uboot/drivers/mtd/nand/mxs_nand.c
<<
>>
Prefs
   1/*
   2 * Freescale i.MX28 NAND flash driver
   3 *
   4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
   5 * on behalf of DENX Software Engineering GmbH
   6 *
   7 * Based on code from LTIB:
   8 * Freescale GPMI NFC NAND Flash Driver
   9 *
  10 * Copyright (C) 2010 Freescale Semiconductor, Inc.
  11 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
  12 *
  13 * SPDX-License-Identifier:     GPL-2.0+
  14 */
  15
  16#include <common.h>
  17#include <linux/mtd/mtd.h>
  18#include <linux/mtd/nand.h>
  19#include <linux/types.h>
  20#include <malloc.h>
  21#include <asm/errno.h>
  22#include <asm/io.h>
  23#include <asm/arch/clock.h>
  24#include <asm/arch/imx-regs.h>
  25#include <asm/imx-common/regs-bch.h>
  26#include <asm/imx-common/regs-gpmi.h>
  27#include <asm/arch/sys_proto.h>
  28#include <asm/imx-common/dma.h>
  29
  30#define MXS_NAND_DMA_DESCRIPTOR_COUNT           4
  31
  32#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE          512
  33#if (defined(CONFIG_MX6) || defined(CONFIG_MX7))
  34#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT    2
  35#else
  36#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT    0
  37#endif
  38#define MXS_NAND_METADATA_SIZE                  10
  39#define MXS_NAND_BITS_PER_ECC_LEVEL             13
  40#define MXS_NAND_COMMAND_BUFFER_SIZE            32
  41
  42#define MXS_NAND_BCH_TIMEOUT                    10000
  43
  44struct mxs_nand_info {
  45        int             cur_chip;
  46
  47        uint32_t        cmd_queue_len;
  48        uint32_t        data_buf_size;
  49
  50        uint8_t         *cmd_buf;
  51        uint8_t         *data_buf;
  52        uint8_t         *oob_buf;
  53
  54        uint8_t         marking_block_bad;
  55        uint8_t         raw_oob_mode;
  56
  57        /* Functions with altered behaviour */
  58        int             (*hooked_read_oob)(struct mtd_info *mtd,
  59                                loff_t from, struct mtd_oob_ops *ops);
  60        int             (*hooked_write_oob)(struct mtd_info *mtd,
  61                                loff_t to, struct mtd_oob_ops *ops);
  62        int             (*hooked_block_markbad)(struct mtd_info *mtd,
  63                                loff_t ofs);
  64
  65        /* DMA descriptors */
  66        struct mxs_dma_desc     **desc;
  67        uint32_t                desc_index;
  68};
  69
  70struct nand_ecclayout fake_ecc_layout;
  71static int chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
  72static int galois_field = 13;
  73
  74/*
  75 * Cache management functions
  76 */
  77#ifndef CONFIG_SYS_DCACHE_OFF
  78static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
  79{
  80        uint32_t addr = (uint32_t)info->data_buf;
  81
  82        flush_dcache_range(addr, addr + info->data_buf_size);
  83}
  84
  85static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
  86{
  87        uint32_t addr = (uint32_t)info->data_buf;
  88
  89        invalidate_dcache_range(addr, addr + info->data_buf_size);
  90}
  91
  92static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
  93{
  94        uint32_t addr = (uint32_t)info->cmd_buf;
  95
  96        flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
  97}
  98#else
  99static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
 100static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
 101static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
 102#endif
 103
 104static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
 105{
 106        struct mxs_dma_desc *desc;
 107
 108        if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
 109                printf("MXS NAND: Too many DMA descriptors requested\n");
 110                return NULL;
 111        }
 112
 113        desc = info->desc[info->desc_index];
 114        info->desc_index++;
 115
 116        return desc;
 117}
 118
 119static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
 120{
 121        int i;
 122        struct mxs_dma_desc *desc;
 123
 124        for (i = 0; i < info->desc_index; i++) {
 125                desc = info->desc[i];
 126                memset(desc, 0, sizeof(struct mxs_dma_desc));
 127                desc->address = (dma_addr_t)desc;
 128        }
 129
 130        info->desc_index = 0;
 131}
 132
 133static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
 134{
 135        return page_data_size / chunk_data_size;
 136}
 137
 138static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
 139{
 140        return ecc_strength * galois_field;
 141}
 142
 143static uint32_t mxs_nand_aux_status_offset(void)
 144{
 145        return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
 146}
 147
 148static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
 149                                                uint32_t page_oob_size)
 150{
 151        int ecc_strength;
 152        int max_ecc_strength_supported;
 153
 154        /* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
 155        if (is_mx6sx() || is_mx7())
 156                max_ecc_strength_supported = 62;
 157        else
 158                max_ecc_strength_supported = 40;
 159
 160        /*
 161         * Determine the ECC layout with the formula:
 162         *      ECC bits per chunk = (total page spare data bits) /
 163         *              (bits per ECC level) / (chunks per page)
 164         * where:
 165         *      total page spare data bits =
 166         *              (page oob size - meta data size) * (bits per byte)
 167         */
 168        ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8)
 169                        / (galois_field *
 170                           mxs_nand_ecc_chunk_cnt(page_data_size));
 171
 172        return min(round_down(ecc_strength, 2), max_ecc_strength_supported);
 173}
 174
 175static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
 176                                                uint32_t ecc_strength)
 177{
 178        uint32_t chunk_data_size_in_bits;
 179        uint32_t chunk_ecc_size_in_bits;
 180        uint32_t chunk_total_size_in_bits;
 181        uint32_t block_mark_chunk_number;
 182        uint32_t block_mark_chunk_bit_offset;
 183        uint32_t block_mark_bit_offset;
 184
 185        chunk_data_size_in_bits = chunk_data_size * 8;
 186        chunk_ecc_size_in_bits  = mxs_nand_ecc_size_in_bits(ecc_strength);
 187
 188        chunk_total_size_in_bits =
 189                        chunk_data_size_in_bits + chunk_ecc_size_in_bits;
 190
 191        /* Compute the bit offset of the block mark within the physical page. */
 192        block_mark_bit_offset = page_data_size * 8;
 193
 194        /* Subtract the metadata bits. */
 195        block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
 196
 197        /*
 198         * Compute the chunk number (starting at zero) in which the block mark
 199         * appears.
 200         */
 201        block_mark_chunk_number =
 202                        block_mark_bit_offset / chunk_total_size_in_bits;
 203
 204        /*
 205         * Compute the bit offset of the block mark within its chunk, and
 206         * validate it.
 207         */
 208        block_mark_chunk_bit_offset = block_mark_bit_offset -
 209                        (block_mark_chunk_number * chunk_total_size_in_bits);
 210
 211        if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
 212                return 1;
 213
 214        /*
 215         * Now that we know the chunk number in which the block mark appears,
 216         * we can subtract all the ECC bits that appear before it.
 217         */
 218        block_mark_bit_offset -=
 219                block_mark_chunk_number * chunk_ecc_size_in_bits;
 220
 221        return block_mark_bit_offset;
 222}
 223
 224static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
 225{
 226        uint32_t ecc_strength;
 227        ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
 228        return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
 229}
 230
 231static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
 232{
 233        uint32_t ecc_strength;
 234        ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
 235        return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
 236}
 237
 238/*
 239 * Wait for BCH complete IRQ and clear the IRQ
 240 */
 241static int mxs_nand_wait_for_bch_complete(void)
 242{
 243        struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 244        int timeout = MXS_NAND_BCH_TIMEOUT;
 245        int ret;
 246
 247        ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
 248                BCH_CTRL_COMPLETE_IRQ, timeout);
 249
 250        writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
 251
 252        return ret;
 253}
 254
 255/*
 256 * This is the function that we install in the cmd_ctrl function pointer of the
 257 * owning struct nand_chip. The only functions in the reference implementation
 258 * that use these functions pointers are cmdfunc and select_chip.
 259 *
 260 * In this driver, we implement our own select_chip, so this function will only
 261 * be called by the reference implementation's cmdfunc. For this reason, we can
 262 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
 263 * Flash.
 264 */
 265static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
 266{
 267        struct nand_chip *nand = mtd_to_nand(mtd);
 268        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 269        struct mxs_dma_desc *d;
 270        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 271        int ret;
 272
 273        /*
 274         * If this condition is true, something is _VERY_ wrong in MTD
 275         * subsystem!
 276         */
 277        if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
 278                printf("MXS NAND: Command queue too long\n");
 279                return;
 280        }
 281
 282        /*
 283         * Every operation begins with a command byte and a series of zero or
 284         * more address bytes. These are distinguished by either the Address
 285         * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
 286         * asserted. When MTD is ready to execute the command, it will
 287         * deasert both latch enables.
 288         *
 289         * Rather than run a separate DMA operation for every single byte, we
 290         * queue them up and run a single DMA operation for the entire series
 291         * of command and data bytes.
 292         */
 293        if (ctrl & (NAND_ALE | NAND_CLE)) {
 294                if (data != NAND_CMD_NONE)
 295                        nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
 296                return;
 297        }
 298
 299        /*
 300         * If control arrives here, MTD has deasserted both the ALE and CLE,
 301         * which means it's ready to run an operation. Check if we have any
 302         * bytes to send.
 303         */
 304        if (nand_info->cmd_queue_len == 0)
 305                return;
 306
 307        /* Compile the DMA descriptor -- a descriptor that sends command. */
 308        d = mxs_nand_get_dma_desc(nand_info);
 309        d->cmd.data =
 310                MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
 311                MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
 312                MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 313                (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
 314
 315        d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
 316
 317        d->cmd.pio_words[0] =
 318                GPMI_CTRL0_COMMAND_MODE_WRITE |
 319                GPMI_CTRL0_WORD_LENGTH |
 320                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 321                GPMI_CTRL0_ADDRESS_NAND_CLE |
 322                GPMI_CTRL0_ADDRESS_INCREMENT |
 323                nand_info->cmd_queue_len;
 324
 325        mxs_dma_desc_append(channel, d);
 326
 327        /* Flush caches */
 328        mxs_nand_flush_cmd_buf(nand_info);
 329
 330        /* Execute the DMA chain. */
 331        ret = mxs_dma_go(channel);
 332        if (ret)
 333                printf("MXS NAND: Error sending command\n");
 334
 335        mxs_nand_return_dma_descs(nand_info);
 336
 337        /* Reset the command queue. */
 338        nand_info->cmd_queue_len = 0;
 339}
 340
 341/*
 342 * Test if the NAND flash is ready.
 343 */
 344static int mxs_nand_device_ready(struct mtd_info *mtd)
 345{
 346        struct nand_chip *chip = mtd_to_nand(mtd);
 347        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 348        struct mxs_gpmi_regs *gpmi_regs =
 349                (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
 350        uint32_t tmp;
 351
 352        tmp = readl(&gpmi_regs->hw_gpmi_stat);
 353        tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
 354
 355        return tmp & 1;
 356}
 357
 358/*
 359 * Select the NAND chip.
 360 */
 361static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
 362{
 363        struct nand_chip *nand = mtd_to_nand(mtd);
 364        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 365
 366        nand_info->cur_chip = chip;
 367}
 368
 369/*
 370 * Handle block mark swapping.
 371 *
 372 * Note that, when this function is called, it doesn't know whether it's
 373 * swapping the block mark, or swapping it *back* -- but it doesn't matter
 374 * because the the operation is the same.
 375 */
 376static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
 377                                        uint8_t *data_buf, uint8_t *oob_buf)
 378{
 379        uint32_t bit_offset;
 380        uint32_t buf_offset;
 381
 382        uint32_t src;
 383        uint32_t dst;
 384
 385        bit_offset = mxs_nand_mark_bit_offset(mtd);
 386        buf_offset = mxs_nand_mark_byte_offset(mtd);
 387
 388        /*
 389         * Get the byte from the data area that overlays the block mark. Since
 390         * the ECC engine applies its own view to the bits in the page, the
 391         * physical block mark won't (in general) appear on a byte boundary in
 392         * the data.
 393         */
 394        src = data_buf[buf_offset] >> bit_offset;
 395        src |= data_buf[buf_offset + 1] << (8 - bit_offset);
 396
 397        dst = oob_buf[0];
 398
 399        oob_buf[0] = src;
 400
 401        data_buf[buf_offset] &= ~(0xff << bit_offset);
 402        data_buf[buf_offset + 1] &= 0xff << bit_offset;
 403
 404        data_buf[buf_offset] |= dst << bit_offset;
 405        data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
 406}
 407
 408/*
 409 * Read data from NAND.
 410 */
 411static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
 412{
 413        struct nand_chip *nand = mtd_to_nand(mtd);
 414        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 415        struct mxs_dma_desc *d;
 416        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 417        int ret;
 418
 419        if (length > NAND_MAX_PAGESIZE) {
 420                printf("MXS NAND: DMA buffer too big\n");
 421                return;
 422        }
 423
 424        if (!buf) {
 425                printf("MXS NAND: DMA buffer is NULL\n");
 426                return;
 427        }
 428
 429        /* Compile the DMA descriptor - a descriptor that reads data. */
 430        d = mxs_nand_get_dma_desc(nand_info);
 431        d->cmd.data =
 432                MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
 433                MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 434                (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 435                (length << MXS_DMA_DESC_BYTES_OFFSET);
 436
 437        d->cmd.address = (dma_addr_t)nand_info->data_buf;
 438
 439        d->cmd.pio_words[0] =
 440                GPMI_CTRL0_COMMAND_MODE_READ |
 441                GPMI_CTRL0_WORD_LENGTH |
 442                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 443                GPMI_CTRL0_ADDRESS_NAND_DATA |
 444                length;
 445
 446        mxs_dma_desc_append(channel, d);
 447
 448        /*
 449         * A DMA descriptor that waits for the command to end and the chip to
 450         * become ready.
 451         *
 452         * I think we actually should *not* be waiting for the chip to become
 453         * ready because, after all, we don't care. I think the original code
 454         * did that and no one has re-thought it yet.
 455         */
 456        d = mxs_nand_get_dma_desc(nand_info);
 457        d->cmd.data =
 458                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 459                MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
 460                MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 461
 462        d->cmd.address = 0;
 463
 464        d->cmd.pio_words[0] =
 465                GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 466                GPMI_CTRL0_WORD_LENGTH |
 467                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 468                GPMI_CTRL0_ADDRESS_NAND_DATA;
 469
 470        mxs_dma_desc_append(channel, d);
 471
 472        /* Invalidate caches */
 473        mxs_nand_inval_data_buf(nand_info);
 474
 475        /* Execute the DMA chain. */
 476        ret = mxs_dma_go(channel);
 477        if (ret) {
 478                printf("MXS NAND: DMA read error\n");
 479                goto rtn;
 480        }
 481
 482        /* Invalidate caches */
 483        mxs_nand_inval_data_buf(nand_info);
 484
 485        memcpy(buf, nand_info->data_buf, length);
 486
 487rtn:
 488        mxs_nand_return_dma_descs(nand_info);
 489}
 490
 491/*
 492 * Write data to NAND.
 493 */
 494static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
 495                                int length)
 496{
 497        struct nand_chip *nand = mtd_to_nand(mtd);
 498        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 499        struct mxs_dma_desc *d;
 500        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 501        int ret;
 502
 503        if (length > NAND_MAX_PAGESIZE) {
 504                printf("MXS NAND: DMA buffer too big\n");
 505                return;
 506        }
 507
 508        if (!buf) {
 509                printf("MXS NAND: DMA buffer is NULL\n");
 510                return;
 511        }
 512
 513        memcpy(nand_info->data_buf, buf, length);
 514
 515        /* Compile the DMA descriptor - a descriptor that writes data. */
 516        d = mxs_nand_get_dma_desc(nand_info);
 517        d->cmd.data =
 518                MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
 519                MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 520                (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 521                (length << MXS_DMA_DESC_BYTES_OFFSET);
 522
 523        d->cmd.address = (dma_addr_t)nand_info->data_buf;
 524
 525        d->cmd.pio_words[0] =
 526                GPMI_CTRL0_COMMAND_MODE_WRITE |
 527                GPMI_CTRL0_WORD_LENGTH |
 528                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 529                GPMI_CTRL0_ADDRESS_NAND_DATA |
 530                length;
 531
 532        mxs_dma_desc_append(channel, d);
 533
 534        /* Flush caches */
 535        mxs_nand_flush_data_buf(nand_info);
 536
 537        /* Execute the DMA chain. */
 538        ret = mxs_dma_go(channel);
 539        if (ret)
 540                printf("MXS NAND: DMA write error\n");
 541
 542        mxs_nand_return_dma_descs(nand_info);
 543}
 544
 545/*
 546 * Read a single byte from NAND.
 547 */
 548static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
 549{
 550        uint8_t buf;
 551        mxs_nand_read_buf(mtd, &buf, 1);
 552        return buf;
 553}
 554
 555/*
 556 * Read a page from NAND.
 557 */
 558static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
 559                                        uint8_t *buf, int oob_required,
 560                                        int page)
 561{
 562        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 563        struct mxs_dma_desc *d;
 564        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 565        uint32_t corrected = 0, failed = 0;
 566        uint8_t *status;
 567        int i, ret;
 568
 569        /* Compile the DMA descriptor - wait for ready. */
 570        d = mxs_nand_get_dma_desc(nand_info);
 571        d->cmd.data =
 572                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 573                MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
 574                (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 575
 576        d->cmd.address = 0;
 577
 578        d->cmd.pio_words[0] =
 579                GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 580                GPMI_CTRL0_WORD_LENGTH |
 581                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 582                GPMI_CTRL0_ADDRESS_NAND_DATA;
 583
 584        mxs_dma_desc_append(channel, d);
 585
 586        /* Compile the DMA descriptor - enable the BCH block and read. */
 587        d = mxs_nand_get_dma_desc(nand_info);
 588        d->cmd.data =
 589                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 590                MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 591
 592        d->cmd.address = 0;
 593
 594        d->cmd.pio_words[0] =
 595                GPMI_CTRL0_COMMAND_MODE_READ |
 596                GPMI_CTRL0_WORD_LENGTH |
 597                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 598                GPMI_CTRL0_ADDRESS_NAND_DATA |
 599                (mtd->writesize + mtd->oobsize);
 600        d->cmd.pio_words[1] = 0;
 601        d->cmd.pio_words[2] =
 602                GPMI_ECCCTRL_ENABLE_ECC |
 603                GPMI_ECCCTRL_ECC_CMD_DECODE |
 604                GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
 605        d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
 606        d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
 607        d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
 608
 609        mxs_dma_desc_append(channel, d);
 610
 611        /* Compile the DMA descriptor - disable the BCH block. */
 612        d = mxs_nand_get_dma_desc(nand_info);
 613        d->cmd.data =
 614                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 615                MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
 616                (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 617
 618        d->cmd.address = 0;
 619
 620        d->cmd.pio_words[0] =
 621                GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 622                GPMI_CTRL0_WORD_LENGTH |
 623                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 624                GPMI_CTRL0_ADDRESS_NAND_DATA |
 625                (mtd->writesize + mtd->oobsize);
 626        d->cmd.pio_words[1] = 0;
 627        d->cmd.pio_words[2] = 0;
 628
 629        mxs_dma_desc_append(channel, d);
 630
 631        /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
 632        d = mxs_nand_get_dma_desc(nand_info);
 633        d->cmd.data =
 634                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 635                MXS_DMA_DESC_DEC_SEM;
 636
 637        d->cmd.address = 0;
 638
 639        mxs_dma_desc_append(channel, d);
 640
 641        /* Invalidate caches */
 642        mxs_nand_inval_data_buf(nand_info);
 643
 644        /* Execute the DMA chain. */
 645        ret = mxs_dma_go(channel);
 646        if (ret) {
 647                printf("MXS NAND: DMA read error\n");
 648                goto rtn;
 649        }
 650
 651        ret = mxs_nand_wait_for_bch_complete();
 652        if (ret) {
 653                printf("MXS NAND: BCH read timeout\n");
 654                goto rtn;
 655        }
 656
 657        /* Invalidate caches */
 658        mxs_nand_inval_data_buf(nand_info);
 659
 660        /* Read DMA completed, now do the mark swapping. */
 661        mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
 662
 663        /* Loop over status bytes, accumulating ECC status. */
 664        status = nand_info->oob_buf + mxs_nand_aux_status_offset();
 665        for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
 666                if (status[i] == 0x00)
 667                        continue;
 668
 669                if (status[i] == 0xff)
 670                        continue;
 671
 672                if (status[i] == 0xfe) {
 673                        failed++;
 674                        continue;
 675                }
 676
 677                corrected += status[i];
 678        }
 679
 680        /* Propagate ECC status to the owning MTD. */
 681        mtd->ecc_stats.failed += failed;
 682        mtd->ecc_stats.corrected += corrected;
 683
 684        /*
 685         * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
 686         * details about our policy for delivering the OOB.
 687         *
 688         * We fill the caller's buffer with set bits, and then copy the block
 689         * mark to the caller's buffer. Note that, if block mark swapping was
 690         * necessary, it has already been done, so we can rely on the first
 691         * byte of the auxiliary buffer to contain the block mark.
 692         */
 693        memset(nand->oob_poi, 0xff, mtd->oobsize);
 694
 695        nand->oob_poi[0] = nand_info->oob_buf[0];
 696
 697        memcpy(buf, nand_info->data_buf, mtd->writesize);
 698
 699rtn:
 700        mxs_nand_return_dma_descs(nand_info);
 701
 702        return ret;
 703}
 704
 705/*
 706 * Write a page to NAND.
 707 */
 708static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
 709                                struct nand_chip *nand, const uint8_t *buf,
 710                                int oob_required, int page)
 711{
 712        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 713        struct mxs_dma_desc *d;
 714        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 715        int ret;
 716
 717        memcpy(nand_info->data_buf, buf, mtd->writesize);
 718        memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
 719
 720        /* Handle block mark swapping. */
 721        mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
 722
 723        /* Compile the DMA descriptor - write data. */
 724        d = mxs_nand_get_dma_desc(nand_info);
 725        d->cmd.data =
 726                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 727                MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 728                (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 729
 730        d->cmd.address = 0;
 731
 732        d->cmd.pio_words[0] =
 733                GPMI_CTRL0_COMMAND_MODE_WRITE |
 734                GPMI_CTRL0_WORD_LENGTH |
 735                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 736                GPMI_CTRL0_ADDRESS_NAND_DATA;
 737        d->cmd.pio_words[1] = 0;
 738        d->cmd.pio_words[2] =
 739                GPMI_ECCCTRL_ENABLE_ECC |
 740                GPMI_ECCCTRL_ECC_CMD_ENCODE |
 741                GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
 742        d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
 743        d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
 744        d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
 745
 746        mxs_dma_desc_append(channel, d);
 747
 748        /* Flush caches */
 749        mxs_nand_flush_data_buf(nand_info);
 750
 751        /* Execute the DMA chain. */
 752        ret = mxs_dma_go(channel);
 753        if (ret) {
 754                printf("MXS NAND: DMA write error\n");
 755                goto rtn;
 756        }
 757
 758        ret = mxs_nand_wait_for_bch_complete();
 759        if (ret) {
 760                printf("MXS NAND: BCH write timeout\n");
 761                goto rtn;
 762        }
 763
 764rtn:
 765        mxs_nand_return_dma_descs(nand_info);
 766        return 0;
 767}
 768
 769/*
 770 * Read OOB from NAND.
 771 *
 772 * This function is a veneer that replaces the function originally installed by
 773 * the NAND Flash MTD code.
 774 */
 775static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
 776                                        struct mtd_oob_ops *ops)
 777{
 778        struct nand_chip *chip = mtd_to_nand(mtd);
 779        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 780        int ret;
 781
 782        if (ops->mode == MTD_OPS_RAW)
 783                nand_info->raw_oob_mode = 1;
 784        else
 785                nand_info->raw_oob_mode = 0;
 786
 787        ret = nand_info->hooked_read_oob(mtd, from, ops);
 788
 789        nand_info->raw_oob_mode = 0;
 790
 791        return ret;
 792}
 793
 794/*
 795 * Write OOB to NAND.
 796 *
 797 * This function is a veneer that replaces the function originally installed by
 798 * the NAND Flash MTD code.
 799 */
 800static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
 801                                        struct mtd_oob_ops *ops)
 802{
 803        struct nand_chip *chip = mtd_to_nand(mtd);
 804        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 805        int ret;
 806
 807        if (ops->mode == MTD_OPS_RAW)
 808                nand_info->raw_oob_mode = 1;
 809        else
 810                nand_info->raw_oob_mode = 0;
 811
 812        ret = nand_info->hooked_write_oob(mtd, to, ops);
 813
 814        nand_info->raw_oob_mode = 0;
 815
 816        return ret;
 817}
 818
 819/*
 820 * Mark a block bad in NAND.
 821 *
 822 * This function is a veneer that replaces the function originally installed by
 823 * the NAND Flash MTD code.
 824 */
 825static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
 826{
 827        struct nand_chip *chip = mtd_to_nand(mtd);
 828        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 829        int ret;
 830
 831        nand_info->marking_block_bad = 1;
 832
 833        ret = nand_info->hooked_block_markbad(mtd, ofs);
 834
 835        nand_info->marking_block_bad = 0;
 836
 837        return ret;
 838}
 839
 840/*
 841 * There are several places in this driver where we have to handle the OOB and
 842 * block marks. This is the function where things are the most complicated, so
 843 * this is where we try to explain it all. All the other places refer back to
 844 * here.
 845 *
 846 * These are the rules, in order of decreasing importance:
 847 *
 848 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
 849 *    write operations take measures to protect it.
 850 *
 851 * 2) In read operations, the first byte of the OOB we return must reflect the
 852 *    true state of the block mark, no matter where that block mark appears in
 853 *    the physical page.
 854 *
 855 * 3) ECC-based read operations return an OOB full of set bits (since we never
 856 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 857 *    return).
 858 *
 859 * 4) "Raw" read operations return a direct view of the physical bytes in the
 860 *    page, using the conventional definition of which bytes are data and which
 861 *    are OOB. This gives the caller a way to see the actual, physical bytes
 862 *    in the page, without the distortions applied by our ECC engine.
 863 *
 864 * What we do for this specific read operation depends on whether we're doing
 865 * "raw" read, or an ECC-based read.
 866 *
 867 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 868 * easy. When reading a page, for example, the NAND Flash MTD code calls our
 869 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 870 * ECC-based or raw view of the page is implicit in which function it calls
 871 * (there is a similar pair of ECC-based/raw functions for writing).
 872 *
 873 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
 874 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
 875 * caller wants an ECC-based or raw view of the page is not propagated down to
 876 * this driver.
 877 *
 878 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
 879 * ecc.read_oob and ecc.write_oob function pointers in the owning
 880 * struct mtd_info with our own functions. These hook functions set the
 881 * raw_oob_mode field so that, when control finally arrives here, we'll know
 882 * what to do.
 883 */
 884static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
 885                                int page)
 886{
 887        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 888
 889        /*
 890         * First, fill in the OOB buffer. If we're doing a raw read, we need to
 891         * get the bytes from the physical page. If we're not doing a raw read,
 892         * we need to fill the buffer with set bits.
 893         */
 894        if (nand_info->raw_oob_mode) {
 895                /*
 896                 * If control arrives here, we're doing a "raw" read. Send the
 897                 * command to read the conventional OOB and read it.
 898                 */
 899                nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
 900                nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
 901        } else {
 902                /*
 903                 * If control arrives here, we're not doing a "raw" read. Fill
 904                 * the OOB buffer with set bits and correct the block mark.
 905                 */
 906                memset(nand->oob_poi, 0xff, mtd->oobsize);
 907
 908                nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
 909                mxs_nand_read_buf(mtd, nand->oob_poi, 1);
 910        }
 911
 912        return 0;
 913
 914}
 915
 916/*
 917 * Write OOB data to NAND.
 918 */
 919static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
 920                                        int page)
 921{
 922        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 923        uint8_t block_mark = 0;
 924
 925        /*
 926         * There are fundamental incompatibilities between the i.MX GPMI NFC and
 927         * the NAND Flash MTD model that make it essentially impossible to write
 928         * the out-of-band bytes.
 929         *
 930         * We permit *ONE* exception. If the *intent* of writing the OOB is to
 931         * mark a block bad, we can do that.
 932         */
 933
 934        if (!nand_info->marking_block_bad) {
 935                printf("NXS NAND: Writing OOB isn't supported\n");
 936                return -EIO;
 937        }
 938
 939        /* Write the block mark. */
 940        nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 941        nand->write_buf(mtd, &block_mark, 1);
 942        nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 943
 944        /* Check if it worked. */
 945        if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
 946                return -EIO;
 947
 948        return 0;
 949}
 950
 951/*
 952 * Claims all blocks are good.
 953 *
 954 * In principle, this function is *only* called when the NAND Flash MTD system
 955 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
 956 * the driver for bad block information.
 957 *
 958 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
 959 * this function is *only* called when we take it away.
 960 *
 961 * Thus, this function is only called when we want *all* blocks to look good,
 962 * so it *always* return success.
 963 */
 964static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
 965{
 966        return 0;
 967}
 968
 969/*
 970 * Nominally, the purpose of this function is to look for or create the bad
 971 * block table. In fact, since the we call this function at the very end of
 972 * the initialization process started by nand_scan(), and we doesn't have a
 973 * more formal mechanism, we "hook" this function to continue init process.
 974 *
 975 * At this point, the physical NAND Flash chips have been identified and
 976 * counted, so we know the physical geometry. This enables us to make some
 977 * important configuration decisions.
 978 *
 979 * The return value of this function propogates directly back to this driver's
 980 * call to nand_scan(). Anything other than zero will cause this driver to
 981 * tear everything down and declare failure.
 982 */
 983static int mxs_nand_scan_bbt(struct mtd_info *mtd)
 984{
 985        struct nand_chip *nand = mtd_to_nand(mtd);
 986        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 987        struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 988        uint32_t tmp;
 989
 990        if (mtd->oobsize > MXS_NAND_CHUNK_DATA_CHUNK_SIZE) {
 991                galois_field = 14;
 992                chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 2;
 993        }
 994
 995        if (mtd->oobsize > chunk_data_size) {
 996                printf("Not support the NAND chips whose oob size is larger then %d bytes!\n", chunk_data_size);
 997                return -EINVAL;
 998        }
 999
1000        /* Configure BCH and set NFC geometry */
1001        mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1002
1003        /* Configure layout 0 */
1004        tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
1005                << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
1006        tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
1007        tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
1008                << BCH_FLASHLAYOUT0_ECC0_OFFSET;
1009        tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1010        tmp |= (14 == galois_field ? 1 : 0) <<
1011                BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
1012        writel(tmp, &bch_regs->hw_bch_flash0layout0);
1013
1014        tmp = (mtd->writesize + mtd->oobsize)
1015                << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
1016        tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
1017                << BCH_FLASHLAYOUT1_ECCN_OFFSET;
1018        tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1019        tmp |= (14 == galois_field ? 1 : 0) <<
1020                BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
1021        writel(tmp, &bch_regs->hw_bch_flash0layout1);
1022
1023        /* Set *all* chip selects to use layout 0 */
1024        writel(0, &bch_regs->hw_bch_layoutselect);
1025
1026        /* Enable BCH complete interrupt */
1027        writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
1028
1029        /* Hook some operations at the MTD level. */
1030        if (mtd->_read_oob != mxs_nand_hook_read_oob) {
1031                nand_info->hooked_read_oob = mtd->_read_oob;
1032                mtd->_read_oob = mxs_nand_hook_read_oob;
1033        }
1034
1035        if (mtd->_write_oob != mxs_nand_hook_write_oob) {
1036                nand_info->hooked_write_oob = mtd->_write_oob;
1037                mtd->_write_oob = mxs_nand_hook_write_oob;
1038        }
1039
1040        if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
1041                nand_info->hooked_block_markbad = mtd->_block_markbad;
1042                mtd->_block_markbad = mxs_nand_hook_block_markbad;
1043        }
1044
1045        /* We use the reference implementation for bad block management. */
1046        return nand_default_bbt(mtd);
1047}
1048
1049/*
1050 * Allocate DMA buffers
1051 */
1052int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1053{
1054        uint8_t *buf;
1055        const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1056
1057        nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1058
1059        /* DMA buffers */
1060        buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
1061        if (!buf) {
1062                printf("MXS NAND: Error allocating DMA buffers\n");
1063                return -ENOMEM;
1064        }
1065
1066        memset(buf, 0, nand_info->data_buf_size);
1067
1068        nand_info->data_buf = buf;
1069        nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
1070        /* Command buffers */
1071        nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1072                                MXS_NAND_COMMAND_BUFFER_SIZE);
1073        if (!nand_info->cmd_buf) {
1074                free(buf);
1075                printf("MXS NAND: Error allocating command buffers\n");
1076                return -ENOMEM;
1077        }
1078        memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1079        nand_info->cmd_queue_len = 0;
1080
1081        return 0;
1082}
1083
1084/*
1085 * Initializes the NFC hardware.
1086 */
1087int mxs_nand_init(struct mxs_nand_info *info)
1088{
1089        struct mxs_gpmi_regs *gpmi_regs =
1090                (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1091        struct mxs_bch_regs *bch_regs =
1092                (struct mxs_bch_regs *)MXS_BCH_BASE;
1093        int i = 0, j, ret = 0;
1094
1095        info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1096                                MXS_NAND_DMA_DESCRIPTOR_COUNT);
1097        if (!info->desc) {
1098                ret = -ENOMEM;
1099                goto err1;
1100        }
1101
1102        /* Allocate the DMA descriptors. */
1103        for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1104                info->desc[i] = mxs_dma_desc_alloc();
1105                if (!info->desc[i]) {
1106                        ret = -ENOMEM;
1107                        goto err2;
1108                }
1109        }
1110
1111        /* Init the DMA controller. */
1112        for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1113                j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1114                ret = mxs_dma_init_channel(j);
1115                if (ret)
1116                        goto err3;
1117        }
1118
1119        /* Reset the GPMI block. */
1120        mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
1121        mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1122
1123        /*
1124         * Choose NAND mode, set IRQ polarity, disable write protection and
1125         * select BCH ECC.
1126         */
1127        clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
1128                        GPMI_CTRL1_GPMI_MODE,
1129                        GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1130                        GPMI_CTRL1_BCH_MODE);
1131
1132        return 0;
1133
1134err3:
1135        for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
1136                mxs_dma_release(j);
1137err2:
1138        for (--i; i >= 0; i--)
1139                mxs_dma_desc_free(info->desc[i]);
1140        free(info->desc);
1141err1:
1142        if (ret == -ENOMEM)
1143                printf("MXS NAND: Unable to allocate DMA descriptors\n");
1144        return ret;
1145}
1146
1147/*!
1148 * This function is called during the driver binding process.
1149 *
1150 * @param   pdev  the device structure used to store device specific
1151 *                information that is used by the suspend, resume and
1152 *                remove functions
1153 *
1154 * @return  The function always returns 0.
1155 */
1156int board_nand_init(struct nand_chip *nand)
1157{
1158        struct mxs_nand_info *nand_info;
1159        int err;
1160
1161        nand_info = malloc(sizeof(struct mxs_nand_info));
1162        if (!nand_info) {
1163                printf("MXS NAND: Failed to allocate private data\n");
1164                return -ENOMEM;
1165        }
1166        memset(nand_info, 0, sizeof(struct mxs_nand_info));
1167
1168        err = mxs_nand_alloc_buffers(nand_info);
1169        if (err)
1170                goto err1;
1171
1172        err = mxs_nand_init(nand_info);
1173        if (err)
1174                goto err2;
1175
1176        memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1177
1178        nand_set_controller_data(nand, nand_info);
1179        nand->options |= NAND_NO_SUBPAGE_WRITE;
1180
1181        nand->cmd_ctrl          = mxs_nand_cmd_ctrl;
1182
1183        nand->dev_ready         = mxs_nand_device_ready;
1184        nand->select_chip       = mxs_nand_select_chip;
1185        nand->block_bad         = mxs_nand_block_bad;
1186        nand->scan_bbt          = mxs_nand_scan_bbt;
1187
1188        nand->read_byte         = mxs_nand_read_byte;
1189
1190        nand->read_buf          = mxs_nand_read_buf;
1191        nand->write_buf         = mxs_nand_write_buf;
1192
1193        nand->ecc.read_page     = mxs_nand_ecc_read_page;
1194        nand->ecc.write_page    = mxs_nand_ecc_write_page;
1195        nand->ecc.read_oob      = mxs_nand_ecc_read_oob;
1196        nand->ecc.write_oob     = mxs_nand_ecc_write_oob;
1197
1198        nand->ecc.layout        = &fake_ecc_layout;
1199        nand->ecc.mode          = NAND_ECC_HW;
1200        nand->ecc.bytes         = 9;
1201        nand->ecc.size          = 512;
1202        nand->ecc.strength      = 8;
1203
1204        return 0;
1205
1206err2:
1207        free(nand_info->data_buf);
1208        free(nand_info->cmd_buf);
1209err1:
1210        free(nand_info);
1211        return err;
1212}
1213