uboot/drivers/mtd/mtdcore.c
<<
>>
Prefs
   1/*
   2 * Core registration and callback routines for MTD
   3 * drivers and users.
   4 *
   5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   6 * Copyright © 2006      Red Hat UK Limited 
   7 *
   8 * SPDX-License-Identifier:     GPL-2.0+
   9 *
  10 */
  11
  12#ifndef __UBOOT__
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/ptrace.h>
  16#include <linux/seq_file.h>
  17#include <linux/string.h>
  18#include <linux/timer.h>
  19#include <linux/major.h>
  20#include <linux/fs.h>
  21#include <linux/err.h>
  22#include <linux/ioctl.h>
  23#include <linux/init.h>
  24#include <linux/proc_fs.h>
  25#include <linux/idr.h>
  26#include <linux/backing-dev.h>
  27#include <linux/gfp.h>
  28#include <linux/slab.h>
  29#else
  30#include <linux/err.h>
  31#include <ubi_uboot.h>
  32#endif
  33
  34#include <linux/log2.h>
  35#include <linux/mtd/mtd.h>
  36#include <linux/mtd/partitions.h>
  37
  38#include "mtdcore.h"
  39
  40#ifndef __UBOOT__
  41/*
  42 * backing device capabilities for non-mappable devices (such as NAND flash)
  43 * - permits private mappings, copies are taken of the data
  44 */
  45static struct backing_dev_info mtd_bdi_unmappable = {
  46        .capabilities   = BDI_CAP_MAP_COPY,
  47};
  48
  49/*
  50 * backing device capabilities for R/O mappable devices (such as ROM)
  51 * - permits private mappings, copies are taken of the data
  52 * - permits non-writable shared mappings
  53 */
  54static struct backing_dev_info mtd_bdi_ro_mappable = {
  55        .capabilities   = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  56                           BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
  57};
  58
  59/*
  60 * backing device capabilities for writable mappable devices (such as RAM)
  61 * - permits private mappings, copies are taken of the data
  62 * - permits non-writable shared mappings
  63 */
  64static struct backing_dev_info mtd_bdi_rw_mappable = {
  65        .capabilities   = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  66                           BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
  67                           BDI_CAP_WRITE_MAP),
  68};
  69
  70static int mtd_cls_suspend(struct device *dev, pm_message_t state);
  71static int mtd_cls_resume(struct device *dev);
  72
  73static struct class mtd_class = {
  74        .name = "mtd",
  75        .owner = THIS_MODULE,
  76        .suspend = mtd_cls_suspend,
  77        .resume = mtd_cls_resume,
  78};
  79#else
  80struct mtd_info *mtd_table[MAX_MTD_DEVICES];
  81
  82#define MAX_IDR_ID      64
  83
  84struct idr_layer {
  85        int     used;
  86        void    *ptr;
  87};
  88
  89struct idr {
  90        struct idr_layer id[MAX_IDR_ID];
  91};
  92
  93#define DEFINE_IDR(name)        struct idr name;
  94
  95void idr_remove(struct idr *idp, int id)
  96{
  97        if (idp->id[id].used)
  98                idp->id[id].used = 0;
  99
 100        return;
 101}
 102void *idr_find(struct idr *idp, int id)
 103{
 104        if (idp->id[id].used)
 105                return idp->id[id].ptr;
 106
 107        return NULL;
 108}
 109
 110void *idr_get_next(struct idr *idp, int *next)
 111{
 112        void *ret;
 113        int id = *next;
 114
 115        ret = idr_find(idp, id);
 116        if (ret) {
 117                id ++;
 118                if (!idp->id[id].used)
 119                        id = 0;
 120                *next = id;
 121        } else {
 122                *next = 0;
 123        }
 124        
 125        return ret;
 126}
 127
 128int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
 129{
 130        struct idr_layer *idl;
 131        int i = 0;
 132
 133        while (i < MAX_IDR_ID) {
 134                idl = &idp->id[i];
 135                if (idl->used == 0) {
 136                        idl->used = 1;
 137                        idl->ptr = ptr;
 138                        return i;
 139                }
 140                i++;
 141        }
 142        return -ENOSPC;
 143}
 144#endif
 145
 146static DEFINE_IDR(mtd_idr);
 147
 148/* These are exported solely for the purpose of mtd_blkdevs.c. You
 149   should not use them for _anything_ else */
 150DEFINE_MUTEX(mtd_table_mutex);
 151EXPORT_SYMBOL_GPL(mtd_table_mutex);
 152
 153struct mtd_info *__mtd_next_device(int i)
 154{
 155        return idr_get_next(&mtd_idr, &i);
 156}
 157EXPORT_SYMBOL_GPL(__mtd_next_device);
 158
 159#ifndef __UBOOT__
 160static LIST_HEAD(mtd_notifiers);
 161
 162
 163#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
 164
 165/* REVISIT once MTD uses the driver model better, whoever allocates
 166 * the mtd_info will probably want to use the release() hook...
 167 */
 168static void mtd_release(struct device *dev)
 169{
 170        struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
 171        dev_t index = MTD_DEVT(mtd->index);
 172
 173        /* remove /dev/mtdXro node if needed */
 174        if (index)
 175                device_destroy(&mtd_class, index + 1);
 176}
 177
 178static int mtd_cls_suspend(struct device *dev, pm_message_t state)
 179{
 180        struct mtd_info *mtd = dev_get_drvdata(dev);
 181
 182        return mtd ? mtd_suspend(mtd) : 0;
 183}
 184
 185static int mtd_cls_resume(struct device *dev)
 186{
 187        struct mtd_info *mtd = dev_get_drvdata(dev);
 188
 189        if (mtd)
 190                mtd_resume(mtd);
 191        return 0;
 192}
 193
 194static ssize_t mtd_type_show(struct device *dev,
 195                struct device_attribute *attr, char *buf)
 196{
 197        struct mtd_info *mtd = dev_get_drvdata(dev);
 198        char *type;
 199
 200        switch (mtd->type) {
 201        case MTD_ABSENT:
 202                type = "absent";
 203                break;
 204        case MTD_RAM:
 205                type = "ram";
 206                break;
 207        case MTD_ROM:
 208                type = "rom";
 209                break;
 210        case MTD_NORFLASH:
 211                type = "nor";
 212                break;
 213        case MTD_NANDFLASH:
 214                type = "nand";
 215                break;
 216        case MTD_DATAFLASH:
 217                type = "dataflash";
 218                break;
 219        case MTD_UBIVOLUME:
 220                type = "ubi";
 221                break;
 222        case MTD_MLCNANDFLASH:
 223                type = "mlc-nand";
 224                break;
 225        default:
 226                type = "unknown";
 227        }
 228
 229        return snprintf(buf, PAGE_SIZE, "%s\n", type);
 230}
 231static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
 232
 233static ssize_t mtd_flags_show(struct device *dev,
 234                struct device_attribute *attr, char *buf)
 235{
 236        struct mtd_info *mtd = dev_get_drvdata(dev);
 237
 238        return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
 239
 240}
 241static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
 242
 243static ssize_t mtd_size_show(struct device *dev,
 244                struct device_attribute *attr, char *buf)
 245{
 246        struct mtd_info *mtd = dev_get_drvdata(dev);
 247
 248        return snprintf(buf, PAGE_SIZE, "%llu\n",
 249                (unsigned long long)mtd->size);
 250
 251}
 252static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
 253
 254static ssize_t mtd_erasesize_show(struct device *dev,
 255                struct device_attribute *attr, char *buf)
 256{
 257        struct mtd_info *mtd = dev_get_drvdata(dev);
 258
 259        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
 260
 261}
 262static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
 263
 264static ssize_t mtd_writesize_show(struct device *dev,
 265                struct device_attribute *attr, char *buf)
 266{
 267        struct mtd_info *mtd = dev_get_drvdata(dev);
 268
 269        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
 270
 271}
 272static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
 273
 274static ssize_t mtd_subpagesize_show(struct device *dev,
 275                struct device_attribute *attr, char *buf)
 276{
 277        struct mtd_info *mtd = dev_get_drvdata(dev);
 278        unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 279
 280        return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
 281
 282}
 283static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
 284
 285static ssize_t mtd_oobsize_show(struct device *dev,
 286                struct device_attribute *attr, char *buf)
 287{
 288        struct mtd_info *mtd = dev_get_drvdata(dev);
 289
 290        return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
 291
 292}
 293static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
 294
 295static ssize_t mtd_numeraseregions_show(struct device *dev,
 296                struct device_attribute *attr, char *buf)
 297{
 298        struct mtd_info *mtd = dev_get_drvdata(dev);
 299
 300        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
 301
 302}
 303static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
 304        NULL);
 305
 306static ssize_t mtd_name_show(struct device *dev,
 307                struct device_attribute *attr, char *buf)
 308{
 309        struct mtd_info *mtd = dev_get_drvdata(dev);
 310
 311        return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
 312
 313}
 314static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
 315
 316static ssize_t mtd_ecc_strength_show(struct device *dev,
 317                                     struct device_attribute *attr, char *buf)
 318{
 319        struct mtd_info *mtd = dev_get_drvdata(dev);
 320
 321        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
 322}
 323static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
 324
 325static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 326                                          struct device_attribute *attr,
 327                                          char *buf)
 328{
 329        struct mtd_info *mtd = dev_get_drvdata(dev);
 330
 331        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
 332}
 333
 334static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 335                                           struct device_attribute *attr,
 336                                           const char *buf, size_t count)
 337{
 338        struct mtd_info *mtd = dev_get_drvdata(dev);
 339        unsigned int bitflip_threshold;
 340        int retval;
 341
 342        retval = kstrtouint(buf, 0, &bitflip_threshold);
 343        if (retval)
 344                return retval;
 345
 346        mtd->bitflip_threshold = bitflip_threshold;
 347        return count;
 348}
 349static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
 350                   mtd_bitflip_threshold_show,
 351                   mtd_bitflip_threshold_store);
 352
 353static ssize_t mtd_ecc_step_size_show(struct device *dev,
 354                struct device_attribute *attr, char *buf)
 355{
 356        struct mtd_info *mtd = dev_get_drvdata(dev);
 357
 358        return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
 359
 360}
 361static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
 362
 363static struct attribute *mtd_attrs[] = {
 364        &dev_attr_type.attr,
 365        &dev_attr_flags.attr,
 366        &dev_attr_size.attr,
 367        &dev_attr_erasesize.attr,
 368        &dev_attr_writesize.attr,
 369        &dev_attr_subpagesize.attr,
 370        &dev_attr_oobsize.attr,
 371        &dev_attr_numeraseregions.attr,
 372        &dev_attr_name.attr,
 373        &dev_attr_ecc_strength.attr,
 374        &dev_attr_ecc_step_size.attr,
 375        &dev_attr_bitflip_threshold.attr,
 376        NULL,
 377};
 378ATTRIBUTE_GROUPS(mtd);
 379
 380static struct device_type mtd_devtype = {
 381        .name           = "mtd",
 382        .groups         = mtd_groups,
 383        .release        = mtd_release,
 384};
 385#endif
 386
 387/**
 388 *      add_mtd_device - register an MTD device
 389 *      @mtd: pointer to new MTD device info structure
 390 *
 391 *      Add a device to the list of MTD devices present in the system, and
 392 *      notify each currently active MTD 'user' of its arrival. Returns
 393 *      zero on success or 1 on failure, which currently will only happen
 394 *      if there is insufficient memory or a sysfs error.
 395 */
 396
 397int add_mtd_device(struct mtd_info *mtd)
 398{
 399#ifndef __UBOOT__
 400        struct mtd_notifier *not;
 401#endif
 402        int i, error;
 403
 404#ifndef __UBOOT__
 405        if (!mtd->backing_dev_info) {
 406                switch (mtd->type) {
 407                case MTD_RAM:
 408                        mtd->backing_dev_info = &mtd_bdi_rw_mappable;
 409                        break;
 410                case MTD_ROM:
 411                        mtd->backing_dev_info = &mtd_bdi_ro_mappable;
 412                        break;
 413                default:
 414                        mtd->backing_dev_info = &mtd_bdi_unmappable;
 415                        break;
 416                }
 417        }
 418#endif
 419
 420        BUG_ON(mtd->writesize == 0);
 421        mutex_lock(&mtd_table_mutex);
 422
 423        i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 424        if (i < 0)
 425                goto fail_locked;
 426
 427        mtd->index = i;
 428        mtd->usecount = 0;
 429
 430        /* default value if not set by driver */
 431        if (mtd->bitflip_threshold == 0)
 432                mtd->bitflip_threshold = mtd->ecc_strength;
 433
 434        if (is_power_of_2(mtd->erasesize))
 435                mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 436        else
 437                mtd->erasesize_shift = 0;
 438
 439        if (is_power_of_2(mtd->writesize))
 440                mtd->writesize_shift = ffs(mtd->writesize) - 1;
 441        else
 442                mtd->writesize_shift = 0;
 443
 444        mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 445        mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 446
 447        /* Some chips always power up locked. Unlock them now */
 448        if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 449                error = mtd_unlock(mtd, 0, mtd->size);
 450                if (error && error != -EOPNOTSUPP)
 451                        printk(KERN_WARNING
 452                               "%s: unlock failed, writes may not work\n",
 453                               mtd->name);
 454        }
 455
 456#ifndef __UBOOT__
 457        /* Caller should have set dev.parent to match the
 458         * physical device.
 459         */
 460        mtd->dev.type = &mtd_devtype;
 461        mtd->dev.class = &mtd_class;
 462        mtd->dev.devt = MTD_DEVT(i);
 463        dev_set_name(&mtd->dev, "mtd%d", i);
 464        dev_set_drvdata(&mtd->dev, mtd);
 465        if (device_register(&mtd->dev) != 0)
 466                goto fail_added;
 467
 468        if (MTD_DEVT(i))
 469                device_create(&mtd_class, mtd->dev.parent,
 470                              MTD_DEVT(i) + 1,
 471                              NULL, "mtd%dro", i);
 472
 473        pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 474        /* No need to get a refcount on the module containing
 475           the notifier, since we hold the mtd_table_mutex */
 476        list_for_each_entry(not, &mtd_notifiers, list)
 477                not->add(mtd);
 478#else
 479        pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 480#endif
 481
 482        mutex_unlock(&mtd_table_mutex);
 483        /* We _know_ we aren't being removed, because
 484           our caller is still holding us here. So none
 485           of this try_ nonsense, and no bitching about it
 486           either. :) */
 487        __module_get(THIS_MODULE);
 488        return 0;
 489
 490#ifndef __UBOOT__
 491fail_added:
 492        idr_remove(&mtd_idr, i);
 493#endif
 494fail_locked:
 495        mutex_unlock(&mtd_table_mutex);
 496        return 1;
 497}
 498
 499/**
 500 *      del_mtd_device - unregister an MTD device
 501 *      @mtd: pointer to MTD device info structure
 502 *
 503 *      Remove a device from the list of MTD devices present in the system,
 504 *      and notify each currently active MTD 'user' of its departure.
 505 *      Returns zero on success or 1 on failure, which currently will happen
 506 *      if the requested device does not appear to be present in the list.
 507 */
 508
 509int del_mtd_device(struct mtd_info *mtd)
 510{
 511        int ret;
 512#ifndef __UBOOT__
 513        struct mtd_notifier *not;
 514#endif
 515
 516        mutex_lock(&mtd_table_mutex);
 517
 518        if (idr_find(&mtd_idr, mtd->index) != mtd) {
 519                ret = -ENODEV;
 520                goto out_error;
 521        }
 522
 523#ifndef __UBOOT__
 524        /* No need to get a refcount on the module containing
 525                the notifier, since we hold the mtd_table_mutex */
 526        list_for_each_entry(not, &mtd_notifiers, list)
 527                not->remove(mtd);
 528#endif
 529
 530        if (mtd->usecount) {
 531                printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
 532                       mtd->index, mtd->name, mtd->usecount);
 533                ret = -EBUSY;
 534        } else {
 535#ifndef __UBOOT__
 536                device_unregister(&mtd->dev);
 537#endif
 538
 539                idr_remove(&mtd_idr, mtd->index);
 540
 541                module_put(THIS_MODULE);
 542                ret = 0;
 543        }
 544
 545out_error:
 546        mutex_unlock(&mtd_table_mutex);
 547        return ret;
 548}
 549
 550#ifndef __UBOOT__
 551/**
 552 * mtd_device_parse_register - parse partitions and register an MTD device.
 553 *
 554 * @mtd: the MTD device to register
 555 * @types: the list of MTD partition probes to try, see
 556 *         'parse_mtd_partitions()' for more information
 557 * @parser_data: MTD partition parser-specific data
 558 * @parts: fallback partition information to register, if parsing fails;
 559 *         only valid if %nr_parts > %0
 560 * @nr_parts: the number of partitions in parts, if zero then the full
 561 *            MTD device is registered if no partition info is found
 562 *
 563 * This function aggregates MTD partitions parsing (done by
 564 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 565 * basically follows the most common pattern found in many MTD drivers:
 566 *
 567 * * It first tries to probe partitions on MTD device @mtd using parsers
 568 *   specified in @types (if @types is %NULL, then the default list of parsers
 569 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 570 *   found this functions tries to fallback to information specified in
 571 *   @parts/@nr_parts.
 572 * * If any partitioning info was found, this function registers the found
 573 *   partitions.
 574 * * If no partitions were found this function just registers the MTD device
 575 *   @mtd and exits.
 576 *
 577 * Returns zero in case of success and a negative error code in case of failure.
 578 */
 579int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 580                              struct mtd_part_parser_data *parser_data,
 581                              const struct mtd_partition *parts,
 582                              int nr_parts)
 583{
 584        int err;
 585        struct mtd_partition *real_parts;
 586
 587        err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
 588        if (err <= 0 && nr_parts && parts) {
 589                real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
 590                                     GFP_KERNEL);
 591                if (!real_parts)
 592                        err = -ENOMEM;
 593                else
 594                        err = nr_parts;
 595        }
 596
 597        if (err > 0) {
 598                err = add_mtd_partitions(mtd, real_parts, err);
 599                kfree(real_parts);
 600        } else if (err == 0) {
 601                err = add_mtd_device(mtd);
 602                if (err == 1)
 603                        err = -ENODEV;
 604        }
 605
 606        return err;
 607}
 608EXPORT_SYMBOL_GPL(mtd_device_parse_register);
 609
 610/**
 611 * mtd_device_unregister - unregister an existing MTD device.
 612 *
 613 * @master: the MTD device to unregister.  This will unregister both the master
 614 *          and any partitions if registered.
 615 */
 616int mtd_device_unregister(struct mtd_info *master)
 617{
 618        int err;
 619
 620        err = del_mtd_partitions(master);
 621        if (err)
 622                return err;
 623
 624        if (!device_is_registered(&master->dev))
 625                return 0;
 626
 627        return del_mtd_device(master);
 628}
 629EXPORT_SYMBOL_GPL(mtd_device_unregister);
 630
 631/**
 632 *      register_mtd_user - register a 'user' of MTD devices.
 633 *      @new: pointer to notifier info structure
 634 *
 635 *      Registers a pair of callbacks function to be called upon addition
 636 *      or removal of MTD devices. Causes the 'add' callback to be immediately
 637 *      invoked for each MTD device currently present in the system.
 638 */
 639void register_mtd_user (struct mtd_notifier *new)
 640{
 641        struct mtd_info *mtd;
 642
 643        mutex_lock(&mtd_table_mutex);
 644
 645        list_add(&new->list, &mtd_notifiers);
 646
 647        __module_get(THIS_MODULE);
 648
 649        mtd_for_each_device(mtd)
 650                new->add(mtd);
 651
 652        mutex_unlock(&mtd_table_mutex);
 653}
 654EXPORT_SYMBOL_GPL(register_mtd_user);
 655
 656/**
 657 *      unregister_mtd_user - unregister a 'user' of MTD devices.
 658 *      @old: pointer to notifier info structure
 659 *
 660 *      Removes a callback function pair from the list of 'users' to be
 661 *      notified upon addition or removal of MTD devices. Causes the
 662 *      'remove' callback to be immediately invoked for each MTD device
 663 *      currently present in the system.
 664 */
 665int unregister_mtd_user (struct mtd_notifier *old)
 666{
 667        struct mtd_info *mtd;
 668
 669        mutex_lock(&mtd_table_mutex);
 670
 671        module_put(THIS_MODULE);
 672
 673        mtd_for_each_device(mtd)
 674                old->remove(mtd);
 675
 676        list_del(&old->list);
 677        mutex_unlock(&mtd_table_mutex);
 678        return 0;
 679}
 680EXPORT_SYMBOL_GPL(unregister_mtd_user);
 681#endif
 682
 683/**
 684 *      get_mtd_device - obtain a validated handle for an MTD device
 685 *      @mtd: last known address of the required MTD device
 686 *      @num: internal device number of the required MTD device
 687 *
 688 *      Given a number and NULL address, return the num'th entry in the device
 689 *      table, if any.  Given an address and num == -1, search the device table
 690 *      for a device with that address and return if it's still present. Given
 691 *      both, return the num'th driver only if its address matches. Return
 692 *      error code if not.
 693 */
 694struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
 695{
 696        struct mtd_info *ret = NULL, *other;
 697        int err = -ENODEV;
 698
 699        mutex_lock(&mtd_table_mutex);
 700
 701        if (num == -1) {
 702                mtd_for_each_device(other) {
 703                        if (other == mtd) {
 704                                ret = mtd;
 705                                break;
 706                        }
 707                }
 708        } else if (num >= 0) {
 709                ret = idr_find(&mtd_idr, num);
 710                if (mtd && mtd != ret)
 711                        ret = NULL;
 712        }
 713
 714        if (!ret) {
 715                ret = ERR_PTR(err);
 716                goto out;
 717        }
 718
 719        err = __get_mtd_device(ret);
 720        if (err)
 721                ret = ERR_PTR(err);
 722out:
 723        mutex_unlock(&mtd_table_mutex);
 724        return ret;
 725}
 726EXPORT_SYMBOL_GPL(get_mtd_device);
 727
 728
 729int __get_mtd_device(struct mtd_info *mtd)
 730{
 731        int err;
 732
 733        if (!try_module_get(mtd->owner))
 734                return -ENODEV;
 735
 736        if (mtd->_get_device) {
 737                err = mtd->_get_device(mtd);
 738
 739                if (err) {
 740                        module_put(mtd->owner);
 741                        return err;
 742                }
 743        }
 744        mtd->usecount++;
 745        return 0;
 746}
 747EXPORT_SYMBOL_GPL(__get_mtd_device);
 748
 749/**
 750 *      get_mtd_device_nm - obtain a validated handle for an MTD device by
 751 *      device name
 752 *      @name: MTD device name to open
 753 *
 754 *      This function returns MTD device description structure in case of
 755 *      success and an error code in case of failure.
 756 */
 757struct mtd_info *get_mtd_device_nm(const char *name)
 758{
 759        int err = -ENODEV;
 760        struct mtd_info *mtd = NULL, *other;
 761
 762        mutex_lock(&mtd_table_mutex);
 763
 764        mtd_for_each_device(other) {
 765                if (!strcmp(name, other->name)) {
 766                        mtd = other;
 767                        break;
 768                }
 769        }
 770
 771        if (!mtd)
 772                goto out_unlock;
 773
 774        err = __get_mtd_device(mtd);
 775        if (err)
 776                goto out_unlock;
 777
 778        mutex_unlock(&mtd_table_mutex);
 779        return mtd;
 780
 781out_unlock:
 782        mutex_unlock(&mtd_table_mutex);
 783        return ERR_PTR(err);
 784}
 785EXPORT_SYMBOL_GPL(get_mtd_device_nm);
 786
 787#if defined(CONFIG_CMD_MTDPARTS_SPREAD)
 788/**
 789 * mtd_get_len_incl_bad
 790 *
 791 * Check if length including bad blocks fits into device.
 792 *
 793 * @param mtd an MTD device
 794 * @param offset offset in flash
 795 * @param length image length
 796 * @return image length including bad blocks in *len_incl_bad and whether or not
 797 *         the length returned was truncated in *truncated
 798 */
 799void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
 800                          const uint64_t length, uint64_t *len_incl_bad,
 801                          int *truncated)
 802{
 803        *truncated = 0;
 804        *len_incl_bad = 0;
 805
 806        if (!mtd->_block_isbad) {
 807                *len_incl_bad = length;
 808                return;
 809        }
 810
 811        uint64_t len_excl_bad = 0;
 812        uint64_t block_len;
 813
 814        while (len_excl_bad < length) {
 815                if (offset >= mtd->size) {
 816                        *truncated = 1;
 817                        return;
 818                }
 819
 820                block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
 821
 822                if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
 823                        len_excl_bad += block_len;
 824
 825                *len_incl_bad += block_len;
 826                offset       += block_len;
 827        }
 828}
 829#endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
 830
 831void put_mtd_device(struct mtd_info *mtd)
 832{
 833        mutex_lock(&mtd_table_mutex);
 834        __put_mtd_device(mtd);
 835        mutex_unlock(&mtd_table_mutex);
 836
 837}
 838EXPORT_SYMBOL_GPL(put_mtd_device);
 839
 840void __put_mtd_device(struct mtd_info *mtd)
 841{
 842        --mtd->usecount;
 843        BUG_ON(mtd->usecount < 0);
 844
 845        if (mtd->_put_device)
 846                mtd->_put_device(mtd);
 847
 848        module_put(mtd->owner);
 849}
 850EXPORT_SYMBOL_GPL(__put_mtd_device);
 851
 852/*
 853 * Erase is an asynchronous operation.  Device drivers are supposed
 854 * to call instr->callback() whenever the operation completes, even
 855 * if it completes with a failure.
 856 * Callers are supposed to pass a callback function and wait for it
 857 * to be called before writing to the block.
 858 */
 859int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
 860{
 861        if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
 862                return -EINVAL;
 863        if (!(mtd->flags & MTD_WRITEABLE))
 864                return -EROFS;
 865        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
 866        if (!instr->len) {
 867                instr->state = MTD_ERASE_DONE;
 868                mtd_erase_callback(instr);
 869                return 0;
 870        }
 871        return mtd->_erase(mtd, instr);
 872}
 873EXPORT_SYMBOL_GPL(mtd_erase);
 874
 875#ifndef __UBOOT__
 876/*
 877 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
 878 */
 879int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 880              void **virt, resource_size_t *phys)
 881{
 882        *retlen = 0;
 883        *virt = NULL;
 884        if (phys)
 885                *phys = 0;
 886        if (!mtd->_point)
 887                return -EOPNOTSUPP;
 888        if (from < 0 || from > mtd->size || len > mtd->size - from)
 889                return -EINVAL;
 890        if (!len)
 891                return 0;
 892        return mtd->_point(mtd, from, len, retlen, virt, phys);
 893}
 894EXPORT_SYMBOL_GPL(mtd_point);
 895
 896/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
 897int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
 898{
 899        if (!mtd->_point)
 900                return -EOPNOTSUPP;
 901        if (from < 0 || from > mtd->size || len > mtd->size - from)
 902                return -EINVAL;
 903        if (!len)
 904                return 0;
 905        return mtd->_unpoint(mtd, from, len);
 906}
 907EXPORT_SYMBOL_GPL(mtd_unpoint);
 908#endif
 909
 910/*
 911 * Allow NOMMU mmap() to directly map the device (if not NULL)
 912 * - return the address to which the offset maps
 913 * - return -ENOSYS to indicate refusal to do the mapping
 914 */
 915unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
 916                                    unsigned long offset, unsigned long flags)
 917{
 918        if (!mtd->_get_unmapped_area)
 919                return -EOPNOTSUPP;
 920        if (offset > mtd->size || len > mtd->size - offset)
 921                return -EINVAL;
 922        return mtd->_get_unmapped_area(mtd, len, offset, flags);
 923}
 924EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
 925
 926int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 927             u_char *buf)
 928{
 929        int ret_code;
 930        *retlen = 0;
 931        if (from < 0 || from > mtd->size || len > mtd->size - from)
 932                return -EINVAL;
 933        if (!len)
 934                return 0;
 935
 936        /*
 937         * In the absence of an error, drivers return a non-negative integer
 938         * representing the maximum number of bitflips that were corrected on
 939         * any one ecc region (if applicable; zero otherwise).
 940         */
 941        ret_code = mtd->_read(mtd, from, len, retlen, buf);
 942        if (unlikely(ret_code < 0))
 943                return ret_code;
 944        if (mtd->ecc_strength == 0)
 945                return 0;       /* device lacks ecc */
 946        return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
 947}
 948EXPORT_SYMBOL_GPL(mtd_read);
 949
 950int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 951              const u_char *buf)
 952{
 953        *retlen = 0;
 954        if (to < 0 || to > mtd->size || len > mtd->size - to)
 955                return -EINVAL;
 956        if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
 957                return -EROFS;
 958        if (!len)
 959                return 0;
 960        return mtd->_write(mtd, to, len, retlen, buf);
 961}
 962EXPORT_SYMBOL_GPL(mtd_write);
 963
 964/*
 965 * In blackbox flight recorder like scenarios we want to make successful writes
 966 * in interrupt context. panic_write() is only intended to be called when its
 967 * known the kernel is about to panic and we need the write to succeed. Since
 968 * the kernel is not going to be running for much longer, this function can
 969 * break locks and delay to ensure the write succeeds (but not sleep).
 970 */
 971int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 972                    const u_char *buf)
 973{
 974        *retlen = 0;
 975        if (!mtd->_panic_write)
 976                return -EOPNOTSUPP;
 977        if (to < 0 || to > mtd->size || len > mtd->size - to)
 978                return -EINVAL;
 979        if (!(mtd->flags & MTD_WRITEABLE))
 980                return -EROFS;
 981        if (!len)
 982                return 0;
 983        return mtd->_panic_write(mtd, to, len, retlen, buf);
 984}
 985EXPORT_SYMBOL_GPL(mtd_panic_write);
 986
 987int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
 988{
 989        int ret_code;
 990        ops->retlen = ops->oobretlen = 0;
 991        if (!mtd->_read_oob)
 992                return -EOPNOTSUPP;
 993        /*
 994         * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
 995         * similar to mtd->_read(), returning a non-negative integer
 996         * representing max bitflips. In other cases, mtd->_read_oob() may
 997         * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
 998         */
 999        ret_code = mtd->_read_oob(mtd, from, ops);
1000        if (unlikely(ret_code < 0))
1001                return ret_code;
1002        if (mtd->ecc_strength == 0)
1003                return 0;       /* device lacks ecc */
1004        return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1005}
1006EXPORT_SYMBOL_GPL(mtd_read_oob);
1007
1008/*
1009 * Method to access the protection register area, present in some flash
1010 * devices. The user data is one time programmable but the factory data is read
1011 * only.
1012 */
1013int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1014                           struct otp_info *buf)
1015{
1016        if (!mtd->_get_fact_prot_info)
1017                return -EOPNOTSUPP;
1018        if (!len)
1019                return 0;
1020        return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1021}
1022EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1023
1024int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1025                           size_t *retlen, u_char *buf)
1026{
1027        *retlen = 0;
1028        if (!mtd->_read_fact_prot_reg)
1029                return -EOPNOTSUPP;
1030        if (!len)
1031                return 0;
1032        return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1033}
1034EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1035
1036int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1037                           struct otp_info *buf)
1038{
1039        if (!mtd->_get_user_prot_info)
1040                return -EOPNOTSUPP;
1041        if (!len)
1042                return 0;
1043        return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1044}
1045EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1046
1047int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1048                           size_t *retlen, u_char *buf)
1049{
1050        *retlen = 0;
1051        if (!mtd->_read_user_prot_reg)
1052                return -EOPNOTSUPP;
1053        if (!len)
1054                return 0;
1055        return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1056}
1057EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1058
1059int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1060                            size_t *retlen, u_char *buf)
1061{
1062        int ret;
1063
1064        *retlen = 0;
1065        if (!mtd->_write_user_prot_reg)
1066                return -EOPNOTSUPP;
1067        if (!len)
1068                return 0;
1069        ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1070        if (ret)
1071                return ret;
1072
1073        /*
1074         * If no data could be written at all, we are out of memory and
1075         * must return -ENOSPC.
1076         */
1077        return (*retlen) ? 0 : -ENOSPC;
1078}
1079EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1080
1081int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1082{
1083        if (!mtd->_lock_user_prot_reg)
1084                return -EOPNOTSUPP;
1085        if (!len)
1086                return 0;
1087        return mtd->_lock_user_prot_reg(mtd, from, len);
1088}
1089EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1090
1091/* Chip-supported device locking */
1092int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1093{
1094        if (!mtd->_lock)
1095                return -EOPNOTSUPP;
1096        if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1097                return -EINVAL;
1098        if (!len)
1099                return 0;
1100        return mtd->_lock(mtd, ofs, len);
1101}
1102EXPORT_SYMBOL_GPL(mtd_lock);
1103
1104int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1105{
1106        if (!mtd->_unlock)
1107                return -EOPNOTSUPP;
1108        if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1109                return -EINVAL;
1110        if (!len)
1111                return 0;
1112        return mtd->_unlock(mtd, ofs, len);
1113}
1114EXPORT_SYMBOL_GPL(mtd_unlock);
1115
1116int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1117{
1118        if (!mtd->_is_locked)
1119                return -EOPNOTSUPP;
1120        if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1121                return -EINVAL;
1122        if (!len)
1123                return 0;
1124        return mtd->_is_locked(mtd, ofs, len);
1125}
1126EXPORT_SYMBOL_GPL(mtd_is_locked);
1127
1128int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1129{
1130        if (ofs < 0 || ofs > mtd->size)
1131                return -EINVAL;
1132        if (!mtd->_block_isreserved)
1133                return 0;
1134        return mtd->_block_isreserved(mtd, ofs);
1135}
1136EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1137
1138int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1139{
1140        if (ofs < 0 || ofs > mtd->size)
1141                return -EINVAL;
1142        if (!mtd->_block_isbad)
1143                return 0;
1144        return mtd->_block_isbad(mtd, ofs);
1145}
1146EXPORT_SYMBOL_GPL(mtd_block_isbad);
1147
1148int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1149{
1150        if (!mtd->_block_markbad)
1151                return -EOPNOTSUPP;
1152        if (ofs < 0 || ofs > mtd->size)
1153                return -EINVAL;
1154        if (!(mtd->flags & MTD_WRITEABLE))
1155                return -EROFS;
1156        return mtd->_block_markbad(mtd, ofs);
1157}
1158EXPORT_SYMBOL_GPL(mtd_block_markbad);
1159
1160#ifndef __UBOOT__
1161/*
1162 * default_mtd_writev - the default writev method
1163 * @mtd: mtd device description object pointer
1164 * @vecs: the vectors to write
1165 * @count: count of vectors in @vecs
1166 * @to: the MTD device offset to write to
1167 * @retlen: on exit contains the count of bytes written to the MTD device.
1168 *
1169 * This function returns zero in case of success and a negative error code in
1170 * case of failure.
1171 */
1172static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1173                              unsigned long count, loff_t to, size_t *retlen)
1174{
1175        unsigned long i;
1176        size_t totlen = 0, thislen;
1177        int ret = 0;
1178
1179        for (i = 0; i < count; i++) {
1180                if (!vecs[i].iov_len)
1181                        continue;
1182                ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1183                                vecs[i].iov_base);
1184                totlen += thislen;
1185                if (ret || thislen != vecs[i].iov_len)
1186                        break;
1187                to += vecs[i].iov_len;
1188        }
1189        *retlen = totlen;
1190        return ret;
1191}
1192
1193/*
1194 * mtd_writev - the vector-based MTD write method
1195 * @mtd: mtd device description object pointer
1196 * @vecs: the vectors to write
1197 * @count: count of vectors in @vecs
1198 * @to: the MTD device offset to write to
1199 * @retlen: on exit contains the count of bytes written to the MTD device.
1200 *
1201 * This function returns zero in case of success and a negative error code in
1202 * case of failure.
1203 */
1204int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1205               unsigned long count, loff_t to, size_t *retlen)
1206{
1207        *retlen = 0;
1208        if (!(mtd->flags & MTD_WRITEABLE))
1209                return -EROFS;
1210        if (!mtd->_writev)
1211                return default_mtd_writev(mtd, vecs, count, to, retlen);
1212        return mtd->_writev(mtd, vecs, count, to, retlen);
1213}
1214EXPORT_SYMBOL_GPL(mtd_writev);
1215
1216/**
1217 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1218 * @mtd: mtd device description object pointer
1219 * @size: a pointer to the ideal or maximum size of the allocation, points
1220 *        to the actual allocation size on success.
1221 *
1222 * This routine attempts to allocate a contiguous kernel buffer up to
1223 * the specified size, backing off the size of the request exponentially
1224 * until the request succeeds or until the allocation size falls below
1225 * the system page size. This attempts to make sure it does not adversely
1226 * impact system performance, so when allocating more than one page, we
1227 * ask the memory allocator to avoid re-trying, swapping, writing back
1228 * or performing I/O.
1229 *
1230 * Note, this function also makes sure that the allocated buffer is aligned to
1231 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1232 *
1233 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1234 * to handle smaller (i.e. degraded) buffer allocations under low- or
1235 * fragmented-memory situations where such reduced allocations, from a
1236 * requested ideal, are allowed.
1237 *
1238 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1239 */
1240void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1241{
1242        gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1243                       __GFP_NORETRY | __GFP_NO_KSWAPD;
1244        size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1245        void *kbuf;
1246
1247        *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1248
1249        while (*size > min_alloc) {
1250                kbuf = kmalloc(*size, flags);
1251                if (kbuf)
1252                        return kbuf;
1253
1254                *size >>= 1;
1255                *size = ALIGN(*size, mtd->writesize);
1256        }
1257
1258        /*
1259         * For the last resort allocation allow 'kmalloc()' to do all sorts of
1260         * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1261         */
1262        return kmalloc(*size, GFP_KERNEL);
1263}
1264EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1265#endif
1266
1267#ifdef CONFIG_PROC_FS
1268
1269/*====================================================================*/
1270/* Support for /proc/mtd */
1271
1272static int mtd_proc_show(struct seq_file *m, void *v)
1273{
1274        struct mtd_info *mtd;
1275
1276        seq_puts(m, "dev:    size   erasesize  name\n");
1277        mutex_lock(&mtd_table_mutex);
1278        mtd_for_each_device(mtd) {
1279                seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1280                           mtd->index, (unsigned long long)mtd->size,
1281                           mtd->erasesize, mtd->name);
1282        }
1283        mutex_unlock(&mtd_table_mutex);
1284        return 0;
1285}
1286
1287static int mtd_proc_open(struct inode *inode, struct file *file)
1288{
1289        return single_open(file, mtd_proc_show, NULL);
1290}
1291
1292static const struct file_operations mtd_proc_ops = {
1293        .open           = mtd_proc_open,
1294        .read           = seq_read,
1295        .llseek         = seq_lseek,
1296        .release        = single_release,
1297};
1298#endif /* CONFIG_PROC_FS */
1299
1300/*====================================================================*/
1301/* Init code */
1302
1303#ifndef __UBOOT__
1304static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1305{
1306        int ret;
1307
1308        ret = bdi_init(bdi);
1309        if (!ret)
1310                ret = bdi_register(bdi, NULL, "%s", name);
1311
1312        if (ret)
1313                bdi_destroy(bdi);
1314
1315        return ret;
1316}
1317
1318static struct proc_dir_entry *proc_mtd;
1319
1320static int __init init_mtd(void)
1321{
1322        int ret;
1323
1324        ret = class_register(&mtd_class);
1325        if (ret)
1326                goto err_reg;
1327
1328        ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1329        if (ret)
1330                goto err_bdi1;
1331
1332        ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1333        if (ret)
1334                goto err_bdi2;
1335
1336        ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1337        if (ret)
1338                goto err_bdi3;
1339
1340        proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1341
1342        ret = init_mtdchar();
1343        if (ret)
1344                goto out_procfs;
1345
1346        return 0;
1347
1348out_procfs:
1349        if (proc_mtd)
1350                remove_proc_entry("mtd", NULL);
1351err_bdi3:
1352        bdi_destroy(&mtd_bdi_ro_mappable);
1353err_bdi2:
1354        bdi_destroy(&mtd_bdi_unmappable);
1355err_bdi1:
1356        class_unregister(&mtd_class);
1357err_reg:
1358        pr_err("Error registering mtd class or bdi: %d\n", ret);
1359        return ret;
1360}
1361
1362static void __exit cleanup_mtd(void)
1363{
1364        cleanup_mtdchar();
1365        if (proc_mtd)
1366                remove_proc_entry("mtd", NULL);
1367        class_unregister(&mtd_class);
1368        bdi_destroy(&mtd_bdi_unmappable);
1369        bdi_destroy(&mtd_bdi_ro_mappable);
1370        bdi_destroy(&mtd_bdi_rw_mappable);
1371}
1372
1373module_init(init_mtd);
1374module_exit(cleanup_mtd);
1375#endif
1376
1377MODULE_LICENSE("GPL");
1378MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1379MODULE_DESCRIPTION("Core MTD registration and access routines");
1380