uboot/drivers/mtd/ubi/crc32.c
<<
>>
Prefs
   1/*
   2 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
   3 * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
   4 * Code was from the public domain, copyright abandoned.  Code was
   5 * subsequently included in the kernel, thus was re-licensed under the
   6 * GNU GPL v2.
   7 *
   8 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
   9 * Same crc32 function was used in 5 other places in the kernel.
  10 * I made one version, and deleted the others.
  11 * There are various incantations of crc32().  Some use a seed of 0 or ~0.
  12 * Some xor at the end with ~0.  The generic crc32() function takes
  13 * seed as an argument, and doesn't xor at the end.  Then individual
  14 * users can do whatever they need.
  15 *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
  16 *   fs/jffs2 uses seed 0, doesn't xor with ~0.
  17 *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
  18 *
  19 * This source code is licensed under the GNU General Public License,
  20 * Version 2.  See the file COPYING for more details.
  21 */
  22
  23#ifndef __UBOOT__
  24#include <linux/crc32.h>
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/compiler.h>
  28#endif
  29#include <linux/types.h>
  30
  31#include <asm/byteorder.h>
  32
  33#ifndef __UBOOT__
  34#include <linux/slab.h>
  35#include <linux/init.h>
  36#include <asm/atomic.h>
  37#endif
  38#include "crc32defs.h"
  39#define CRC_LE_BITS 8
  40
  41#if CRC_LE_BITS == 8
  42#define tole(x) cpu_to_le32(x)
  43#define tobe(x) cpu_to_be32(x)
  44#else
  45#define tole(x) (x)
  46#define tobe(x) (x)
  47#endif
  48#include "crc32table.h"
  49#ifndef __UBOOT__
  50MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
  51MODULE_DESCRIPTION("Ethernet CRC32 calculations");
  52MODULE_LICENSE("GPL");
  53#endif
  54/**
  55 * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
  56 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
  57 *      other uses, or the previous crc32 value if computing incrementally.
  58 * @p: pointer to buffer over which CRC is run
  59 * @len: length of buffer @p
  60 */
  61u32  crc32_le(u32 crc, unsigned char const *p, size_t len);
  62
  63#if CRC_LE_BITS == 1
  64/*
  65 * In fact, the table-based code will work in this case, but it can be
  66 * simplified by inlining the table in ?: form.
  67 */
  68
  69u32 crc32_le(u32 crc, unsigned char const *p, size_t len)
  70{
  71        int i;
  72        while (len--) {
  73                crc ^= *p++;
  74                for (i = 0; i < 8; i++)
  75                        crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
  76        }
  77        return crc;
  78}
  79#else                           /* Table-based approach */
  80
  81u32 crc32_le(u32 crc, unsigned char const *p, size_t len)
  82{
  83# if CRC_LE_BITS == 8
  84        const u32      *b =(u32 *)p;
  85        const u32      *tab = crc32table_le;
  86
  87# ifdef __LITTLE_ENDIAN
  88#  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
  89# else
  90#  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
  91# endif
  92        /* printf("Crc32_le crc=%x\n",crc); */
  93        crc = __cpu_to_le32(crc);
  94        /* Align it */
  95        if((((long)b)&3 && len)){
  96                do {
  97                        u8 *p = (u8 *)b;
  98                        DO_CRC(*p++);
  99                        b = (void *)p;
 100                } while ((--len) && ((long)b)&3 );
 101        }
 102        if((len >= 4)){
 103                /* load data 32 bits wide, xor data 32 bits wide. */
 104                size_t save_len = len & 3;
 105                len = len >> 2;
 106                --b; /* use pre increment below(*++b) for speed */
 107                do {
 108                        crc ^= *++b;
 109                        DO_CRC(0);
 110                        DO_CRC(0);
 111                        DO_CRC(0);
 112                        DO_CRC(0);
 113                } while (--len);
 114                b++; /* point to next byte(s) */
 115                len = save_len;
 116        }
 117        /* And the last few bytes */
 118        if(len){
 119                do {
 120                        u8 *p = (u8 *)b;
 121                        DO_CRC(*p++);
 122                        b = (void *)p;
 123                } while (--len);
 124        }
 125
 126        return __le32_to_cpu(crc);
 127#undef ENDIAN_SHIFT
 128#undef DO_CRC
 129
 130# elif CRC_LE_BITS == 4
 131        while (len--) {
 132                crc ^= *p++;
 133                crc = (crc >> 4) ^ crc32table_le[crc & 15];
 134                crc = (crc >> 4) ^ crc32table_le[crc & 15];
 135        }
 136        return crc;
 137# elif CRC_LE_BITS == 2
 138        while (len--) {
 139                crc ^= *p++;
 140                crc = (crc >> 2) ^ crc32table_le[crc & 3];
 141                crc = (crc >> 2) ^ crc32table_le[crc & 3];
 142                crc = (crc >> 2) ^ crc32table_le[crc & 3];
 143                crc = (crc >> 2) ^ crc32table_le[crc & 3];
 144        }
 145        return crc;
 146# endif
 147}
 148#endif
 149#ifndef __UBOOT__
 150/**
 151 * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
 152 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
 153 *      other uses, or the previous crc32 value if computing incrementally.
 154 * @p: pointer to buffer over which CRC is run
 155 * @len: length of buffer @p
 156 */
 157u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len);
 158
 159#if CRC_BE_BITS == 1
 160/*
 161 * In fact, the table-based code will work in this case, but it can be
 162 * simplified by inlining the table in ?: form.
 163 */
 164
 165u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
 166{
 167        int i;
 168        while (len--) {
 169                crc ^= *p++ << 24;
 170                for (i = 0; i < 8; i++)
 171                        crc =
 172                            (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
 173                                          0);
 174        }
 175        return crc;
 176}
 177
 178#else                           /* Table-based approach */
 179u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
 180{
 181# if CRC_BE_BITS == 8
 182        const u32      *b =(u32 *)p;
 183        const u32      *tab = crc32table_be;
 184
 185# ifdef __LITTLE_ENDIAN
 186#  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
 187# else
 188#  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
 189# endif
 190
 191        crc = __cpu_to_be32(crc);
 192        /* Align it */
 193        if(unlikely(((long)b)&3 && len)){
 194                do {
 195                        u8 *p = (u8 *)b;
 196                        DO_CRC(*p++);
 197                        b = (u32 *)p;
 198                } while ((--len) && ((long)b)&3 );
 199        }
 200        if(likely(len >= 4)){
 201                /* load data 32 bits wide, xor data 32 bits wide. */
 202                size_t save_len = len & 3;
 203                len = len >> 2;
 204                --b; /* use pre increment below(*++b) for speed */
 205                do {
 206                        crc ^= *++b;
 207                        DO_CRC(0);
 208                        DO_CRC(0);
 209                        DO_CRC(0);
 210                        DO_CRC(0);
 211                } while (--len);
 212                b++; /* point to next byte(s) */
 213                len = save_len;
 214        }
 215        /* And the last few bytes */
 216        if(len){
 217                do {
 218                        u8 *p = (u8 *)b;
 219                        DO_CRC(*p++);
 220                        b = (void *)p;
 221                } while (--len);
 222        }
 223        return __be32_to_cpu(crc);
 224#undef ENDIAN_SHIFT
 225#undef DO_CRC
 226
 227# elif CRC_BE_BITS == 4
 228        while (len--) {
 229                crc ^= *p++ << 24;
 230                crc = (crc << 4) ^ crc32table_be[crc >> 28];
 231                crc = (crc << 4) ^ crc32table_be[crc >> 28];
 232        }
 233        return crc;
 234# elif CRC_BE_BITS == 2
 235        while (len--) {
 236                crc ^= *p++ << 24;
 237                crc = (crc << 2) ^ crc32table_be[crc >> 30];
 238                crc = (crc << 2) ^ crc32table_be[crc >> 30];
 239                crc = (crc << 2) ^ crc32table_be[crc >> 30];
 240                crc = (crc << 2) ^ crc32table_be[crc >> 30];
 241        }
 242        return crc;
 243# endif
 244}
 245#endif
 246
 247EXPORT_SYMBOL(crc32_le);
 248EXPORT_SYMBOL(crc32_be);
 249#endif
 250/*
 251 * A brief CRC tutorial.
 252 *
 253 * A CRC is a long-division remainder.  You add the CRC to the message,
 254 * and the whole thing (message+CRC) is a multiple of the given
 255 * CRC polynomial.  To check the CRC, you can either check that the
 256 * CRC matches the recomputed value, *or* you can check that the
 257 * remainder computed on the message+CRC is 0.  This latter approach
 258 * is used by a lot of hardware implementations, and is why so many
 259 * protocols put the end-of-frame flag after the CRC.
 260 *
 261 * It's actually the same long division you learned in school, except that
 262 * - We're working in binary, so the digits are only 0 and 1, and
 263 * - When dividing polynomials, there are no carries.  Rather than add and
 264 *   subtract, we just xor.  Thus, we tend to get a bit sloppy about
 265 *   the difference between adding and subtracting.
 266 *
 267 * A 32-bit CRC polynomial is actually 33 bits long.  But since it's
 268 * 33 bits long, bit 32 is always going to be set, so usually the CRC
 269 * is written in hex with the most significant bit omitted.  (If you're
 270 * familiar with the IEEE 754 floating-point format, it's the same idea.)
 271 *
 272 * Note that a CRC is computed over a string of *bits*, so you have
 273 * to decide on the endianness of the bits within each byte.  To get
 274 * the best error-detecting properties, this should correspond to the
 275 * order they're actually sent.  For example, standard RS-232 serial is
 276 * little-endian; the most significant bit (sometimes used for parity)
 277 * is sent last.  And when appending a CRC word to a message, you should
 278 * do it in the right order, matching the endianness.
 279 *
 280 * Just like with ordinary division, the remainder is always smaller than
 281 * the divisor (the CRC polynomial) you're dividing by.  Each step of the
 282 * division, you take one more digit (bit) of the dividend and append it
 283 * to the current remainder.  Then you figure out the appropriate multiple
 284 * of the divisor to subtract to being the remainder back into range.
 285 * In binary, it's easy - it has to be either 0 or 1, and to make the
 286 * XOR cancel, it's just a copy of bit 32 of the remainder.
 287 *
 288 * When computing a CRC, we don't care about the quotient, so we can
 289 * throw the quotient bit away, but subtract the appropriate multiple of
 290 * the polynomial from the remainder and we're back to where we started,
 291 * ready to process the next bit.
 292 *
 293 * A big-endian CRC written this way would be coded like:
 294 * for (i = 0; i < input_bits; i++) {
 295 *      multiple = remainder & 0x80000000 ? CRCPOLY : 0;
 296 *      remainder = (remainder << 1 | next_input_bit()) ^ multiple;
 297 * }
 298 * Notice how, to get at bit 32 of the shifted remainder, we look
 299 * at bit 31 of the remainder *before* shifting it.
 300 *
 301 * But also notice how the next_input_bit() bits we're shifting into
 302 * the remainder don't actually affect any decision-making until
 303 * 32 bits later.  Thus, the first 32 cycles of this are pretty boring.
 304 * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
 305 * the end, so we have to add 32 extra cycles shifting in zeros at the
 306 * end of every message,
 307 *
 308 * So the standard trick is to rearrage merging in the next_input_bit()
 309 * until the moment it's needed.  Then the first 32 cycles can be precomputed,
 310 * and merging in the final 32 zero bits to make room for the CRC can be
 311 * skipped entirely.
 312 * This changes the code to:
 313 * for (i = 0; i < input_bits; i++) {
 314 *      remainder ^= next_input_bit() << 31;
 315 *      multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
 316 *      remainder = (remainder << 1) ^ multiple;
 317 * }
 318 * With this optimization, the little-endian code is simpler:
 319 * for (i = 0; i < input_bits; i++) {
 320 *      remainder ^= next_input_bit();
 321 *      multiple = (remainder & 1) ? CRCPOLY : 0;
 322 *      remainder = (remainder >> 1) ^ multiple;
 323 * }
 324 *
 325 * Note that the other details of endianness have been hidden in CRCPOLY
 326 * (which must be bit-reversed) and next_input_bit().
 327 *
 328 * However, as long as next_input_bit is returning the bits in a sensible
 329 * order, we can actually do the merging 8 or more bits at a time rather
 330 * than one bit at a time:
 331 * for (i = 0; i < input_bytes; i++) {
 332 *      remainder ^= next_input_byte() << 24;
 333 *      for (j = 0; j < 8; j++) {
 334 *              multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
 335 *              remainder = (remainder << 1) ^ multiple;
 336 *      }
 337 * }
 338 * Or in little-endian:
 339 * for (i = 0; i < input_bytes; i++) {
 340 *      remainder ^= next_input_byte();
 341 *      for (j = 0; j < 8; j++) {
 342 *              multiple = (remainder & 1) ? CRCPOLY : 0;
 343 *              remainder = (remainder << 1) ^ multiple;
 344 *      }
 345 * }
 346 * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
 347 * word at a time and increase the inner loop count to 32.
 348 *
 349 * You can also mix and match the two loop styles, for example doing the
 350 * bulk of a message byte-at-a-time and adding bit-at-a-time processing
 351 * for any fractional bytes at the end.
 352 *
 353 * The only remaining optimization is to the byte-at-a-time table method.
 354 * Here, rather than just shifting one bit of the remainder to decide
 355 * in the correct multiple to subtract, we can shift a byte at a time.
 356 * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
 357 * but again the multiple of the polynomial to subtract depends only on
 358 * the high bits, the high 8 bits in this case.
 359 *
 360 * The multile we need in that case is the low 32 bits of a 40-bit
 361 * value whose high 8 bits are given, and which is a multiple of the
 362 * generator polynomial.  This is simply the CRC-32 of the given
 363 * one-byte message.
 364 *
 365 * Two more details: normally, appending zero bits to a message which
 366 * is already a multiple of a polynomial produces a larger multiple of that
 367 * polynomial.  To enable a CRC to detect this condition, it's common to
 368 * invert the CRC before appending it.  This makes the remainder of the
 369 * message+crc come out not as zero, but some fixed non-zero value.
 370 *
 371 * The same problem applies to zero bits prepended to the message, and
 372 * a similar solution is used.  Instead of starting with a remainder of
 373 * 0, an initial remainder of all ones is used.  As long as you start
 374 * the same way on decoding, it doesn't make a difference.
 375 */
 376
 377#ifdef UNITTEST
 378
 379#include <stdlib.h>
 380#include <stdio.h>
 381
 382#ifndef __UBOOT__
 383static void
 384buf_dump(char const *prefix, unsigned char const *buf, size_t len)
 385{
 386        fputs(prefix, stdout);
 387        while (len--)
 388                printf(" %02x", *buf++);
 389        putchar('\n');
 390
 391}
 392#endif
 393
 394static void bytereverse(unsigned char *buf, size_t len)
 395{
 396        while (len--) {
 397                unsigned char x = bitrev8(*buf);
 398                *buf++ = x;
 399        }
 400}
 401
 402static void random_garbage(unsigned char *buf, size_t len)
 403{
 404        while (len--)
 405                *buf++ = (unsigned char) random();
 406}
 407
 408#ifndef __UBOOT__
 409static void store_le(u32 x, unsigned char *buf)
 410{
 411        buf[0] = (unsigned char) x;
 412        buf[1] = (unsigned char) (x >> 8);
 413        buf[2] = (unsigned char) (x >> 16);
 414        buf[3] = (unsigned char) (x >> 24);
 415}
 416#endif
 417
 418static void store_be(u32 x, unsigned char *buf)
 419{
 420        buf[0] = (unsigned char) (x >> 24);
 421        buf[1] = (unsigned char) (x >> 16);
 422        buf[2] = (unsigned char) (x >> 8);
 423        buf[3] = (unsigned char) x;
 424}
 425
 426/*
 427 * This checks that CRC(buf + CRC(buf)) = 0, and that
 428 * CRC commutes with bit-reversal.  This has the side effect
 429 * of bytewise bit-reversing the input buffer, and returns
 430 * the CRC of the reversed buffer.
 431 */
 432static u32 test_step(u32 init, unsigned char *buf, size_t len)
 433{
 434        u32 crc1, crc2;
 435        size_t i;
 436
 437        crc1 = crc32_be(init, buf, len);
 438        store_be(crc1, buf + len);
 439        crc2 = crc32_be(init, buf, len + 4);
 440        if (crc2)
 441                printf("\nCRC cancellation fail: 0x%08x should be 0\n",
 442                       crc2);
 443
 444        for (i = 0; i <= len + 4; i++) {
 445                crc2 = crc32_be(init, buf, i);
 446                crc2 = crc32_be(crc2, buf + i, len + 4 - i);
 447                if (crc2)
 448                        printf("\nCRC split fail: 0x%08x\n", crc2);
 449        }
 450
 451        /* Now swap it around for the other test */
 452
 453        bytereverse(buf, len + 4);
 454        init = bitrev32(init);
 455        crc2 = bitrev32(crc1);
 456        if (crc1 != bitrev32(crc2))
 457                printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
 458                       crc1, crc2, bitrev32(crc2));
 459        crc1 = crc32_le(init, buf, len);
 460        if (crc1 != crc2)
 461                printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
 462                       crc2);
 463        crc2 = crc32_le(init, buf, len + 4);
 464        if (crc2)
 465                printf("\nCRC cancellation fail: 0x%08x should be 0\n",
 466                       crc2);
 467
 468        for (i = 0; i <= len + 4; i++) {
 469                crc2 = crc32_le(init, buf, i);
 470                crc2 = crc32_le(crc2, buf + i, len + 4 - i);
 471                if (crc2)
 472                        printf("\nCRC split fail: 0x%08x\n", crc2);
 473        }
 474
 475        return crc1;
 476}
 477
 478#define SIZE 64
 479#define INIT1 0
 480#define INIT2 0
 481
 482int main(void)
 483{
 484        unsigned char buf1[SIZE + 4];
 485        unsigned char buf2[SIZE + 4];
 486        unsigned char buf3[SIZE + 4];
 487        int i, j;
 488        u32 crc1, crc2, crc3;
 489
 490        for (i = 0; i <= SIZE; i++) {
 491                printf("\rTesting length %d...", i);
 492                fflush(stdout);
 493                random_garbage(buf1, i);
 494                random_garbage(buf2, i);
 495                for (j = 0; j < i; j++)
 496                        buf3[j] = buf1[j] ^ buf2[j];
 497
 498                crc1 = test_step(INIT1, buf1, i);
 499                crc2 = test_step(INIT2, buf2, i);
 500                /* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
 501                crc3 = test_step(INIT1 ^ INIT2, buf3, i);
 502                if (crc3 != (crc1 ^ crc2))
 503                        printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
 504                               crc3, crc1, crc2);
 505        }
 506        printf("\nAll test complete.  No failures expected.\n");
 507        return 0;
 508}
 509
 510#endif                          /* UNITTEST */
 511