uboot/arch/x86/cpu/cpu.c
<<
>>
Prefs
   1/*
   2 * (C) Copyright 2008-2011
   3 * Graeme Russ, <graeme.russ@gmail.com>
   4 *
   5 * (C) Copyright 2002
   6 * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
   7 *
   8 * (C) Copyright 2002
   9 * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  10 * Marius Groeger <mgroeger@sysgo.de>
  11 *
  12 * (C) Copyright 2002
  13 * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  14 * Alex Zuepke <azu@sysgo.de>
  15 *
  16 * Part of this file is adapted from coreboot
  17 * src/arch/x86/lib/cpu.c
  18 *
  19 * SPDX-License-Identifier:     GPL-2.0+
  20 */
  21
  22#include <common.h>
  23#include <command.h>
  24#include <dm.h>
  25#include <errno.h>
  26#include <malloc.h>
  27#include <syscon.h>
  28#include <asm/control_regs.h>
  29#include <asm/coreboot_tables.h>
  30#include <asm/cpu.h>
  31#include <asm/lapic.h>
  32#include <asm/microcode.h>
  33#include <asm/mp.h>
  34#include <asm/mrccache.h>
  35#include <asm/msr.h>
  36#include <asm/mtrr.h>
  37#include <asm/post.h>
  38#include <asm/processor.h>
  39#include <asm/processor-flags.h>
  40#include <asm/interrupt.h>
  41#include <asm/tables.h>
  42#include <linux/compiler.h>
  43
  44DECLARE_GLOBAL_DATA_PTR;
  45
  46/*
  47 * Constructor for a conventional segment GDT (or LDT) entry
  48 * This is a macro so it can be used in initialisers
  49 */
  50#define GDT_ENTRY(flags, base, limit)                   \
  51        ((((base)  & 0xff000000ULL) << (56-24)) |       \
  52         (((flags) & 0x0000f0ffULL) << 40) |            \
  53         (((limit) & 0x000f0000ULL) << (48-16)) |       \
  54         (((base)  & 0x00ffffffULL) << 16) |            \
  55         (((limit) & 0x0000ffffULL)))
  56
  57struct gdt_ptr {
  58        u16 len;
  59        u32 ptr;
  60} __packed;
  61
  62struct cpu_device_id {
  63        unsigned vendor;
  64        unsigned device;
  65};
  66
  67struct cpuinfo_x86 {
  68        uint8_t x86;            /* CPU family */
  69        uint8_t x86_vendor;     /* CPU vendor */
  70        uint8_t x86_model;
  71        uint8_t x86_mask;
  72};
  73
  74/*
  75 * List of cpu vendor strings along with their normalized
  76 * id values.
  77 */
  78static const struct {
  79        int vendor;
  80        const char *name;
  81} x86_vendors[] = {
  82        { X86_VENDOR_INTEL,     "GenuineIntel", },
  83        { X86_VENDOR_CYRIX,     "CyrixInstead", },
  84        { X86_VENDOR_AMD,       "AuthenticAMD", },
  85        { X86_VENDOR_UMC,       "UMC UMC UMC ", },
  86        { X86_VENDOR_NEXGEN,    "NexGenDriven", },
  87        { X86_VENDOR_CENTAUR,   "CentaurHauls", },
  88        { X86_VENDOR_RISE,      "RiseRiseRise", },
  89        { X86_VENDOR_TRANSMETA, "GenuineTMx86", },
  90        { X86_VENDOR_TRANSMETA, "TransmetaCPU", },
  91        { X86_VENDOR_NSC,       "Geode by NSC", },
  92        { X86_VENDOR_SIS,       "SiS SiS SiS ", },
  93};
  94
  95static const char *const x86_vendor_name[] = {
  96        [X86_VENDOR_INTEL]     = "Intel",
  97        [X86_VENDOR_CYRIX]     = "Cyrix",
  98        [X86_VENDOR_AMD]       = "AMD",
  99        [X86_VENDOR_UMC]       = "UMC",
 100        [X86_VENDOR_NEXGEN]    = "NexGen",
 101        [X86_VENDOR_CENTAUR]   = "Centaur",
 102        [X86_VENDOR_RISE]      = "Rise",
 103        [X86_VENDOR_TRANSMETA] = "Transmeta",
 104        [X86_VENDOR_NSC]       = "NSC",
 105        [X86_VENDOR_SIS]       = "SiS",
 106};
 107
 108static void load_ds(u32 segment)
 109{
 110        asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
 111}
 112
 113static void load_es(u32 segment)
 114{
 115        asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
 116}
 117
 118static void load_fs(u32 segment)
 119{
 120        asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
 121}
 122
 123static void load_gs(u32 segment)
 124{
 125        asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
 126}
 127
 128static void load_ss(u32 segment)
 129{
 130        asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
 131}
 132
 133static void load_gdt(const u64 *boot_gdt, u16 num_entries)
 134{
 135        struct gdt_ptr gdt;
 136
 137        gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
 138        gdt.ptr = (u32)boot_gdt;
 139
 140        asm volatile("lgdtl %0\n" : : "m" (gdt));
 141}
 142
 143void arch_setup_gd(gd_t *new_gd)
 144{
 145        u64 *gdt_addr;
 146
 147        gdt_addr = new_gd->arch.gdt;
 148
 149        /*
 150         * CS: code, read/execute, 4 GB, base 0
 151         *
 152         * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
 153         */
 154        gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
 155        gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
 156
 157        /* DS: data, read/write, 4 GB, base 0 */
 158        gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
 159
 160        /* FS: data, read/write, 4 GB, base (Global Data Pointer) */
 161        new_gd->arch.gd_addr = new_gd;
 162        gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
 163                     (ulong)&new_gd->arch.gd_addr, 0xfffff);
 164
 165        /* 16-bit CS: code, read/execute, 64 kB, base 0 */
 166        gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
 167
 168        /* 16-bit DS: data, read/write, 64 kB, base 0 */
 169        gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
 170
 171        gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
 172        gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
 173
 174        load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
 175        load_ds(X86_GDT_ENTRY_32BIT_DS);
 176        load_es(X86_GDT_ENTRY_32BIT_DS);
 177        load_gs(X86_GDT_ENTRY_32BIT_DS);
 178        load_ss(X86_GDT_ENTRY_32BIT_DS);
 179        load_fs(X86_GDT_ENTRY_32BIT_FS);
 180}
 181
 182#ifdef CONFIG_HAVE_FSP
 183/*
 184 * Setup FSP execution environment GDT
 185 *
 186 * Per Intel FSP external architecture specification, before calling any FSP
 187 * APIs, we need make sure the system is in flat 32-bit mode and both the code
 188 * and data selectors should have full 4GB access range. Here we reuse the one
 189 * we used in arch/x86/cpu/start16.S, and reload the segement registers.
 190 */
 191void setup_fsp_gdt(void)
 192{
 193        load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
 194        load_ds(X86_GDT_ENTRY_32BIT_DS);
 195        load_ss(X86_GDT_ENTRY_32BIT_DS);
 196        load_es(X86_GDT_ENTRY_32BIT_DS);
 197        load_fs(X86_GDT_ENTRY_32BIT_DS);
 198        load_gs(X86_GDT_ENTRY_32BIT_DS);
 199}
 200#endif
 201
 202int __weak x86_cleanup_before_linux(void)
 203{
 204#ifdef CONFIG_BOOTSTAGE_STASH
 205        bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
 206                        CONFIG_BOOTSTAGE_STASH_SIZE);
 207#endif
 208
 209        return 0;
 210}
 211
 212/*
 213 * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
 214 * by the fact that they preserve the flags across the division of 5/2.
 215 * PII and PPro exhibit this behavior too, but they have cpuid available.
 216 */
 217
 218/*
 219 * Perform the Cyrix 5/2 test. A Cyrix won't change
 220 * the flags, while other 486 chips will.
 221 */
 222static inline int test_cyrix_52div(void)
 223{
 224        unsigned int test;
 225
 226        __asm__ __volatile__(
 227             "sahf\n\t"         /* clear flags (%eax = 0x0005) */
 228             "div %b2\n\t"      /* divide 5 by 2 */
 229             "lahf"             /* store flags into %ah */
 230             : "=a" (test)
 231             : "0" (5), "q" (2)
 232             : "cc");
 233
 234        /* AH is 0x02 on Cyrix after the divide.. */
 235        return (unsigned char) (test >> 8) == 0x02;
 236}
 237
 238/*
 239 *      Detect a NexGen CPU running without BIOS hypercode new enough
 240 *      to have CPUID. (Thanks to Herbert Oppmann)
 241 */
 242
 243static int deep_magic_nexgen_probe(void)
 244{
 245        int ret;
 246
 247        __asm__ __volatile__ (
 248                "       movw    $0x5555, %%ax\n"
 249                "       xorw    %%dx,%%dx\n"
 250                "       movw    $2, %%cx\n"
 251                "       divw    %%cx\n"
 252                "       movl    $0, %%eax\n"
 253                "       jnz     1f\n"
 254                "       movl    $1, %%eax\n"
 255                "1:\n"
 256                : "=a" (ret) : : "cx", "dx");
 257        return  ret;
 258}
 259
 260static bool has_cpuid(void)
 261{
 262        return flag_is_changeable_p(X86_EFLAGS_ID);
 263}
 264
 265static bool has_mtrr(void)
 266{
 267        return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
 268}
 269
 270static int build_vendor_name(char *vendor_name)
 271{
 272        struct cpuid_result result;
 273        result = cpuid(0x00000000);
 274        unsigned int *name_as_ints = (unsigned int *)vendor_name;
 275
 276        name_as_ints[0] = result.ebx;
 277        name_as_ints[1] = result.edx;
 278        name_as_ints[2] = result.ecx;
 279
 280        return result.eax;
 281}
 282
 283static void identify_cpu(struct cpu_device_id *cpu)
 284{
 285        char vendor_name[16];
 286        int i;
 287
 288        vendor_name[0] = '\0'; /* Unset */
 289        cpu->device = 0; /* fix gcc 4.4.4 warning */
 290
 291        /* Find the id and vendor_name */
 292        if (!has_cpuid()) {
 293                /* Its a 486 if we can modify the AC flag */
 294                if (flag_is_changeable_p(X86_EFLAGS_AC))
 295                        cpu->device = 0x00000400; /* 486 */
 296                else
 297                        cpu->device = 0x00000300; /* 386 */
 298                if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
 299                        memcpy(vendor_name, "CyrixInstead", 13);
 300                        /* If we ever care we can enable cpuid here */
 301                }
 302                /* Detect NexGen with old hypercode */
 303                else if (deep_magic_nexgen_probe())
 304                        memcpy(vendor_name, "NexGenDriven", 13);
 305        }
 306        if (has_cpuid()) {
 307                int  cpuid_level;
 308
 309                cpuid_level = build_vendor_name(vendor_name);
 310                vendor_name[12] = '\0';
 311
 312                /* Intel-defined flags: level 0x00000001 */
 313                if (cpuid_level >= 0x00000001) {
 314                        cpu->device = cpuid_eax(0x00000001);
 315                } else {
 316                        /* Have CPUID level 0 only unheard of */
 317                        cpu->device = 0x00000400;
 318                }
 319        }
 320        cpu->vendor = X86_VENDOR_UNKNOWN;
 321        for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
 322                if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
 323                        cpu->vendor = x86_vendors[i].vendor;
 324                        break;
 325                }
 326        }
 327}
 328
 329static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
 330{
 331        c->x86 = (tfms >> 8) & 0xf;
 332        c->x86_model = (tfms >> 4) & 0xf;
 333        c->x86_mask = tfms & 0xf;
 334        if (c->x86 == 0xf)
 335                c->x86 += (tfms >> 20) & 0xff;
 336        if (c->x86 >= 0x6)
 337                c->x86_model += ((tfms >> 16) & 0xF) << 4;
 338}
 339
 340u32 cpu_get_family_model(void)
 341{
 342        return gd->arch.x86_device & 0x0fff0ff0;
 343}
 344
 345u32 cpu_get_stepping(void)
 346{
 347        return gd->arch.x86_mask;
 348}
 349
 350int x86_cpu_init_f(void)
 351{
 352        const u32 em_rst = ~X86_CR0_EM;
 353        const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
 354
 355        if (ll_boot_init()) {
 356                /* initialize FPU, reset EM, set MP and NE */
 357                asm ("fninit\n" \
 358                "movl %%cr0, %%eax\n" \
 359                "andl %0, %%eax\n" \
 360                "orl  %1, %%eax\n" \
 361                "movl %%eax, %%cr0\n" \
 362                : : "i" (em_rst), "i" (mp_ne_set) : "eax");
 363        }
 364
 365        /* identify CPU via cpuid and store the decoded info into gd->arch */
 366        if (has_cpuid()) {
 367                struct cpu_device_id cpu;
 368                struct cpuinfo_x86 c;
 369
 370                identify_cpu(&cpu);
 371                get_fms(&c, cpu.device);
 372                gd->arch.x86 = c.x86;
 373                gd->arch.x86_vendor = cpu.vendor;
 374                gd->arch.x86_model = c.x86_model;
 375                gd->arch.x86_mask = c.x86_mask;
 376                gd->arch.x86_device = cpu.device;
 377
 378                gd->arch.has_mtrr = has_mtrr();
 379        }
 380        /* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
 381        gd->pci_ram_top = 0x80000000U;
 382
 383        /* Configure fixed range MTRRs for some legacy regions */
 384        if (gd->arch.has_mtrr) {
 385                u64 mtrr_cap;
 386
 387                mtrr_cap = native_read_msr(MTRR_CAP_MSR);
 388                if (mtrr_cap & MTRR_CAP_FIX) {
 389                        /* Mark the VGA RAM area as uncacheable */
 390                        native_write_msr(MTRR_FIX_16K_A0000_MSR,
 391                                         MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
 392                                         MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
 393
 394                        /*
 395                         * Mark the PCI ROM area as cacheable to improve ROM
 396                         * execution performance.
 397                         */
 398                        native_write_msr(MTRR_FIX_4K_C0000_MSR,
 399                                         MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
 400                                         MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
 401                        native_write_msr(MTRR_FIX_4K_C8000_MSR,
 402                                         MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
 403                                         MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
 404                        native_write_msr(MTRR_FIX_4K_D0000_MSR,
 405                                         MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
 406                                         MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
 407                        native_write_msr(MTRR_FIX_4K_D8000_MSR,
 408                                         MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
 409                                         MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
 410
 411                        /* Enable the fixed range MTRRs */
 412                        msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
 413                }
 414        }
 415
 416#ifdef CONFIG_I8254_TIMER
 417        /* Set up the i8254 timer if required */
 418        i8254_init();
 419#endif
 420
 421        return 0;
 422}
 423
 424void x86_enable_caches(void)
 425{
 426        unsigned long cr0;
 427
 428        cr0 = read_cr0();
 429        cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
 430        write_cr0(cr0);
 431        wbinvd();
 432}
 433void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
 434
 435void x86_disable_caches(void)
 436{
 437        unsigned long cr0;
 438
 439        cr0 = read_cr0();
 440        cr0 |= X86_CR0_NW | X86_CR0_CD;
 441        wbinvd();
 442        write_cr0(cr0);
 443        wbinvd();
 444}
 445void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
 446
 447int x86_init_cache(void)
 448{
 449        enable_caches();
 450
 451        return 0;
 452}
 453int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
 454
 455int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
 456{
 457        printf("resetting ...\n");
 458
 459        /* wait 50 ms */
 460        udelay(50000);
 461        disable_interrupts();
 462        reset_cpu(0);
 463
 464        /*NOTREACHED*/
 465        return 0;
 466}
 467
 468void  flush_cache(unsigned long dummy1, unsigned long dummy2)
 469{
 470        asm("wbinvd\n");
 471}
 472
 473__weak void reset_cpu(ulong addr)
 474{
 475        /* Do a hard reset through the chipset's reset control register */
 476        outb(SYS_RST | RST_CPU, IO_PORT_RESET);
 477        for (;;)
 478                cpu_hlt();
 479}
 480
 481void x86_full_reset(void)
 482{
 483        outb(FULL_RST | SYS_RST | RST_CPU, IO_PORT_RESET);
 484}
 485
 486int dcache_status(void)
 487{
 488        return !(read_cr0() & X86_CR0_CD);
 489}
 490
 491/* Define these functions to allow ehch-hcd to function */
 492void flush_dcache_range(unsigned long start, unsigned long stop)
 493{
 494}
 495
 496void invalidate_dcache_range(unsigned long start, unsigned long stop)
 497{
 498}
 499
 500void dcache_enable(void)
 501{
 502        enable_caches();
 503}
 504
 505void dcache_disable(void)
 506{
 507        disable_caches();
 508}
 509
 510void icache_enable(void)
 511{
 512}
 513
 514void icache_disable(void)
 515{
 516}
 517
 518int icache_status(void)
 519{
 520        return 1;
 521}
 522
 523void cpu_enable_paging_pae(ulong cr3)
 524{
 525        __asm__ __volatile__(
 526                /* Load the page table address */
 527                "movl   %0, %%cr3\n"
 528                /* Enable pae */
 529                "movl   %%cr4, %%eax\n"
 530                "orl    $0x00000020, %%eax\n"
 531                "movl   %%eax, %%cr4\n"
 532                /* Enable paging */
 533                "movl   %%cr0, %%eax\n"
 534                "orl    $0x80000000, %%eax\n"
 535                "movl   %%eax, %%cr0\n"
 536                :
 537                : "r" (cr3)
 538                : "eax");
 539}
 540
 541void cpu_disable_paging_pae(void)
 542{
 543        /* Turn off paging */
 544        __asm__ __volatile__ (
 545                /* Disable paging */
 546                "movl   %%cr0, %%eax\n"
 547                "andl   $0x7fffffff, %%eax\n"
 548                "movl   %%eax, %%cr0\n"
 549                /* Disable pae */
 550                "movl   %%cr4, %%eax\n"
 551                "andl   $0xffffffdf, %%eax\n"
 552                "movl   %%eax, %%cr4\n"
 553                :
 554                :
 555                : "eax");
 556}
 557
 558static bool can_detect_long_mode(void)
 559{
 560        return cpuid_eax(0x80000000) > 0x80000000UL;
 561}
 562
 563static bool has_long_mode(void)
 564{
 565        return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
 566}
 567
 568int cpu_has_64bit(void)
 569{
 570        return has_cpuid() && can_detect_long_mode() &&
 571                has_long_mode();
 572}
 573
 574const char *cpu_vendor_name(int vendor)
 575{
 576        const char *name;
 577        name = "<invalid cpu vendor>";
 578        if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
 579            (x86_vendor_name[vendor] != 0))
 580                name = x86_vendor_name[vendor];
 581
 582        return name;
 583}
 584
 585char *cpu_get_name(char *name)
 586{
 587        unsigned int *name_as_ints = (unsigned int *)name;
 588        struct cpuid_result regs;
 589        char *ptr;
 590        int i;
 591
 592        /* This bit adds up to 48 bytes */
 593        for (i = 0; i < 3; i++) {
 594                regs = cpuid(0x80000002 + i);
 595                name_as_ints[i * 4 + 0] = regs.eax;
 596                name_as_ints[i * 4 + 1] = regs.ebx;
 597                name_as_ints[i * 4 + 2] = regs.ecx;
 598                name_as_ints[i * 4 + 3] = regs.edx;
 599        }
 600        name[CPU_MAX_NAME_LEN - 1] = '\0';
 601
 602        /* Skip leading spaces. */
 603        ptr = name;
 604        while (*ptr == ' ')
 605                ptr++;
 606
 607        return ptr;
 608}
 609
 610int default_print_cpuinfo(void)
 611{
 612        printf("CPU: %s, vendor %s, device %xh\n",
 613               cpu_has_64bit() ? "x86_64" : "x86",
 614               cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
 615
 616        return 0;
 617}
 618
 619#define PAGETABLE_SIZE          (6 * 4096)
 620
 621/**
 622 * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
 623 *
 624 * @pgtable: Pointer to a 24iKB block of memory
 625 */
 626static void build_pagetable(uint32_t *pgtable)
 627{
 628        uint i;
 629
 630        memset(pgtable, '\0', PAGETABLE_SIZE);
 631
 632        /* Level 4 needs a single entry */
 633        pgtable[0] = (uint32_t)&pgtable[1024] + 7;
 634
 635        /* Level 3 has one 64-bit entry for each GiB of memory */
 636        for (i = 0; i < 4; i++) {
 637                pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
 638                                                        0x1000 * i + 7;
 639        }
 640
 641        /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
 642        for (i = 0; i < 2048; i++)
 643                pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
 644}
 645
 646int cpu_jump_to_64bit(ulong setup_base, ulong target)
 647{
 648        uint32_t *pgtable;
 649
 650        pgtable = memalign(4096, PAGETABLE_SIZE);
 651        if (!pgtable)
 652                return -ENOMEM;
 653
 654        build_pagetable(pgtable);
 655        cpu_call64((ulong)pgtable, setup_base, target);
 656        free(pgtable);
 657
 658        return -EFAULT;
 659}
 660
 661void show_boot_progress(int val)
 662{
 663        outb(val, POST_PORT);
 664}
 665
 666#ifndef CONFIG_SYS_COREBOOT
 667/*
 668 * Implement a weak default function for boards that optionally
 669 * need to clean up the system before jumping to the kernel.
 670 */
 671__weak void board_final_cleanup(void)
 672{
 673}
 674
 675int last_stage_init(void)
 676{
 677        write_tables();
 678
 679        board_final_cleanup();
 680
 681        return 0;
 682}
 683#endif
 684
 685#ifdef CONFIG_SMP
 686static int enable_smis(struct udevice *cpu, void *unused)
 687{
 688        return 0;
 689}
 690
 691static struct mp_flight_record mp_steps[] = {
 692        MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
 693        /* Wait for APs to finish initialization before proceeding */
 694        MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
 695};
 696
 697static int x86_mp_init(void)
 698{
 699        struct mp_params mp_params;
 700
 701        mp_params.parallel_microcode_load = 0,
 702        mp_params.flight_plan = &mp_steps[0];
 703        mp_params.num_records = ARRAY_SIZE(mp_steps);
 704        mp_params.microcode_pointer = 0;
 705
 706        if (mp_init(&mp_params)) {
 707                printf("Warning: MP init failure\n");
 708                return -EIO;
 709        }
 710
 711        return 0;
 712}
 713#endif
 714
 715static int x86_init_cpus(void)
 716{
 717#ifdef CONFIG_SMP
 718        debug("Init additional CPUs\n");
 719        x86_mp_init();
 720#else
 721        struct udevice *dev;
 722
 723        /*
 724         * This causes the cpu-x86 driver to be probed.
 725         * We don't check return value here as we want to allow boards
 726         * which have not been converted to use cpu uclass driver to boot.
 727         */
 728        uclass_first_device(UCLASS_CPU, &dev);
 729#endif
 730
 731        return 0;
 732}
 733
 734int cpu_init_r(void)
 735{
 736        struct udevice *dev;
 737        int ret;
 738
 739        if (!ll_boot_init())
 740                return 0;
 741
 742        ret = x86_init_cpus();
 743        if (ret)
 744                return ret;
 745
 746        /*
 747         * Set up the northbridge, PCH and LPC if available. Note that these
 748         * may have had some limited pre-relocation init if they were probed
 749         * before relocation, but this is post relocation.
 750         */
 751        uclass_first_device(UCLASS_NORTHBRIDGE, &dev);
 752        uclass_first_device(UCLASS_PCH, &dev);
 753        uclass_first_device(UCLASS_LPC, &dev);
 754
 755        /* Set up pin control if available */
 756        ret = syscon_get_by_driver_data(X86_SYSCON_PINCONF, &dev);
 757        debug("%s, pinctrl=%p, ret=%d\n", __func__, dev, ret);
 758
 759        return 0;
 760}
 761
 762#ifndef CONFIG_EFI_STUB
 763int reserve_arch(void)
 764{
 765#ifdef CONFIG_ENABLE_MRC_CACHE
 766        mrccache_reserve();
 767#endif
 768
 769#ifdef CONFIG_SEABIOS
 770        high_table_reserve();
 771#endif
 772
 773        return 0;
 774}
 775#endif
 776