uboot/fs/ubifs/io.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
   6 *
   7 * SPDX-License-Identifier:     GPL-2.0+
   8 *
   9 * Authors: Artem Bityutskiy (Битюцкий Артём)
  10 *          Adrian Hunter
  11 *          Zoltan Sogor
  12 */
  13
  14/*
  15 * This file implements UBIFS I/O subsystem which provides various I/O-related
  16 * helper functions (reading/writing/checking/validating nodes) and implements
  17 * write-buffering support. Write buffers help to save space which otherwise
  18 * would have been wasted for padding to the nearest minimal I/O unit boundary.
  19 * Instead, data first goes to the write-buffer and is flushed when the
  20 * buffer is full or when it is not used for some time (by timer). This is
  21 * similar to the mechanism is used by JFFS2.
  22 *
  23 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
  24 * write size (@c->max_write_size). The latter is the maximum amount of bytes
  25 * the underlying flash is able to program at a time, and writing in
  26 * @c->max_write_size units should presumably be faster. Obviously,
  27 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
  28 * @c->max_write_size bytes in size for maximum performance. However, when a
  29 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
  30 * boundary) which contains data is written, not the whole write-buffer,
  31 * because this is more space-efficient.
  32 *
  33 * This optimization adds few complications to the code. Indeed, on the one
  34 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
  35 * also means aligning writes at the @c->max_write_size bytes offsets. On the
  36 * other hand, we do not want to waste space when synchronizing the write
  37 * buffer, so during synchronization we writes in smaller chunks. And this makes
  38 * the next write offset to be not aligned to @c->max_write_size bytes. So the
  39 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
  40 * to @c->max_write_size bytes again. We do this by temporarily shrinking
  41 * write-buffer size (@wbuf->size).
  42 *
  43 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
  44 * mutexes defined inside these objects. Since sometimes upper-level code
  45 * has to lock the write-buffer (e.g. journal space reservation code), many
  46 * functions related to write-buffers have "nolock" suffix which means that the
  47 * caller has to lock the write-buffer before calling this function.
  48 *
  49 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
  50 * aligned, UBIFS starts the next node from the aligned address, and the padded
  51 * bytes may contain any rubbish. In other words, UBIFS does not put padding
  52 * bytes in those small gaps. Common headers of nodes store real node lengths,
  53 * not aligned lengths. Indexing nodes also store real lengths in branches.
  54 *
  55 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
  56 * uses padding nodes or padding bytes, if the padding node does not fit.
  57 *
  58 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
  59 * they are read from the flash media.
  60 */
  61
  62#ifndef __UBOOT__
  63#include <linux/crc32.h>
  64#include <linux/slab.h>
  65#else
  66#include <linux/compat.h>
  67#include <linux/err.h>
  68#endif
  69#include "ubifs.h"
  70
  71/**
  72 * ubifs_ro_mode - switch UBIFS to read read-only mode.
  73 * @c: UBIFS file-system description object
  74 * @err: error code which is the reason of switching to R/O mode
  75 */
  76void ubifs_ro_mode(struct ubifs_info *c, int err)
  77{
  78        if (!c->ro_error) {
  79                c->ro_error = 1;
  80                c->no_chk_data_crc = 0;
  81                c->vfs_sb->s_flags |= MS_RDONLY;
  82                ubifs_warn(c, "switched to read-only mode, error %d", err);
  83                dump_stack();
  84        }
  85}
  86
  87/*
  88 * Below are simple wrappers over UBI I/O functions which include some
  89 * additional checks and UBIFS debugging stuff. See corresponding UBI function
  90 * for more information.
  91 */
  92
  93int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
  94                   int len, int even_ebadmsg)
  95{
  96        int err;
  97
  98        err = ubi_read(c->ubi, lnum, buf, offs, len);
  99        /*
 100         * In case of %-EBADMSG print the error message only if the
 101         * @even_ebadmsg is true.
 102         */
 103        if (err && (err != -EBADMSG || even_ebadmsg)) {
 104                ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
 105                          len, lnum, offs, err);
 106                dump_stack();
 107        }
 108        return err;
 109}
 110
 111int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
 112                    int len)
 113{
 114        int err;
 115
 116        ubifs_assert(!c->ro_media && !c->ro_mount);
 117        if (c->ro_error)
 118                return -EROFS;
 119        if (!dbg_is_tst_rcvry(c))
 120                err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
 121#ifndef __UBOOT__
 122        else
 123                err = dbg_leb_write(c, lnum, buf, offs, len);
 124#endif
 125        if (err) {
 126                ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
 127                          len, lnum, offs, err);
 128                ubifs_ro_mode(c, err);
 129                dump_stack();
 130        }
 131        return err;
 132}
 133
 134int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
 135{
 136        int err;
 137
 138        ubifs_assert(!c->ro_media && !c->ro_mount);
 139        if (c->ro_error)
 140                return -EROFS;
 141        if (!dbg_is_tst_rcvry(c))
 142                err = ubi_leb_change(c->ubi, lnum, buf, len);
 143#ifndef __UBOOT__
 144        else
 145                err = dbg_leb_change(c, lnum, buf, len);
 146#endif
 147        if (err) {
 148                ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
 149                          len, lnum, err);
 150                ubifs_ro_mode(c, err);
 151                dump_stack();
 152        }
 153        return err;
 154}
 155
 156int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
 157{
 158        int err;
 159
 160        ubifs_assert(!c->ro_media && !c->ro_mount);
 161        if (c->ro_error)
 162                return -EROFS;
 163        if (!dbg_is_tst_rcvry(c))
 164                err = ubi_leb_unmap(c->ubi, lnum);
 165#ifndef __UBOOT__
 166        else
 167                err = dbg_leb_unmap(c, lnum);
 168#endif
 169        if (err) {
 170                ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
 171                ubifs_ro_mode(c, err);
 172                dump_stack();
 173        }
 174        return err;
 175}
 176
 177int ubifs_leb_map(struct ubifs_info *c, int lnum)
 178{
 179        int err;
 180
 181        ubifs_assert(!c->ro_media && !c->ro_mount);
 182        if (c->ro_error)
 183                return -EROFS;
 184        if (!dbg_is_tst_rcvry(c))
 185                err = ubi_leb_map(c->ubi, lnum);
 186#ifndef __UBOOT__
 187        else
 188                err = dbg_leb_map(c, lnum);
 189#endif
 190        if (err) {
 191                ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
 192                ubifs_ro_mode(c, err);
 193                dump_stack();
 194        }
 195        return err;
 196}
 197
 198int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
 199{
 200        int err;
 201
 202        err = ubi_is_mapped(c->ubi, lnum);
 203        if (err < 0) {
 204                ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
 205                          lnum, err);
 206                dump_stack();
 207        }
 208        return err;
 209}
 210
 211/**
 212 * ubifs_check_node - check node.
 213 * @c: UBIFS file-system description object
 214 * @buf: node to check
 215 * @lnum: logical eraseblock number
 216 * @offs: offset within the logical eraseblock
 217 * @quiet: print no messages
 218 * @must_chk_crc: indicates whether to always check the CRC
 219 *
 220 * This function checks node magic number and CRC checksum. This function also
 221 * validates node length to prevent UBIFS from becoming crazy when an attacker
 222 * feeds it a file-system image with incorrect nodes. For example, too large
 223 * node length in the common header could cause UBIFS to read memory outside of
 224 * allocated buffer when checking the CRC checksum.
 225 *
 226 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
 227 * true, which is controlled by corresponding UBIFS mount option. However, if
 228 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
 229 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
 230 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
 231 * is checked. This is because during mounting or re-mounting from R/O mode to
 232 * R/W mode we may read journal nodes (when replying the journal or doing the
 233 * recovery) and the journal nodes may potentially be corrupted, so checking is
 234 * required.
 235 *
 236 * This function returns zero in case of success and %-EUCLEAN in case of bad
 237 * CRC or magic.
 238 */
 239int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
 240                     int offs, int quiet, int must_chk_crc)
 241{
 242        int err = -EINVAL, type, node_len;
 243        uint32_t crc, node_crc, magic;
 244        const struct ubifs_ch *ch = buf;
 245
 246        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 247        ubifs_assert(!(offs & 7) && offs < c->leb_size);
 248
 249        magic = le32_to_cpu(ch->magic);
 250        if (magic != UBIFS_NODE_MAGIC) {
 251                if (!quiet)
 252                        ubifs_err(c, "bad magic %#08x, expected %#08x",
 253                                  magic, UBIFS_NODE_MAGIC);
 254                err = -EUCLEAN;
 255                goto out;
 256        }
 257
 258        type = ch->node_type;
 259        if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
 260                if (!quiet)
 261                        ubifs_err(c, "bad node type %d", type);
 262                goto out;
 263        }
 264
 265        node_len = le32_to_cpu(ch->len);
 266        if (node_len + offs > c->leb_size)
 267                goto out_len;
 268
 269        if (c->ranges[type].max_len == 0) {
 270                if (node_len != c->ranges[type].len)
 271                        goto out_len;
 272        } else if (node_len < c->ranges[type].min_len ||
 273                   node_len > c->ranges[type].max_len)
 274                goto out_len;
 275
 276        if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
 277            !c->remounting_rw && c->no_chk_data_crc)
 278                return 0;
 279
 280        crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 281        node_crc = le32_to_cpu(ch->crc);
 282        if (crc != node_crc) {
 283                if (!quiet)
 284                        ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
 285                                  crc, node_crc);
 286                err = -EUCLEAN;
 287                goto out;
 288        }
 289
 290        return 0;
 291
 292out_len:
 293        if (!quiet)
 294                ubifs_err(c, "bad node length %d", node_len);
 295out:
 296        if (!quiet) {
 297                ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
 298                ubifs_dump_node(c, buf);
 299                dump_stack();
 300        }
 301        return err;
 302}
 303
 304/**
 305 * ubifs_pad - pad flash space.
 306 * @c: UBIFS file-system description object
 307 * @buf: buffer to put padding to
 308 * @pad: how many bytes to pad
 309 *
 310 * The flash media obliges us to write only in chunks of %c->min_io_size and
 311 * when we have to write less data we add padding node to the write-buffer and
 312 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
 313 * media is being scanned. If the amount of wasted space is not enough to fit a
 314 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
 315 * pattern (%UBIFS_PADDING_BYTE).
 316 *
 317 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
 318 * used.
 319 */
 320void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
 321{
 322        uint32_t crc;
 323
 324        ubifs_assert(pad >= 0 && !(pad & 7));
 325
 326        if (pad >= UBIFS_PAD_NODE_SZ) {
 327                struct ubifs_ch *ch = buf;
 328                struct ubifs_pad_node *pad_node = buf;
 329
 330                ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 331                ch->node_type = UBIFS_PAD_NODE;
 332                ch->group_type = UBIFS_NO_NODE_GROUP;
 333                ch->padding[0] = ch->padding[1] = 0;
 334                ch->sqnum = 0;
 335                ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
 336                pad -= UBIFS_PAD_NODE_SZ;
 337                pad_node->pad_len = cpu_to_le32(pad);
 338                crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
 339                ch->crc = cpu_to_le32(crc);
 340                memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
 341        } else if (pad > 0)
 342                /* Too little space, padding node won't fit */
 343                memset(buf, UBIFS_PADDING_BYTE, pad);
 344}
 345
 346/**
 347 * next_sqnum - get next sequence number.
 348 * @c: UBIFS file-system description object
 349 */
 350static unsigned long long next_sqnum(struct ubifs_info *c)
 351{
 352        unsigned long long sqnum;
 353
 354        spin_lock(&c->cnt_lock);
 355        sqnum = ++c->max_sqnum;
 356        spin_unlock(&c->cnt_lock);
 357
 358        if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
 359                if (sqnum >= SQNUM_WATERMARK) {
 360                        ubifs_err(c, "sequence number overflow %llu, end of life",
 361                                  sqnum);
 362                        ubifs_ro_mode(c, -EINVAL);
 363                }
 364                ubifs_warn(c, "running out of sequence numbers, end of life soon");
 365        }
 366
 367        return sqnum;
 368}
 369
 370/**
 371 * ubifs_prepare_node - prepare node to be written to flash.
 372 * @c: UBIFS file-system description object
 373 * @node: the node to pad
 374 * @len: node length
 375 * @pad: if the buffer has to be padded
 376 *
 377 * This function prepares node at @node to be written to the media - it
 378 * calculates node CRC, fills the common header, and adds proper padding up to
 379 * the next minimum I/O unit if @pad is not zero.
 380 */
 381void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
 382{
 383        uint32_t crc;
 384        struct ubifs_ch *ch = node;
 385        unsigned long long sqnum = next_sqnum(c);
 386
 387        ubifs_assert(len >= UBIFS_CH_SZ);
 388
 389        ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 390        ch->len = cpu_to_le32(len);
 391        ch->group_type = UBIFS_NO_NODE_GROUP;
 392        ch->sqnum = cpu_to_le64(sqnum);
 393        ch->padding[0] = ch->padding[1] = 0;
 394        crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
 395        ch->crc = cpu_to_le32(crc);
 396
 397        if (pad) {
 398                len = ALIGN(len, 8);
 399                pad = ALIGN(len, c->min_io_size) - len;
 400                ubifs_pad(c, node + len, pad);
 401        }
 402}
 403
 404/**
 405 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
 406 * @c: UBIFS file-system description object
 407 * @node: the node to pad
 408 * @len: node length
 409 * @last: indicates the last node of the group
 410 *
 411 * This function prepares node at @node to be written to the media - it
 412 * calculates node CRC and fills the common header.
 413 */
 414void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
 415{
 416        uint32_t crc;
 417        struct ubifs_ch *ch = node;
 418        unsigned long long sqnum = next_sqnum(c);
 419
 420        ubifs_assert(len >= UBIFS_CH_SZ);
 421
 422        ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 423        ch->len = cpu_to_le32(len);
 424        if (last)
 425                ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
 426        else
 427                ch->group_type = UBIFS_IN_NODE_GROUP;
 428        ch->sqnum = cpu_to_le64(sqnum);
 429        ch->padding[0] = ch->padding[1] = 0;
 430        crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
 431        ch->crc = cpu_to_le32(crc);
 432}
 433
 434#ifndef __UBOOT__
 435/**
 436 * wbuf_timer_callback - write-buffer timer callback function.
 437 * @timer: timer data (write-buffer descriptor)
 438 *
 439 * This function is called when the write-buffer timer expires.
 440 */
 441static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
 442{
 443        struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
 444
 445        dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
 446        wbuf->need_sync = 1;
 447        wbuf->c->need_wbuf_sync = 1;
 448        ubifs_wake_up_bgt(wbuf->c);
 449        return HRTIMER_NORESTART;
 450}
 451
 452/**
 453 * new_wbuf_timer - start new write-buffer timer.
 454 * @wbuf: write-buffer descriptor
 455 */
 456static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
 457{
 458        ubifs_assert(!hrtimer_active(&wbuf->timer));
 459
 460        if (wbuf->no_timer)
 461                return;
 462        dbg_io("set timer for jhead %s, %llu-%llu millisecs",
 463               dbg_jhead(wbuf->jhead),
 464               div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
 465               div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
 466                       USEC_PER_SEC));
 467        hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
 468                               HRTIMER_MODE_REL);
 469}
 470#endif
 471
 472/**
 473 * cancel_wbuf_timer - cancel write-buffer timer.
 474 * @wbuf: write-buffer descriptor
 475 */
 476static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
 477{
 478        if (wbuf->no_timer)
 479                return;
 480        wbuf->need_sync = 0;
 481#ifndef __UBOOT__
 482        hrtimer_cancel(&wbuf->timer);
 483#endif
 484}
 485
 486/**
 487 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
 488 * @wbuf: write-buffer to synchronize
 489 *
 490 * This function synchronizes write-buffer @buf and returns zero in case of
 491 * success or a negative error code in case of failure.
 492 *
 493 * Note, although write-buffers are of @c->max_write_size, this function does
 494 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
 495 * if the write-buffer is only partially filled with data, only the used part
 496 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
 497 * This way we waste less space.
 498 */
 499int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
 500{
 501        struct ubifs_info *c = wbuf->c;
 502        int err, dirt, sync_len;
 503
 504        cancel_wbuf_timer_nolock(wbuf);
 505        if (!wbuf->used || wbuf->lnum == -1)
 506                /* Write-buffer is empty or not seeked */
 507                return 0;
 508
 509        dbg_io("LEB %d:%d, %d bytes, jhead %s",
 510               wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
 511        ubifs_assert(!(wbuf->avail & 7));
 512        ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
 513        ubifs_assert(wbuf->size >= c->min_io_size);
 514        ubifs_assert(wbuf->size <= c->max_write_size);
 515        ubifs_assert(wbuf->size % c->min_io_size == 0);
 516        ubifs_assert(!c->ro_media && !c->ro_mount);
 517        if (c->leb_size - wbuf->offs >= c->max_write_size)
 518                ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
 519
 520        if (c->ro_error)
 521                return -EROFS;
 522
 523        /*
 524         * Do not write whole write buffer but write only the minimum necessary
 525         * amount of min. I/O units.
 526         */
 527        sync_len = ALIGN(wbuf->used, c->min_io_size);
 528        dirt = sync_len - wbuf->used;
 529        if (dirt)
 530                ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
 531        err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
 532        if (err)
 533                return err;
 534
 535        spin_lock(&wbuf->lock);
 536        wbuf->offs += sync_len;
 537        /*
 538         * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
 539         * But our goal is to optimize writes and make sure we write in
 540         * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
 541         * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
 542         * sure that @wbuf->offs + @wbuf->size is aligned to
 543         * @c->max_write_size. This way we make sure that after next
 544         * write-buffer flush we are again at the optimal offset (aligned to
 545         * @c->max_write_size).
 546         */
 547        if (c->leb_size - wbuf->offs < c->max_write_size)
 548                wbuf->size = c->leb_size - wbuf->offs;
 549        else if (wbuf->offs & (c->max_write_size - 1))
 550                wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
 551        else
 552                wbuf->size = c->max_write_size;
 553        wbuf->avail = wbuf->size;
 554        wbuf->used = 0;
 555        wbuf->next_ino = 0;
 556        spin_unlock(&wbuf->lock);
 557
 558        if (wbuf->sync_callback)
 559                err = wbuf->sync_callback(c, wbuf->lnum,
 560                                          c->leb_size - wbuf->offs, dirt);
 561        return err;
 562}
 563
 564/**
 565 * ubifs_wbuf_seek_nolock - seek write-buffer.
 566 * @wbuf: write-buffer
 567 * @lnum: logical eraseblock number to seek to
 568 * @offs: logical eraseblock offset to seek to
 569 *
 570 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
 571 * The write-buffer has to be empty. Returns zero in case of success and a
 572 * negative error code in case of failure.
 573 */
 574int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
 575{
 576        const struct ubifs_info *c = wbuf->c;
 577
 578        dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
 579        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
 580        ubifs_assert(offs >= 0 && offs <= c->leb_size);
 581        ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
 582        ubifs_assert(lnum != wbuf->lnum);
 583        ubifs_assert(wbuf->used == 0);
 584
 585        spin_lock(&wbuf->lock);
 586        wbuf->lnum = lnum;
 587        wbuf->offs = offs;
 588        if (c->leb_size - wbuf->offs < c->max_write_size)
 589                wbuf->size = c->leb_size - wbuf->offs;
 590        else if (wbuf->offs & (c->max_write_size - 1))
 591                wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
 592        else
 593                wbuf->size = c->max_write_size;
 594        wbuf->avail = wbuf->size;
 595        wbuf->used = 0;
 596        spin_unlock(&wbuf->lock);
 597
 598        return 0;
 599}
 600
 601#ifndef __UBOOT__
 602/**
 603 * ubifs_bg_wbufs_sync - synchronize write-buffers.
 604 * @c: UBIFS file-system description object
 605 *
 606 * This function is called by background thread to synchronize write-buffers.
 607 * Returns zero in case of success and a negative error code in case of
 608 * failure.
 609 */
 610int ubifs_bg_wbufs_sync(struct ubifs_info *c)
 611{
 612        int err, i;
 613
 614        ubifs_assert(!c->ro_media && !c->ro_mount);
 615        if (!c->need_wbuf_sync)
 616                return 0;
 617        c->need_wbuf_sync = 0;
 618
 619        if (c->ro_error) {
 620                err = -EROFS;
 621                goto out_timers;
 622        }
 623
 624        dbg_io("synchronize");
 625        for (i = 0; i < c->jhead_cnt; i++) {
 626                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
 627
 628                cond_resched();
 629
 630                /*
 631                 * If the mutex is locked then wbuf is being changed, so
 632                 * synchronization is not necessary.
 633                 */
 634                if (mutex_is_locked(&wbuf->io_mutex))
 635                        continue;
 636
 637                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 638                if (!wbuf->need_sync) {
 639                        mutex_unlock(&wbuf->io_mutex);
 640                        continue;
 641                }
 642
 643                err = ubifs_wbuf_sync_nolock(wbuf);
 644                mutex_unlock(&wbuf->io_mutex);
 645                if (err) {
 646                        ubifs_err(c, "cannot sync write-buffer, error %d", err);
 647                        ubifs_ro_mode(c, err);
 648                        goto out_timers;
 649                }
 650        }
 651
 652        return 0;
 653
 654out_timers:
 655        /* Cancel all timers to prevent repeated errors */
 656        for (i = 0; i < c->jhead_cnt; i++) {
 657                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
 658
 659                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 660                cancel_wbuf_timer_nolock(wbuf);
 661                mutex_unlock(&wbuf->io_mutex);
 662        }
 663        return err;
 664}
 665
 666/**
 667 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
 668 * @wbuf: write-buffer
 669 * @buf: node to write
 670 * @len: node length
 671 *
 672 * This function writes data to flash via write-buffer @wbuf. This means that
 673 * the last piece of the node won't reach the flash media immediately if it
 674 * does not take whole max. write unit (@c->max_write_size). Instead, the node
 675 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
 676 * because more data are appended to the write-buffer).
 677 *
 678 * This function returns zero in case of success and a negative error code in
 679 * case of failure. If the node cannot be written because there is no more
 680 * space in this logical eraseblock, %-ENOSPC is returned.
 681 */
 682int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
 683{
 684        struct ubifs_info *c = wbuf->c;
 685        int err, written, n, aligned_len = ALIGN(len, 8);
 686
 687        dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
 688               dbg_ntype(((struct ubifs_ch *)buf)->node_type),
 689               dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
 690        ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
 691        ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
 692        ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
 693        ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
 694        ubifs_assert(wbuf->size >= c->min_io_size);
 695        ubifs_assert(wbuf->size <= c->max_write_size);
 696        ubifs_assert(wbuf->size % c->min_io_size == 0);
 697        ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
 698        ubifs_assert(!c->ro_media && !c->ro_mount);
 699        ubifs_assert(!c->space_fixup);
 700        if (c->leb_size - wbuf->offs >= c->max_write_size)
 701                ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
 702
 703        if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
 704                err = -ENOSPC;
 705                goto out;
 706        }
 707
 708        cancel_wbuf_timer_nolock(wbuf);
 709
 710        if (c->ro_error)
 711                return -EROFS;
 712
 713        if (aligned_len <= wbuf->avail) {
 714                /*
 715                 * The node is not very large and fits entirely within
 716                 * write-buffer.
 717                 */
 718                memcpy(wbuf->buf + wbuf->used, buf, len);
 719
 720                if (aligned_len == wbuf->avail) {
 721                        dbg_io("flush jhead %s wbuf to LEB %d:%d",
 722                               dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
 723                        err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
 724                                              wbuf->offs, wbuf->size);
 725                        if (err)
 726                                goto out;
 727
 728                        spin_lock(&wbuf->lock);
 729                        wbuf->offs += wbuf->size;
 730                        if (c->leb_size - wbuf->offs >= c->max_write_size)
 731                                wbuf->size = c->max_write_size;
 732                        else
 733                                wbuf->size = c->leb_size - wbuf->offs;
 734                        wbuf->avail = wbuf->size;
 735                        wbuf->used = 0;
 736                        wbuf->next_ino = 0;
 737                        spin_unlock(&wbuf->lock);
 738                } else {
 739                        spin_lock(&wbuf->lock);
 740                        wbuf->avail -= aligned_len;
 741                        wbuf->used += aligned_len;
 742                        spin_unlock(&wbuf->lock);
 743                }
 744
 745                goto exit;
 746        }
 747
 748        written = 0;
 749
 750        if (wbuf->used) {
 751                /*
 752                 * The node is large enough and does not fit entirely within
 753                 * current available space. We have to fill and flush
 754                 * write-buffer and switch to the next max. write unit.
 755                 */
 756                dbg_io("flush jhead %s wbuf to LEB %d:%d",
 757                       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
 758                memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
 759                err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
 760                                      wbuf->size);
 761                if (err)
 762                        goto out;
 763
 764                wbuf->offs += wbuf->size;
 765                len -= wbuf->avail;
 766                aligned_len -= wbuf->avail;
 767                written += wbuf->avail;
 768        } else if (wbuf->offs & (c->max_write_size - 1)) {
 769                /*
 770                 * The write-buffer offset is not aligned to
 771                 * @c->max_write_size and @wbuf->size is less than
 772                 * @c->max_write_size. Write @wbuf->size bytes to make sure the
 773                 * following writes are done in optimal @c->max_write_size
 774                 * chunks.
 775                 */
 776                dbg_io("write %d bytes to LEB %d:%d",
 777                       wbuf->size, wbuf->lnum, wbuf->offs);
 778                err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
 779                                      wbuf->size);
 780                if (err)
 781                        goto out;
 782
 783                wbuf->offs += wbuf->size;
 784                len -= wbuf->size;
 785                aligned_len -= wbuf->size;
 786                written += wbuf->size;
 787        }
 788
 789        /*
 790         * The remaining data may take more whole max. write units, so write the
 791         * remains multiple to max. write unit size directly to the flash media.
 792         * We align node length to 8-byte boundary because we anyway flash wbuf
 793         * if the remaining space is less than 8 bytes.
 794         */
 795        n = aligned_len >> c->max_write_shift;
 796        if (n) {
 797                n <<= c->max_write_shift;
 798                dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
 799                       wbuf->offs);
 800                err = ubifs_leb_write(c, wbuf->lnum, buf + written,
 801                                      wbuf->offs, n);
 802                if (err)
 803                        goto out;
 804                wbuf->offs += n;
 805                aligned_len -= n;
 806                len -= n;
 807                written += n;
 808        }
 809
 810        spin_lock(&wbuf->lock);
 811        if (aligned_len)
 812                /*
 813                 * And now we have what's left and what does not take whole
 814                 * max. write unit, so write it to the write-buffer and we are
 815                 * done.
 816                 */
 817                memcpy(wbuf->buf, buf + written, len);
 818
 819        if (c->leb_size - wbuf->offs >= c->max_write_size)
 820                wbuf->size = c->max_write_size;
 821        else
 822                wbuf->size = c->leb_size - wbuf->offs;
 823        wbuf->avail = wbuf->size - aligned_len;
 824        wbuf->used = aligned_len;
 825        wbuf->next_ino = 0;
 826        spin_unlock(&wbuf->lock);
 827
 828exit:
 829        if (wbuf->sync_callback) {
 830                int free = c->leb_size - wbuf->offs - wbuf->used;
 831
 832                err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
 833                if (err)
 834                        goto out;
 835        }
 836
 837        if (wbuf->used)
 838                new_wbuf_timer_nolock(wbuf);
 839
 840        return 0;
 841
 842out:
 843        ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
 844                  len, wbuf->lnum, wbuf->offs, err);
 845        ubifs_dump_node(c, buf);
 846        dump_stack();
 847        ubifs_dump_leb(c, wbuf->lnum);
 848        return err;
 849}
 850
 851/**
 852 * ubifs_write_node - write node to the media.
 853 * @c: UBIFS file-system description object
 854 * @buf: the node to write
 855 * @len: node length
 856 * @lnum: logical eraseblock number
 857 * @offs: offset within the logical eraseblock
 858 *
 859 * This function automatically fills node magic number, assigns sequence
 860 * number, and calculates node CRC checksum. The length of the @buf buffer has
 861 * to be aligned to the minimal I/O unit size. This function automatically
 862 * appends padding node and padding bytes if needed. Returns zero in case of
 863 * success and a negative error code in case of failure.
 864 */
 865int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
 866                     int offs)
 867{
 868        int err, buf_len = ALIGN(len, c->min_io_size);
 869
 870        dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
 871               lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
 872               buf_len);
 873        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 874        ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
 875        ubifs_assert(!c->ro_media && !c->ro_mount);
 876        ubifs_assert(!c->space_fixup);
 877
 878        if (c->ro_error)
 879                return -EROFS;
 880
 881        ubifs_prepare_node(c, buf, len, 1);
 882        err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
 883        if (err)
 884                ubifs_dump_node(c, buf);
 885
 886        return err;
 887}
 888#endif
 889
 890/**
 891 * ubifs_read_node_wbuf - read node from the media or write-buffer.
 892 * @wbuf: wbuf to check for un-written data
 893 * @buf: buffer to read to
 894 * @type: node type
 895 * @len: node length
 896 * @lnum: logical eraseblock number
 897 * @offs: offset within the logical eraseblock
 898 *
 899 * This function reads a node of known type and length, checks it and stores
 900 * in @buf. If the node partially or fully sits in the write-buffer, this
 901 * function takes data from the buffer, otherwise it reads the flash media.
 902 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
 903 * error code in case of failure.
 904 */
 905int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
 906                         int lnum, int offs)
 907{
 908        const struct ubifs_info *c = wbuf->c;
 909        int err, rlen, overlap;
 910        struct ubifs_ch *ch = buf;
 911
 912        dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
 913               dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
 914        ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 915        ubifs_assert(!(offs & 7) && offs < c->leb_size);
 916        ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
 917
 918        spin_lock(&wbuf->lock);
 919        overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
 920        if (!overlap) {
 921                /* We may safely unlock the write-buffer and read the data */
 922                spin_unlock(&wbuf->lock);
 923                return ubifs_read_node(c, buf, type, len, lnum, offs);
 924        }
 925
 926        /* Don't read under wbuf */
 927        rlen = wbuf->offs - offs;
 928        if (rlen < 0)
 929                rlen = 0;
 930
 931        /* Copy the rest from the write-buffer */
 932        memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
 933        spin_unlock(&wbuf->lock);
 934
 935        if (rlen > 0) {
 936                /* Read everything that goes before write-buffer */
 937                err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
 938                if (err && err != -EBADMSG)
 939                        return err;
 940        }
 941
 942        if (type != ch->node_type) {
 943                ubifs_err(c, "bad node type (%d but expected %d)",
 944                          ch->node_type, type);
 945                goto out;
 946        }
 947
 948        err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
 949        if (err) {
 950                ubifs_err(c, "expected node type %d", type);
 951                return err;
 952        }
 953
 954        rlen = le32_to_cpu(ch->len);
 955        if (rlen != len) {
 956                ubifs_err(c, "bad node length %d, expected %d", rlen, len);
 957                goto out;
 958        }
 959
 960        return 0;
 961
 962out:
 963        ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
 964        ubifs_dump_node(c, buf);
 965        dump_stack();
 966        return -EINVAL;
 967}
 968
 969/**
 970 * ubifs_read_node - read node.
 971 * @c: UBIFS file-system description object
 972 * @buf: buffer to read to
 973 * @type: node type
 974 * @len: node length (not aligned)
 975 * @lnum: logical eraseblock number
 976 * @offs: offset within the logical eraseblock
 977 *
 978 * This function reads a node of known type and and length, checks it and
 979 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
 980 * and a negative error code in case of failure.
 981 */
 982int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
 983                    int lnum, int offs)
 984{
 985        int err, l;
 986        struct ubifs_ch *ch = buf;
 987
 988        dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 989        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 990        ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
 991        ubifs_assert(!(offs & 7) && offs < c->leb_size);
 992        ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
 993
 994        err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
 995        if (err && err != -EBADMSG)
 996                return err;
 997
 998        if (type != ch->node_type) {
 999                ubifs_errc(c, "bad node type (%d but expected %d)",
1000                           ch->node_type, type);
1001                goto out;
1002        }
1003
1004        err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1005        if (err) {
1006                ubifs_errc(c, "expected node type %d", type);
1007                return err;
1008        }
1009
1010        l = le32_to_cpu(ch->len);
1011        if (l != len) {
1012                ubifs_errc(c, "bad node length %d, expected %d", l, len);
1013                goto out;
1014        }
1015
1016        return 0;
1017
1018out:
1019        ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1020                   offs, ubi_is_mapped(c->ubi, lnum));
1021        if (!c->probing) {
1022                ubifs_dump_node(c, buf);
1023                dump_stack();
1024        }
1025        return -EINVAL;
1026}
1027
1028/**
1029 * ubifs_wbuf_init - initialize write-buffer.
1030 * @c: UBIFS file-system description object
1031 * @wbuf: write-buffer to initialize
1032 *
1033 * This function initializes write-buffer. Returns zero in case of success
1034 * %-ENOMEM in case of failure.
1035 */
1036int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1037{
1038        size_t size;
1039
1040        wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1041        if (!wbuf->buf)
1042                return -ENOMEM;
1043
1044        size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1045        wbuf->inodes = kmalloc(size, GFP_KERNEL);
1046        if (!wbuf->inodes) {
1047                kfree(wbuf->buf);
1048                wbuf->buf = NULL;
1049                return -ENOMEM;
1050        }
1051
1052        wbuf->used = 0;
1053        wbuf->lnum = wbuf->offs = -1;
1054        /*
1055         * If the LEB starts at the max. write size aligned address, then
1056         * write-buffer size has to be set to @c->max_write_size. Otherwise,
1057         * set it to something smaller so that it ends at the closest max.
1058         * write size boundary.
1059         */
1060        size = c->max_write_size - (c->leb_start % c->max_write_size);
1061        wbuf->avail = wbuf->size = size;
1062        wbuf->sync_callback = NULL;
1063        mutex_init(&wbuf->io_mutex);
1064        spin_lock_init(&wbuf->lock);
1065        wbuf->c = c;
1066        wbuf->next_ino = 0;
1067
1068#ifndef __UBOOT__
1069        hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1070        wbuf->timer.function = wbuf_timer_callback_nolock;
1071        wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1072        wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
1073        wbuf->delta *= 1000000000ULL;
1074        ubifs_assert(wbuf->delta <= ULONG_MAX);
1075#endif
1076        return 0;
1077}
1078
1079/**
1080 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1081 * @wbuf: the write-buffer where to add
1082 * @inum: the inode number
1083 *
1084 * This function adds an inode number to the inode array of the write-buffer.
1085 */
1086void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1087{
1088        if (!wbuf->buf)
1089                /* NOR flash or something similar */
1090                return;
1091
1092        spin_lock(&wbuf->lock);
1093        if (wbuf->used)
1094                wbuf->inodes[wbuf->next_ino++] = inum;
1095        spin_unlock(&wbuf->lock);
1096}
1097
1098/**
1099 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1100 * @wbuf: the write-buffer
1101 * @inum: the inode number
1102 *
1103 * This function returns with %1 if the write-buffer contains some data from the
1104 * given inode otherwise it returns with %0.
1105 */
1106static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1107{
1108        int i, ret = 0;
1109
1110        spin_lock(&wbuf->lock);
1111        for (i = 0; i < wbuf->next_ino; i++)
1112                if (inum == wbuf->inodes[i]) {
1113                        ret = 1;
1114                        break;
1115                }
1116        spin_unlock(&wbuf->lock);
1117
1118        return ret;
1119}
1120
1121/**
1122 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1123 * @c: UBIFS file-system description object
1124 * @inode: inode to synchronize
1125 *
1126 * This function synchronizes write-buffers which contain nodes belonging to
1127 * @inode. Returns zero in case of success and a negative error code in case of
1128 * failure.
1129 */
1130int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1131{
1132        int i, err = 0;
1133
1134        for (i = 0; i < c->jhead_cnt; i++) {
1135                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1136
1137                if (i == GCHD)
1138                        /*
1139                         * GC head is special, do not look at it. Even if the
1140                         * head contains something related to this inode, it is
1141                         * a _copy_ of corresponding on-flash node which sits
1142                         * somewhere else.
1143                         */
1144                        continue;
1145
1146                if (!wbuf_has_ino(wbuf, inode->i_ino))
1147                        continue;
1148
1149                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1150                if (wbuf_has_ino(wbuf, inode->i_ino))
1151                        err = ubifs_wbuf_sync_nolock(wbuf);
1152                mutex_unlock(&wbuf->io_mutex);
1153
1154                if (err) {
1155                        ubifs_ro_mode(c, err);
1156                        return err;
1157                }
1158        }
1159        return 0;
1160}
1161