
203
204 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
205 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
206 __udelay(130);
207
208
209
210
211
212
213
214
215
216 writel(regs->emif_ddr_phy_ctlr_1,
217 &emif->emif_ddr_phy_ctrl_1);
218
219 writel(regs->emif_ddr_phy_ctlr_1,
220 &emif->emif_ddr_phy_ctrl_1_shdw);
221 __udelay(130);
222
223 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
224 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
225
226
227 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
228
229
230 readl(&emif->emif_rd_wr_lvl_ctl);
231 __udelay(130);
232
233
234 config_data_eye_leveling_samples(base);
235
236
237
238
239
240 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
241 &emif->emif_rd_wr_lvl_ctl);
242
243 __udelay(130);
244
245
246 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
247 __udelay(130);
248}
249
250static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
251{
252 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
253 u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
254 u32 reg, i, phy;
255
256 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
257 phy = readl(&emif->emif_ddr_phy_ctrl_1);
258
259
260 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
261 if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
262 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
263 reg = readl(emif_phy_status++);
264 writel(reg, emif_ext_phy_ctrl_reg++);
265 writel(reg, emif_ext_phy_ctrl_reg++);
266 }
267
268
269 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
270 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[12];
271 if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
272 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
273 reg = readl(emif_phy_status++);
274 writel(reg, emif_ext_phy_ctrl_reg++);
275 writel(reg, emif_ext_phy_ctrl_reg++);
276 }
277
278
279 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
280 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[17];
281 if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
282 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
283 reg = readl(emif_phy_status++);
284 writel(reg, emif_ext_phy_ctrl_reg++);
285 writel(reg, emif_ext_phy_ctrl_reg++);
286 }
287
288
289 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
290 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
291 writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
292}
293
294static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
295{
296 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
297
298
299 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
300 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
301 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
302
303 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
304 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
305 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
306
307
308 clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
309 EMIF_REG_INITREF_DIS_MASK);
310
311
312 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
313
314 __udelay(300);
315
316
317 if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
318 printf("Leveling timeout on EMIF%d\n", emif_num(base));
319 return;
320 }
321
322
323 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
324
325 debug("HW leveling success\n");
326
327
328
329
330 update_hwleveling_output(base, regs);
331}
332
333static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
334{
335 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
336
337 if (warm_reset()) {
338 emif_reset_phy(base);
339 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
340 }
341 do_ext_phy_settings(base, regs);
342
343 writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
344 &emif->emif_sdram_ref_ctrl);
345
346 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
347 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
348 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
349
350 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
351 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
352 writel(regs->zq_config, &emif->emif_zq_config);
353 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
354 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
355 writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
356
357 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
358 writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
359
360 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
361
362 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
363 writel(regs->sdram_config_init, &emif->emif_sdram_config);
364
365 __udelay(1000);
366
367 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
368
369 if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
370 dra7_ddr3_leveling(base, regs);
371}
372
373static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
374{
375 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
376
377 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
378 writel(regs->sdram_config_init, &emif->emif_sdram_config);
379
380
381
382
383
384
385 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
386
387
388 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
389 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
390 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
391
392 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
393
394 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
395 writel(regs->sdram_config_init, &emif->emif_sdram_config);
396 do_ext_phy_settings(base, regs);
397
398 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
399 omap5_ddr3_leveling(base, regs);
400}
401
402static void ddr3_init(u32 base, const struct emif_regs *regs)
403{
404 if (is_omap54xx())
405 omap5_ddr3_init(base, regs);
406 else
407 dra7_ddr3_init(base, regs);
408}
409#endif
410
411#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
412#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
413
414
415
416
417
418const struct lpddr2_addressing addressing_table[] = {
419
420 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },
421 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },
422 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },
423 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },
424 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },
425 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },
426 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },
427 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },
428 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },
429 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },
430};
431
432static const u32 lpddr2_density_2_size_in_mbytes[] = {
433 8,
434 16,
435 32,
436 64,
437 128,
438 256,
439 512,
440 1024,
441 2048,
442 4096
443};
444
445
446
447
448
449static void set_ddr_clk_period(u32 freq)
450{
451
452
453
454
455 *T_num = 1000000000;
456 *T_den = freq;
457 cancel_out(T_num, T_den, 200);
458
459}
460
461
462
463
464static inline u32 ns_2_cycles(u32 ns)
465{
466 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
467}
468
469
470
471
472
473
474static inline u32 ns_x2_2_cycles(u32 ns)
475{
476 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
477}
478
479
480
481
482
483s8 addressing_table_index(u8 type, u8 density, u8 width)
484{
485 u8 index;
486 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
487 return -1;
488
489
490
491
492
493
494
495
496 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
497 index = ADDR_TABLE_INDEX1GS2;
498 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
499 index = ADDR_TABLE_INDEX2GS2;
500 else
501 index = density;
502
503 debug("emif: addressing table index %d\n", index);
504
505 return index;
506}
507
508
509
510
511
512static const struct lpddr2_ac_timings *get_timings_table(const struct
513 lpddr2_ac_timings const *const *device_timings,
514 u32 freq)
515{
516 u32 i, temp, freq_nearest;
517 const struct lpddr2_ac_timings *timings = 0;
518
519 emif_assert(freq <= MAX_LPDDR2_FREQ);
520 emif_assert(device_timings);
521
522
523
524
525 freq_nearest = MAX_LPDDR2_FREQ;
526
527
528
529
530
531 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
532 temp = device_timings[i]->max_freq;
533 if ((temp >= freq) && (temp <= freq_nearest)) {
534 freq_nearest = temp;
535 timings = device_timings[i];
536 }
537 }
538 debug("emif: timings table: %d\n", freq_nearest);
539 return timings;
540}
541
542
543
544
545
546
547
548
549
550static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
551 const struct lpddr2_device_details *cs1_device,
552 const struct lpddr2_addressing *addressing,
553 u8 RL)
554{
555 u32 config_reg = 0;
556
557 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
558 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
559 EMIF_REG_IBANK_POS_SHIFT;
560
561 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
562
563 config_reg |= RL << EMIF_REG_CL_SHIFT;
564
565 config_reg |= addressing->row_sz[cs0_device->io_width] <<
566 EMIF_REG_ROWSIZE_SHIFT;
567
568 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
569
570 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
571 EMIF_REG_EBANK_SHIFT;
572
573 config_reg |= addressing->col_sz[cs0_device->io_width] <<
574 EMIF_REG_PAGESIZE_SHIFT;
575
576 return config_reg;
577}
578
579static u32 get_sdram_ref_ctrl(u32 freq,
580 const struct lpddr2_addressing *addressing)
581{
582 u32 ref_ctrl = 0, val = 0, freq_khz;
583 freq_khz = freq / 1000;
584
585
586
587
588 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
589 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
590
591 return ref_ctrl;
592}
593
594static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
595 const struct lpddr2_min_tck *min_tck,
596 const struct lpddr2_addressing *addressing)
597{
598 u32 tim1 = 0, val = 0;
599 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
600 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
601
602 if (addressing->num_banks == BANKS8)
603 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
604 (4 * (*T_num)) - 1;
605 else
606 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
607
608 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
609
610 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
611 tim1 |= val << EMIF_REG_T_RC_SHIFT;
612
613 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
614 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
615
616 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
617 tim1 |= val << EMIF_REG_T_WR_SHIFT;
618
619 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
620 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
621
622 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
623 tim1 |= val << EMIF_REG_T_RP_SHIFT;
624
625 return tim1;
626}
627
628static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
629 const struct lpddr2_min_tck *min_tck)
630{
631 u32 tim2 = 0, val = 0;
632 val = max(min_tck->tCKE, timings->tCKE) - 1;
633 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
634
635 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
636 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
637
638
639
640
641
642 val = ns_2_cycles(timings->tXSR) - 1;
643 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
644 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
645
646 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
647 tim2 |= val << EMIF_REG_T_XP_SHIFT;
648
649 return tim2;
650}
651
652static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
653 const struct lpddr2_min_tck *min_tck,
654 const struct lpddr2_addressing *addressing)
655{
656 u32 tim3 = 0, val = 0;
657 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
658 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
659
660 val = ns_2_cycles(timings->tRFCab) - 1;
661 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
662
663 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
664 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
665
666 val = ns_2_cycles(timings->tZQCS) - 1;
667 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
668
669 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
670 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
671
672 return tim3;
673}
674
675static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
676 const struct lpddr2_addressing *addressing,
677 u8 volt_ramp)
678{
679 u32 zq = 0, val = 0;
680 if (volt_ramp)
681 val =
682 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
683 addressing->t_REFI_us_x10;
684 else
685 val =
686 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
687 addressing->t_REFI_us_x10;
688 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
689
690 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
691
692 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
693
694 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
695
696
697
698
699
700
701
702
703
704 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
705
706 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
707
708 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
709
710 return zq;
711}
712
713static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
714 const struct lpddr2_addressing *addressing,
715 u8 is_derated)
716{
717 u32 alert = 0, interval;
718 interval =
719 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
720 if (is_derated)
721 interval *= 4;
722 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
723
724 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
725
726 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
727
728 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
729
730 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
731
732 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
733
734 return alert;
735}
736
737static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
738{
739 u32 idle = 0, val = 0;
740 if (volt_ramp)
741 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
742 else
743
744 val = 0x1FF;
745 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
746
747 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
748
749 return idle;
750}
751
752static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
753{
754 u32 phy = 0, val = 0;
755
756 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
757
758 if (freq <= 100000000)
759 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
760 else if (freq <= 200000000)
761 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
762 else
763 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
764 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
765
766
767 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
768 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
769
770 return phy;
771}
772
773static u32 get_emif_mem_size(u32 base)
774{
775 u32 size_mbytes = 0, temp;
776 struct emif_device_details dev_details;
777 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
778 u32 emif_nr = emif_num(base);
779
780 emif_reset_phy(base);
781 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
782 &cs0_dev_details);
783 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
784 &cs1_dev_details);
785 emif_reset_phy(base);
786
787 if (dev_details.cs0_device_details) {
788 temp = dev_details.cs0_device_details->density;
789 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
790 }
791
792 if (dev_details.cs1_device_details) {
793 temp = dev_details.cs1_device_details->density;
794 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
795 }
796
797 return size_mbytes << 20;
798}
799
800
801u32 get_dmm_section_size_map(u32 section_size)
802{
803
804
805
806
807
808
809
810
811
812
813
814 section_size >>= 24;
815 return log_2_n_round_down(section_size);
816}
817
818static void emif_calculate_regs(
819 const struct emif_device_details *emif_dev_details,
820 u32 freq, struct emif_regs *regs)
821{
822 u32 temp, sys_freq;
823 const struct lpddr2_addressing *addressing;
824 const struct lpddr2_ac_timings *timings;
825 const struct lpddr2_min_tck *min_tck;
826 const struct lpddr2_device_details *cs0_dev_details =
827 emif_dev_details->cs0_device_details;
828 const struct lpddr2_device_details *cs1_dev_details =
829 emif_dev_details->cs1_device_details;
830 const struct lpddr2_device_timings *cs0_dev_timings =
831 emif_dev_details->cs0_device_timings;
832
833 emif_assert(emif_dev_details);
834 emif_assert(regs);
835
836
837
838
839
840 emif_assert(cs0_dev_details);
841 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
842
843
844
845
846 emif_assert((cs1_dev_details == NULL) ||
847 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
848 (cs0_dev_details->type == cs1_dev_details->type));
849 emif_assert(freq <= MAX_LPDDR2_FREQ);
850
851 set_ddr_clk_period(freq);
852
853
854
855
856
857
858
859 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
860 emif_assert(timings);
861 min_tck = cs0_dev_timings->min_tck;
862
863 temp = addressing_table_index(cs0_dev_details->type,
864 cs0_dev_details->density,
865 cs0_dev_details->io_width);
866
867 emif_assert((temp >= 0));
868 addressing = &(addressing_table[temp]);
869 emif_assert(addressing);
870
871 sys_freq = get_sys_clk_freq();
872
873 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
874 cs1_dev_details,
875 addressing, RL_BOOT);
876
877 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
878 cs1_dev_details,
879 addressing, RL_FINAL);
880
881 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
882
883 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
884
885 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
886
887 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
888
889 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
890
891 regs->temp_alert_config =
892 get_temp_alert_config(cs1_dev_details, addressing, 0);
893
894 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
895 LPDDR2_VOLTAGE_STABLE);
896
897 regs->emif_ddr_phy_ctlr_1_init =
898 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
899
900 regs->emif_ddr_phy_ctlr_1 =
901 get_ddr_phy_ctrl_1(freq, RL_FINAL);
902
903 regs->freq = freq;
904
905 print_timing_reg(regs->sdram_config_init);
906 print_timing_reg(regs->sdram_config);
907 print_timing_reg(regs->ref_ctrl);
908 print_timing_reg(regs->sdram_tim1);
909 print_timing_reg(regs->sdram_tim2);
910 print_timing_reg(regs->sdram_tim3);
911 print_timing_reg(regs->read_idle_ctrl);
912 print_timing_reg(regs->temp_alert_config);
913 print_timing_reg(regs->zq_config);
914 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
915 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
916}
917#endif
918
919#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
920const char *get_lpddr2_type(u8 type_id)
921{
922 switch (type_id) {
923 case LPDDR2_TYPE_S4:
924 return "LPDDR2-S4";
925 case LPDDR2_TYPE_S2:
926 return "LPDDR2-S2";
927 default:
928 return NULL;
929 }
930}
931
932const char *get_lpddr2_io_width(u8 width_id)
933{
934 switch (width_id) {
935 case LPDDR2_IO_WIDTH_8:
936 return "x8";
937 case LPDDR2_IO_WIDTH_16:
938 return "x16";
939 case LPDDR2_IO_WIDTH_32:
940 return "x32";
941 default:
942 return NULL;
943 }
944}
945
946const char *get_lpddr2_manufacturer(u32 manufacturer)
947{
948 switch (manufacturer) {
949 case LPDDR2_MANUFACTURER_SAMSUNG:
950 return "Samsung";
951 case LPDDR2_MANUFACTURER_QIMONDA:
952 return "Qimonda";
953 case LPDDR2_MANUFACTURER_ELPIDA:
954 return "Elpida";
955 case LPDDR2_MANUFACTURER_ETRON:
956 return "Etron";
957 case LPDDR2_MANUFACTURER_NANYA:
958 return "Nanya";
959 case LPDDR2_MANUFACTURER_HYNIX:
960 return "Hynix";
961 case LPDDR2_MANUFACTURER_MOSEL:
962 return "Mosel";
963 case LPDDR2_MANUFACTURER_WINBOND:
964 return "Winbond";
965 case LPDDR2_MANUFACTURER_ESMT:
966 return "ESMT";
967 case LPDDR2_MANUFACTURER_SPANSION:
968 return "Spansion";
969 case LPDDR2_MANUFACTURER_SST:
970 return "SST";
971 case LPDDR2_MANUFACTURER_ZMOS:
972 return "ZMOS";
973 case LPDDR2_MANUFACTURER_INTEL:
974 return "Intel";
975 case LPDDR2_MANUFACTURER_NUMONYX:
976 return "Numonyx";
977 case LPDDR2_MANUFACTURER_MICRON:
978 return "Micron";
979 default:
980 return NULL;
981 }
982}
983
984static void display_sdram_details(u32 emif_nr, u32 cs,
985 struct lpddr2_device_details *device)
986{
987 const char *mfg_str;
988 const char *type_str;
989 char density_str[10];
990 u32 density;
991
992 debug("EMIF%d CS%d\t", emif_nr, cs);
993
994 if (!device) {
995 debug("None\n");
996 return;
997 }
998
999 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1000 type_str = get_lpddr2_type(device->type);
1001
1002 density = lpddr2_density_2_size_in_mbytes[device->density];
1003 if ((density / 1024 * 1024) == density) {
1004 density /= 1024;
1005 sprintf(density_str, "%d GB", density);
1006 } else
1007 sprintf(density_str, "%d MB", density);
1008 if (mfg_str && type_str)
1009 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1010}
1011
1012static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1013 struct lpddr2_device_details *lpddr2_device)
1014{
1015 u32 mr = 0, temp;
1016
1017 mr = get_mr(base, cs, LPDDR2_MR0);
1018 if (mr > 0xFF) {
1019
1020 return 0;
1021 }
1022
1023 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1024 if (temp) {
1025
1026 return 0;
1027 }
1028 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1029
1030 if (temp) {
1031
1032 return 0;
1033 }
1034
1035 mr = get_mr(base, cs, LPDDR2_MR4);
1036 if (mr > 0xFF) {
1037
1038 return 0;
1039 }
1040
1041 mr = get_mr(base, cs, LPDDR2_MR5);
1042 if (mr > 0xFF) {
1043
1044 return 0;
1045 }
1046
1047 if (!get_lpddr2_manufacturer(mr)) {
1048
1049 return 0;
1050 }
1051 lpddr2_device->manufacturer = mr;
1052
1053 mr = get_mr(base, cs, LPDDR2_MR6);
1054 if (mr >= 0xFF) {
1055
1056 return 0;
1057 }
1058
1059 mr = get_mr(base, cs, LPDDR2_MR7);
1060 if (mr >= 0xFF) {
1061
1062 return 0;
1063 }
1064
1065 mr = get_mr(base, cs, LPDDR2_MR8);
1066 if (mr >= 0xFF) {
1067
1068 return 0;
1069 }
1070
1071 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1072 if (!get_lpddr2_type(temp)) {
1073
1074 return 0;
1075 }
1076 lpddr2_device->type = temp;
1077
1078 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1079 if (temp > LPDDR2_DENSITY_32Gb) {
1080
1081 return 0;
1082 }
1083 lpddr2_device->density = temp;
1084
1085 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1086 if (!get_lpddr2_io_width(temp)) {
1087
1088 return 0;
1089 }
1090 lpddr2_device->io_width = temp;
1091
1092
1093
1094
1095
1096 return 1;
1097}
1098
1099struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1100 struct lpddr2_device_details *lpddr2_dev_details)
1101{
1102 u32 phy;
1103 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1104
1105 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1106
1107 if (!lpddr2_dev_details)
1108 return NULL;
1109
1110
1111 if (!(running_from_sdram() || warm_reset())) {
1112 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1113 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1114 }
1115
1116 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1117 return NULL;
1118
1119 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1120
1121 return lpddr2_dev_details;
1122}
1123#endif
1124
1125static void do_sdram_init(u32 base)
1126{
1127 const struct emif_regs *regs;
1128 u32 in_sdram, emif_nr;
1129
1130 debug(">>do_sdram_init() %x\n", base);
1131
1132 in_sdram = running_from_sdram();
1133 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1134
1135#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1136 emif_get_reg_dump(emif_nr, ®s);
1137 if (!regs) {
1138 debug("EMIF: reg dump not provided\n");
1139 return;
1140 }
1141#else
1142
1143
1144
1145
1146 struct emif_device_details dev_details;
1147 struct emif_regs calculated_regs;
1148
1149
1150
1151
1152
1153
1154 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1155 emif_reset_phy(base);
1156 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1157 &cs0_dev_details);
1158 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1159 &cs1_dev_details);
1160 emif_reset_phy(base);
1161
1162
1163 if (!dev_details.cs0_device_details &&
1164 !dev_details.cs1_device_details) {
1165 return;
1166 }
1167
1168
1169
1170
1171
1172
1173
1174 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1175 &dev_details.cs1_device_timings);
1176
1177
1178 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1179 regs = &calculated_regs;
1180#endif
1181
1182
1183
1184
1185
1186
1187 if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1188 if (emif_sdram_type(regs->sdram_config) ==
1189 EMIF_SDRAM_TYPE_LPDDR2)
1190 lpddr2_init(base, regs);
1191#ifndef CONFIG_OMAP44XX
1192 else
1193 ddr3_init(base, regs);
1194#endif
1195 }
1196#ifdef CONFIG_OMAP54X
1197 if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1198 EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1199 set_lpmode_selfrefresh(base);
1200 emif_reset_phy(base);
1201 omap5_ddr3_leveling(base, regs);
1202 }
1203#endif
1204
1205
1206 emif_update_timings(base, regs);
1207
1208 debug("<<do_sdram_init() %x\n", base);
1209}
1210
1211void emif_post_init_config(u32 base)
1212{
1213 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1214 u32 omap_rev = omap_revision();
1215
1216
1217 if (omap_rev == OMAP4430_ES2_0)
1218 emif_reset_phy(base);
1219
1220
1221 if (omap_rev == OMAP4430_ES1_0)
1222 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1223}
1224
1225void dmm_init(u32 base)
1226{
1227 const struct dmm_lisa_map_regs *lisa_map_regs;
1228 u32 i, section, valid;
1229
1230#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1231 emif_get_dmm_regs(&lisa_map_regs);
1232#else
1233 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1234 u32 section_cnt, sys_addr;
1235 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1236
1237 mapped_size = 0;
1238 section_cnt = 3;
1239 sys_addr = CONFIG_SYS_SDRAM_BASE;
1240 emif1_size = get_emif_mem_size(EMIF1_BASE);
1241 emif2_size = get_emif_mem_size(EMIF2_BASE);
1242 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1243
1244 if (!emif1_size && !emif2_size)
1245 return;
1246
1247
1248 if (emif1_size && emif2_size) {
1249 mapped_size = min(emif1_size, emif2_size);
1250 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1251 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1252
1253 section_map |= (sys_addr >> 24) <<
1254 EMIF_SYS_ADDR_SHIFT;
1255 section_map |= get_dmm_section_size_map(mapped_size * 2)
1256 << EMIF_SYS_SIZE_SHIFT;
1257 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1258 emif1_size -= mapped_size;
1259 emif2_size -= mapped_size;
1260 sys_addr += (mapped_size * 2);
1261 section_cnt--;
1262 }
1263
1264
1265
1266
1267
1268 if (emif1_size) {
1269 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1270 section_map |= get_dmm_section_size_map(emif1_size)
1271 << EMIF_SYS_SIZE_SHIFT;
1272
1273 section_map |= (mapped_size >> 24) <<
1274 EMIF_SDRC_ADDR_SHIFT;
1275
1276 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1277 section_cnt--;
1278 }
1279 if (emif2_size) {
1280 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1281 section_map |= get_dmm_section_size_map(emif2_size) <<
1282 EMIF_SYS_SIZE_SHIFT;
1283
1284 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1285
1286 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1287 section_cnt--;
1288 }
1289
1290 if (section_cnt == 2) {
1291
1292 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1293 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1294 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1295 } else {
1296
1297 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1298 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1299 }
1300
1301
1302 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1303
1304 if (omap_revision() >= OMAP4460_ES1_0)
1305 lis_map_regs_calculated.is_ma_present = 1;
1306
1307 lisa_map_regs = &lis_map_regs_calculated;
1308#endif
1309 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1310 (struct dmm_lisa_map_regs *)base;
1311
1312 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1313 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1314 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1315 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1316
1317 writel(lisa_map_regs->dmm_lisa_map_3,
1318 &hw_lisa_map_regs->dmm_lisa_map_3);
1319 writel(lisa_map_regs->dmm_lisa_map_2,
1320 &hw_lisa_map_regs->dmm_lisa_map_2);
1321 writel(lisa_map_regs->dmm_lisa_map_1,
1322 &hw_lisa_map_regs->dmm_lisa_map_1);
1323 writel(lisa_map_regs->dmm_lisa_map_0,
1324 &hw_lisa_map_regs->dmm_lisa_map_0);
1325
1326 if (lisa_map_regs->is_ma_present) {
1327 hw_lisa_map_regs =
1328 (struct dmm_lisa_map_regs *)MA_BASE;
1329
1330 writel(lisa_map_regs->dmm_lisa_map_3,
1331 &hw_lisa_map_regs->dmm_lisa_map_3);
1332 writel(lisa_map_regs->dmm_lisa_map_2,
1333 &hw_lisa_map_regs->dmm_lisa_map_2);
1334 writel(lisa_map_regs->dmm_lisa_map_1,
1335 &hw_lisa_map_regs->dmm_lisa_map_1);
1336 writel(lisa_map_regs->dmm_lisa_map_0,
1337 &hw_lisa_map_regs->dmm_lisa_map_0);
1338
1339 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1340 }
1341
1342
1343
1344
1345
1346
1347 emif1_enabled = 0;
1348 emif2_enabled = 0;
1349 for (i = 0; i < 4; i++) {
1350 section = __raw_readl(DMM_BASE + i*4);
1351 valid = (section & EMIF_SDRC_MAP_MASK) >>
1352 (EMIF_SDRC_MAP_SHIFT);
1353 if (valid == 3) {
1354 emif1_enabled = 1;
1355 emif2_enabled = 1;
1356 break;
1357 }
1358
1359 if (valid == 1)
1360 emif1_enabled = 1;
1361
1362 if (valid == 2)
1363 emif2_enabled = 1;
1364 }
1365}
1366
1367static void do_bug0039_workaround(u32 base)
1368{
1369 u32 val, i, clkctrl;
1370 struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1371 const struct read_write_regs *bug_00339_regs;
1372 u32 iterations;
1373 u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1374 u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1375
1376 if (is_dra7xx())
1377 phy_status_base++;
1378
1379 bug_00339_regs = get_bug_regs(&iterations);
1380
1381
1382 clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1383 __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1384
1385
1386 for (i = 0; i < iterations; i++) {
1387 val = __raw_readl(phy_status_base +
1388 bug_00339_regs[i].read_reg - 1);
1389
1390 __raw_writel(val, phy_ctrl_base +
1391 ((bug_00339_regs[i].write_reg - 1) << 1));
1392
1393 __raw_writel(val, phy_ctrl_base +
1394 (bug_00339_regs[i].write_reg << 1) - 1);
1395 }
1396
1397
1398 writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1399
1400 __raw_writel(clkctrl, (*prcm)->cm_memif_clkstctrl);
1401}
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420void sdram_init(void)
1421{
1422 u32 in_sdram, size_prog, size_detect;
1423 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1424 u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1425
1426 debug(">>sdram_init()\n");
1427
1428 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1429 return;
1430
1431 in_sdram = running_from_sdram();
1432 debug("in_sdram = %d\n", in_sdram);
1433
1434 if (!in_sdram) {
1435 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1436 bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1437 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1438 writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1439 }
1440
1441 if (!in_sdram)
1442 dmm_init(DMM_BASE);
1443
1444 if (emif1_enabled)
1445 do_sdram_init(EMIF1_BASE);
1446
1447 if (emif2_enabled)
1448 do_sdram_init(EMIF2_BASE);
1449
1450 if (!(in_sdram || warm_reset())) {
1451 if (emif1_enabled)
1452 emif_post_init_config(EMIF1_BASE);
1453 if (emif2_enabled)
1454 emif_post_init_config(EMIF2_BASE);
1455 }
1456
1457
1458 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1459 freq_update_core();
1460
1461
1462 if (!in_sdram) {
1463 size_prog = omap_sdram_size();
1464 size_prog = log_2_n_round_down(size_prog);
1465 size_prog = (1 << size_prog);
1466
1467 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1468 size_prog);
1469
1470 if (size_detect != size_prog) {
1471 printf("SDRAM: identified size not same as expected"
1472 " size identified: %x expected: %x\n",
1473 size_detect,
1474 size_prog);
1475 } else
1476 debug("get_ram_size() successful");
1477 }
1478
1479 if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1480 (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1481 if (emif1_enabled)
1482 do_bug0039_workaround(EMIF1_BASE);
1483 if (emif2_enabled)
1484 do_bug0039_workaround(EMIF2_BASE);
1485 }
1486
1487 debug("<<sdram_init()\n");
1488}
1489