uboot/arch/arm/mach-sunxi/dram_sun9i.c
<<
>>
Prefs
   1/*
   2 * sun9i dram controller initialisation
   3 *
   4 * (C) Copyright 2007-2015
   5 * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
   6 * Jerry Wang <wangflord@allwinnertech.com>
   7 *
   8 * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
   9 *                    Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
  10 *
  11 * SPDX-License-Identifier:     GPL-2.0+
  12 */
  13
  14#include <common.h>
  15#include <dm.h>
  16#include <errno.h>
  17#include <ram.h>
  18#include <asm/io.h>
  19#include <asm/arch/clock.h>
  20#include <asm/arch/dram.h>
  21#include <asm/arch/sys_proto.h>
  22
  23DECLARE_GLOBAL_DATA_PTR;
  24
  25#define DRAM_CLK (CONFIG_DRAM_CLK * 1000000)
  26
  27/*
  28 * The following amounts to an extensive rewrite of the code received from
  29 * Allwinner as part of the open-source bootloader release (refer to
  30 * https://github.com/allwinner-zh/bootloader.git) and augments the upstream
  31 * sources (which act as the primary reference point for the inner workings
  32 * of the 'underdocumented' DRAM controller in the A80) using the following
  33 * documentation for other memory controllers based on the (Synopsys)
  34 * Designware IP (DDR memory protocol controller and DDR PHY)
  35 *   * TI Keystone II Architecture: DDR3 Memory Controller, User's Guide
  36 *     Document 'SPRUHN7C', Oct 2013 (revised March 2015)
  37 *   * Xilinx Zynq UltraScale+ MPSoC Register Reference
  38 *     document ug1087 (v1.0)
  39 * Note that the Zynq-documentation provides a very close match for the DDR
  40 * memory protocol controller (and provides a very good guide to the rounding
  41 * rules for various timings), whereas the TI Keystone II document should be
  42 * referred to for DDR PHY specifics only.
  43 *
  44 * The DRAM controller in the A80 runs at half the frequency of the DDR PHY
  45 * (i.e. the rules for MEMC_FREQ_RATIO=2 from the Zynq-documentation apply).
  46 *
  47 * Known limitations
  48 * =================
  49 * In the current state, the following features are not fully supported and
  50 * a number of simplifying assumptions have been made:
  51 *   1) Only DDR3 support is implemented, as our test platform (the A80-Q7
  52 *      module) is designed to accomodate DDR3/DDR3L.
  53 *   2) Only 2T-mode has been implemented and tested.
  54 *   3) The controller supports two different clocking strategies (PLL6 can
  55 *      either be 2*CK or CK/2)... we only support the 2*CK clock at this
  56 *      time and haven't verified whether the alternative clocking strategy
  57 *      works.  If you are interested in porting this over/testing this,
  58 *      please refer to cases where bit 0 of 'dram_tpr8' is tested in the
  59 *      original code from Allwinner.
  60 *   4) Support for 2 ranks per controller is not implemented (as we don't
  61 *      the hardware to test it).
  62 *
  63 * Future directions
  64 * =================
  65 * The driver should be driven from a device-tree based configuration that
  66 * can dynamically provide the necessary timing parameters (i.e. target
  67 * frequency and speed-bin information)---the data structures used in the
  68 * calculation of the timing parameters are already designed to capture
  69 * similar information as the device tree would provide.
  70 *
  71 * To enable a device-tree based configuration of the sun9i platform, we
  72 * will need to enable CONFIG_TPL and bootstrap in 3 stages: initially
  73 * into SRAM A1 (40KB) and next into SRAM A2 (160KB)---which would be the
  74 * stage to initialise the platform via the device-tree---before having
  75 * the full U-Boot run from DDR.
  76 */
  77
  78/*
  79 * A number of DDR3 timings are given as "the greater of a fixed number of
  80 * clock cycles (CK) or nanoseconds.  We express these using a structure
  81 * that holds a cycle count and a duration in picoseconds (so we can model
  82 * sub-ns timings, such as 7.5ns without losing precision or resorting to
  83 * rounding up early.
  84 */
  85struct dram_sun9i_timing {
  86        u32 ck;
  87        u32 ps;
  88};
  89
  90/* */
  91struct dram_sun9i_cl_cwl_timing {
  92        u32 CL;
  93        u32 CWL;
  94        u32 tCKmin;  /* in ps */
  95        u32 tCKmax;  /* in ps */
  96};
  97
  98struct dram_sun9i_para {
  99        u32 dram_type;
 100
 101        u8 bus_width;
 102        u8 chan;
 103        u8 rank;
 104        u8 rows;
 105        u16 page_size;
 106
 107        /* Timing information for each speed-bin */
 108        struct dram_sun9i_cl_cwl_timing *cl_cwl_table;
 109        u32 cl_cwl_numentries;
 110
 111        /*
 112         * For the timings, we try to keep the order and grouping used in
 113         * JEDEC Standard No. 79-3F
 114         */
 115
 116        /* timings */
 117        u32 tREFI; /* in ns */
 118        u32 tRFC;  /* in ns */
 119
 120        u32 tRAS;  /* in ps */
 121
 122        /* command and address timing */
 123        u32 tDLLK; /* in nCK */
 124        struct dram_sun9i_timing tRTP;
 125        struct dram_sun9i_timing tWTR;
 126        u32 tWR;   /* in nCK */
 127        u32 tMRD;  /* in nCK */
 128        struct dram_sun9i_timing tMOD;
 129        u32 tRCD;  /* in ps */
 130        u32 tRP;   /* in ps */
 131        u32 tRC;   /* in ps */
 132        u32 tCCD;  /* in nCK */
 133        struct dram_sun9i_timing tRRD;
 134        u32 tFAW;  /* in ps */
 135
 136        /* calibration timing */
 137        /* struct dram_sun9i_timing tZQinit; */
 138        struct dram_sun9i_timing tZQoper;
 139        struct dram_sun9i_timing tZQCS;
 140
 141        /* reset timing */
 142        /* struct dram_sun9i_timing tXPR; */
 143
 144        /* self-refresh timings */
 145        struct dram_sun9i_timing tXS;
 146        u32 tXSDLL; /* in nCK */
 147        /* struct dram_sun9i_timing tCKESR; */
 148        struct dram_sun9i_timing tCKSRE;
 149        struct dram_sun9i_timing tCKSRX;
 150
 151        /* power-down timings */
 152        struct dram_sun9i_timing tXP;
 153        struct dram_sun9i_timing tXPDLL;
 154        struct dram_sun9i_timing tCKE;
 155
 156        /* write leveling timings */
 157        u32 tWLMRD;    /* min, in nCK */
 158        /* u32 tWLDQSEN;  min, in nCK */
 159        u32 tWLO;      /* max, in ns */
 160        /* u32 tWLOE;     max, in ns */
 161
 162        /* u32 tCKDPX;    in nCK */
 163        /* u32 tCKCSX;    in nCK */
 164};
 165
 166static void mctl_sys_init(void);
 167
 168#define SCHED_RDWR_IDLE_GAP(n)            ((n & 0xff) << 24)
 169#define SCHED_GO2CRITICAL_HYSTERESIS(n)   ((n & 0xff) << 16)
 170#define SCHED_LPR_NUM_ENTRIES(n)          ((n & 0xff) <<  8)
 171#define SCHED_PAGECLOSE                   (1 << 2)
 172#define SCHED_PREFER_WRITE                (1 << 1)
 173#define SCHED_FORCE_LOW_PRI_N             (1 << 0)
 174
 175#define SCHED_CONFIG            (SCHED_RDWR_IDLE_GAP(0xf) | \
 176                                 SCHED_GO2CRITICAL_HYSTERESIS(0x80) | \
 177                                 SCHED_LPR_NUM_ENTRIES(0x20) | \
 178                                 SCHED_FORCE_LOW_PRI_N)
 179#define PERFHPR0_CONFIG                   0x0000001f
 180#define PERFHPR1_CONFIG                   0x1f00001f
 181#define PERFLPR0_CONFIG                   0x000000ff
 182#define PERFLPR1_CONFIG                   0x0f0000ff
 183#define PERFWR0_CONFIG                    0x000000ff
 184#define PERFWR1_CONFIG                    0x0f0001ff
 185
 186static void mctl_ctl_sched_init(unsigned long  base)
 187{
 188        struct sunxi_mctl_ctl_reg *mctl_ctl =
 189                (struct sunxi_mctl_ctl_reg *)base;
 190
 191        /* Needs to be done before the global clk enable... */
 192        writel(SCHED_CONFIG, &mctl_ctl->sched);
 193        writel(PERFHPR0_CONFIG, &mctl_ctl->perfhpr0);
 194        writel(PERFHPR1_CONFIG, &mctl_ctl->perfhpr1);
 195        writel(PERFLPR0_CONFIG, &mctl_ctl->perflpr0);
 196        writel(PERFLPR1_CONFIG, &mctl_ctl->perflpr1);
 197        writel(PERFWR0_CONFIG, &mctl_ctl->perfwr0);
 198        writel(PERFWR1_CONFIG, &mctl_ctl->perfwr1);
 199}
 200
 201static void mctl_sys_init(void)
 202{
 203        struct sunxi_ccm_reg * const ccm =
 204                (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
 205        struct sunxi_mctl_com_reg * const mctl_com =
 206                (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
 207
 208        debug("Setting PLL6 to %d\n", DRAM_CLK * 2);
 209        clock_set_pll6(DRAM_CLK * 2);
 210
 211        /* Original dram init code which may come in handy later
 212        ********************************************************
 213        clock_set_pll6(use_2channelPLL ? (DRAM_CLK * 2) :
 214                                         (DRAM_CLK / 2), false);
 215
 216        if ((para->dram_clk <= 400)|((para->dram_tpr8 & 0x1)==0)) {
 217                 * PLL6 should be 2*CK *
 218                 * ccm_setup_pll6_ddr_clk(PLL6_DDR_CLK); *
 219                ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) * 2), 0);
 220        } else {
 221                 * PLL6 should be CK/2 *
 222                ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) / 2), 1);
 223        }
 224
 225        if (para->dram_tpr13 & (0xf<<18)) {
 226                 *
 227                 * bit21:bit18=0001:pll swing 0.4
 228                 * bit21:bit18=0010:pll swing 0.3
 229                 * bit21:bit18=0100:pll swing 0.2
 230                 * bit21:bit18=1000:pll swing 0.1
 231                 *
 232                dram_dbg("DRAM fre extend open !\n");
 233                reg_val=mctl_read_w(CCM_PLL6_DDR_REG);
 234                reg_val&=(0x1<<16);
 235                reg_val=reg_val>>16;
 236
 237                if(para->dram_tpr13 & (0x1<<18))
 238                {
 239                        mctl_write_w(CCM_PLL_BASE + 0x114,
 240                                (0x3333U|(0x3<<17)|(reg_val<<19)|(0x120U<<20)|
 241                                (0x2U<<29)|(0x1U<<31)));
 242                }
 243                else if(para->dram_tpr13 & (0x1<<19))
 244                {
 245                        mctl_write_w(CCM_PLL_BASE + 0x114,
 246                                (0x6666U|(0x3U<<17)|(reg_val<<19)|(0xD8U<<20)|
 247                                (0x2U<<29)|(0x1U<<31)));
 248                }
 249                else if(para->dram_tpr13 & (0x1<<20))
 250                {
 251                        mctl_write_w(CCM_PLL_BASE + 0x114,
 252                                (0x9999U|(0x3U<<17)|(reg_val<<19)|(0x90U<<20)|
 253                                (0x2U<<29)|(0x1U<<31)));
 254                }
 255                else if(para->dram_tpr13 & (0x1<<21))
 256                {
 257                        mctl_write_w(CCM_PLL_BASE + 0x114,
 258                                (0xccccU|(0x3U<<17)|(reg_val<<19)|(0x48U<<20)|
 259                                (0x2U<<29)|(0x1U<<31)));
 260                }
 261
 262                //frequency extend open
 263                reg_val = mctl_read_w(CCM_PLL6_DDR_REG);
 264                reg_val |= ((0x1<<24)|(0x1<<30));
 265                mctl_write_w(CCM_PLL6_DDR_REG, reg_val);
 266
 267
 268                while(mctl_read_w(CCM_PLL6_DDR_REG) & (0x1<<30));
 269        }
 270
 271        aw_delay(0x20000);      //make some delay
 272        ********************************************************
 273        */
 274
 275        /* assert mctl reset */
 276        clrbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
 277        /* stop mctl clock */
 278        clrbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
 279
 280        sdelay(2000);
 281
 282        /* deassert mctl reset */
 283        setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
 284        /* enable mctl clock */
 285        setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
 286
 287        /* set up the transactions scheduling before enabling the global clk */
 288        mctl_ctl_sched_init(SUNXI_DRAM_CTL0_BASE);
 289        mctl_ctl_sched_init(SUNXI_DRAM_CTL1_BASE);
 290        sdelay(1000);
 291
 292        debug("2\n");
 293
 294        /* (3 << 12): PLL_DDR */
 295        writel((3 << 12) | (1 << 16), &ccm->dram_clk_cfg);
 296        do {
 297                debug("Waiting for DRAM_CLK_CFG\n");
 298                sdelay(10000);
 299        } while (readl(&ccm->dram_clk_cfg) & (1 << 16));
 300        setbits_le32(&ccm->dram_clk_cfg, (1 << 31));
 301
 302        /* TODO: we only support the common case ... i.e. 2*CK */
 303        setbits_le32(&mctl_com->ccr, (1 << 14) | (1 << 30));
 304        writel(2, &mctl_com->rmcr); /* controller clock is PLL6/4 */
 305
 306        sdelay(2000);
 307
 308        /* Original dram init code which may come in handy later
 309        ********************************************************
 310        if ((para->dram_clk <= 400) | ((para->dram_tpr8 & 0x1) == 0)) {
 311                 * PLL6 should be 2*CK *
 312                 * gating 2 channel pll *
 313                reg_val = mctl_read_w(MC_CCR);
 314                reg_val |= ((0x1 << 14) | (0x1U << 30));
 315                mctl_write_w(MC_CCR, reg_val);
 316                mctl_write_w(MC_RMCR, 0x2); * controller clock use pll6/4 *
 317        } else {
 318                 * enable 2 channel pll *
 319                reg_val = mctl_read_w(MC_CCR);
 320                reg_val &= ~((0x1 << 14) | (0x1U << 30));
 321                mctl_write_w(MC_CCR, reg_val);
 322                mctl_write_w(MC_RMCR, 0x0); * controller clock use pll6 *
 323        }
 324
 325        reg_val = mctl_read_w(MC_CCR);
 326        reg_val &= ~((0x1<<15)|(0x1U<<31));
 327        mctl_write_w(MC_CCR, reg_val);
 328        aw_delay(20);
 329        //aw_delay(0x10);
 330        ********************************************************
 331        */
 332
 333        clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN | MCTL_CCR_CH1_CLK_EN);
 334        sdelay(1000);
 335
 336        setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN);
 337        /* TODO if (para->chan == 2) */
 338        setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN);
 339}
 340
 341static void mctl_com_init(struct dram_sun9i_para *para)
 342{
 343        struct sunxi_mctl_com_reg * const mctl_com =
 344                (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
 345
 346        /* TODO: hard-wired for DDR3 now */
 347        writel(((para->chan == 2) ? MCTL_CR_CHANNEL_DUAL :
 348                                    MCTL_CR_CHANNEL_SINGLE)
 349               | MCTL_CR_DRAMTYPE_DDR3 | MCTL_CR_BANK(1)
 350               | MCTL_CR_ROW(para->rows)
 351               | ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16)
 352               | MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_RANK(para->rank),
 353               &mctl_com->cr);
 354
 355        debug("CR: %d\n", readl(&mctl_com->cr));
 356}
 357
 358static u32 mctl_channel_init(u32 ch_index, struct dram_sun9i_para *para)
 359{
 360        struct sunxi_mctl_ctl_reg *mctl_ctl;
 361        struct sunxi_mctl_phy_reg *mctl_phy;
 362
 363        u32 CL = 0;
 364        u32 CWL = 0;
 365        u16 mr[4] = { 0, };
 366
 367#define PS2CYCLES_FLOOR(n)    ((n * CONFIG_DRAM_CLK) / 1000000)
 368#define PS2CYCLES_ROUNDUP(n)  ((n * CONFIG_DRAM_CLK + 999999) / 1000000)
 369#define NS2CYCLES_FLOOR(n)    ((n * CONFIG_DRAM_CLK) / 1000)
 370#define NS2CYCLES_ROUNDUP(n)  ((n * CONFIG_DRAM_CLK + 999) / 1000)
 371#define MAX(a, b)             ((a) > (b) ? (a) : (b))
 372
 373        /*
 374         * Convert the values to cycle counts (nCK) from what is provided
 375         * by the definition of each speed bin.
 376         */
 377        /* const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); */
 378        const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI);
 379        const u32 tRFC  = NS2CYCLES_ROUNDUP(para->tRFC);
 380        const u32 tRCD  = PS2CYCLES_ROUNDUP(para->tRCD);
 381        const u32 tRP   = PS2CYCLES_ROUNDUP(para->tRP);
 382        const u32 tRC   = PS2CYCLES_ROUNDUP(para->tRC);
 383        const u32 tRAS  = PS2CYCLES_ROUNDUP(para->tRAS);
 384
 385        /* command and address timing */
 386        const u32 tDLLK = para->tDLLK;
 387        const u32 tRTP  = MAX(para->tRTP.ck, PS2CYCLES_ROUNDUP(para->tRTP.ps));
 388        const u32 tWTR  = MAX(para->tWTR.ck, PS2CYCLES_ROUNDUP(para->tWTR.ps));
 389        const u32 tWR   = NS2CYCLES_FLOOR(para->tWR);
 390        const u32 tMRD  = para->tMRD;
 391        const u32 tMOD  = MAX(para->tMOD.ck, PS2CYCLES_ROUNDUP(para->tMOD.ps));
 392        const u32 tCCD  = para->tCCD;
 393        const u32 tRRD  = MAX(para->tRRD.ck, PS2CYCLES_ROUNDUP(para->tRRD.ps));
 394        const u32 tFAW  = PS2CYCLES_ROUNDUP(para->tFAW);
 395
 396        /* calibration timings */
 397        /* const u32 tZQinit = MAX(para->tZQinit.ck,
 398                                PS2CYCLES_ROUNDUP(para->tZQinit.ps)); */
 399        const u32 tZQoper = MAX(para->tZQoper.ck,
 400                                PS2CYCLES_ROUNDUP(para->tZQoper.ps));
 401        const u32 tZQCS   = MAX(para->tZQCS.ck,
 402                                PS2CYCLES_ROUNDUP(para->tZQCS.ps));
 403
 404        /* reset timing */
 405        /* const u32 tXPR  = MAX(para->tXPR.ck,
 406                                PS2CYCLES_ROUNDUP(para->tXPR.ps)); */
 407
 408        /* power-down timings */
 409        const u32 tXP    = MAX(para->tXP.ck, PS2CYCLES_ROUNDUP(para->tXP.ps));
 410        const u32 tXPDLL = MAX(para->tXPDLL.ck,
 411                               PS2CYCLES_ROUNDUP(para->tXPDLL.ps));
 412        const u32 tCKE   = MAX(para->tCKE.ck, PS2CYCLES_ROUNDUP(para->tCKE.ps));
 413
 414        /*
 415         * self-refresh timings (keep below power-down timings, as tCKESR
 416         * needs to be calculated based on the nCK value of tCKE)
 417         */
 418        const u32 tXS    = MAX(para->tXS.ck, PS2CYCLES_ROUNDUP(para->tXS.ps));
 419        const u32 tXSDLL = para->tXSDLL;
 420        const u32 tCKSRE = MAX(para->tCKSRE.ck,
 421                               PS2CYCLES_ROUNDUP(para->tCKSRE.ps));
 422        const u32 tCKESR = tCKE + 1;
 423        const u32 tCKSRX = MAX(para->tCKSRX.ck,
 424                               PS2CYCLES_ROUNDUP(para->tCKSRX.ps));
 425
 426        /* write leveling timings */
 427        const u32 tWLMRD = para->tWLMRD;
 428        /* const u32 tWLDQSEN = para->tWLDQSEN; */
 429        const u32 tWLO = PS2CYCLES_FLOOR(para->tWLO);
 430        /* const u32 tWLOE = PS2CYCLES_FLOOR(para->tWLOE); */
 431
 432        const u32 tRASmax = tREFI * 9;
 433        int i;
 434
 435        for (i = 0; i < para->cl_cwl_numentries; ++i) {
 436                const u32 tCK = 1000000 / CONFIG_DRAM_CLK;
 437
 438                if ((para->cl_cwl_table[i].tCKmin <= tCK) &&
 439                    (tCK < para->cl_cwl_table[i].tCKmax)) {
 440                        CL = para->cl_cwl_table[i].CL;
 441                        CWL = para->cl_cwl_table[i].CWL;
 442
 443                        debug("found CL/CWL: CL = %d, CWL = %d\n", CL, CWL);
 444                        break;
 445                }
 446        }
 447
 448        if ((CL == 0) && (CWL == 0)) {
 449                printf("failed to find valid CL/CWL for operating point %d MHz\n",
 450                       CONFIG_DRAM_CLK);
 451                return 0;
 452        }
 453
 454        if (ch_index == 0) {
 455                mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
 456                mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
 457        } else {
 458                mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE;
 459                mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
 460        }
 461
 462        if (para->dram_type == DRAM_TYPE_DDR3) {
 463                mr[0] = DDR3_MR0_PPD_FAST_EXIT | DDR3_MR0_WR(tWR) |
 464                        DDR3_MR0_CL(CL);
 465                mr[1] = DDR3_MR1_RTT120OHM;
 466                mr[2] = DDR3_MR2_TWL(CWL);
 467                mr[3] = 0;
 468
 469                /*
 470                 * DRAM3 initialisation requires holding CKE LOW for
 471                 * at least 500us prior to starting the initialisation
 472                 * sequence and at least 10ns after driving CKE HIGH
 473                 * before the initialisation sequence may be started).
 474                 *
 475                 * Refer to Micron document "TN-41-07: DDR3 Power-Up,
 476                 * Initialization, and Reset DDR3 Initialization
 477                 * Routine" for details).
 478                 */
 479                writel(MCTL_INIT0_POST_CKE_x1024(1) |
 480                       MCTL_INIT0_PRE_CKE_x1024(
 481                            (500 * CONFIG_DRAM_CLK + 1023) / 1024), /* 500us */
 482                       &mctl_ctl->init[0]);
 483                writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
 484                       &mctl_ctl->init[1]);
 485                /* INIT2 is not used for DDR3 */
 486                writel(MCTL_INIT3_MR(mr[0]) | MCTL_INIT3_EMR(mr[1]),
 487                       &mctl_ctl->init[3]);
 488                writel(MCTL_INIT4_EMR2(mr[2]) | MCTL_INIT4_EMR3(mr[3]),
 489                       &mctl_ctl->init[4]);
 490                writel(MCTL_INIT5_DEV_ZQINIT_x32(512 / 32), /* 512 cycles */
 491                       &mctl_ctl->init[5]);
 492        } else {
 493                /* !!! UNTESTED !!! */
 494                /*
 495                 * LPDDR2 and/or LPDDR3 require a 200us minimum delay
 496                 * after driving CKE HIGH in the initialisation sequence.
 497                 */
 498                writel(MCTL_INIT0_POST_CKE_x1024(
 499                                (200 * CONFIG_DRAM_CLK + 1023) / 1024),
 500                       &mctl_ctl->init[0]);
 501                writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
 502                       &mctl_ctl->init[1]);
 503                writel(MCTL_INIT2_IDLE_AFTER_RESET_x32(
 504                                (CONFIG_DRAM_CLK + 31) / 32) /* 1us */
 505                       | MCTL_INIT2_MIN_STABLE_CLOCK_x1(5),  /* 5 cycles */
 506                       &mctl_ctl->init[2]);
 507                writel(MCTL_INIT3_MR(mr[1]) | MCTL_INIT3_EMR(mr[2]),
 508                       &mctl_ctl->init[3]);
 509                writel(MCTL_INIT4_EMR2(mr[3]),
 510                       &mctl_ctl->init[4]);
 511                writel(MCTL_INIT5_DEV_ZQINIT_x32(
 512                                (CONFIG_DRAM_CLK + 31) / 32) /* 1us */
 513                       | MCTL_INIT5_MAX_AUTO_INIT_x1024(
 514                                (10 * CONFIG_DRAM_CLK + 1023) / 1024),
 515                       &mctl_ctl->init[5]);
 516        }
 517
 518        /* (DDR3) We always use a burst-length of 8. */
 519#define MCTL_BL               8
 520        /* wr2pre: WL + BL/2 + tWR */
 521#define WR2PRE           (MCTL_BL/2 + CWL + tWTR)
 522        /* wr2rd = CWL + BL/2 + tWTR */
 523#define WR2RD            (MCTL_BL/2 + CWL + tWTR)
 524        /*
 525         * rd2wr = RL + BL/2 + 2 - WL (for DDR3)
 526         * rd2wr = RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL (for LPDDR2/LPDDR3)
 527         */
 528#define RD2WR            (CL + MCTL_BL/2 + 2 - CWL)
 529#define MCTL_PHY_TRTW        0
 530#define MCTL_PHY_TRTODT      0
 531
 532#define MCTL_DIV2(n)         ((n + 1)/2)
 533#define MCTL_DIV32(n)        (n/32)
 534#define MCTL_DIV1024(n)      (n/1024)
 535
 536        writel((MCTL_DIV2(WR2PRE) << 24) | (MCTL_DIV2(tFAW) << 16) |
 537               (MCTL_DIV1024(tRASmax) << 8) | (MCTL_DIV2(tRAS) << 0),
 538               &mctl_ctl->dramtmg[0]);
 539        writel((MCTL_DIV2(tXP) << 16) | (MCTL_DIV2(tRTP) << 8) |
 540               (MCTL_DIV2(tRC) << 0),
 541               &mctl_ctl->dramtmg[1]);
 542        writel((MCTL_DIV2(CWL) << 24) | (MCTL_DIV2(CL) << 16) |
 543               (MCTL_DIV2(RD2WR) << 8) | (MCTL_DIV2(WR2RD) << 0),
 544               &mctl_ctl->dramtmg[2]);
 545        /*
 546         * Note: tMRW is located at bit 16 (and up) in DRAMTMG3...
 547         * this is only relevant for LPDDR2/LPDDR3
 548         */
 549        writel((MCTL_DIV2(tMRD) << 12) | (MCTL_DIV2(tMOD) << 0),
 550               &mctl_ctl->dramtmg[3]);
 551        writel((MCTL_DIV2(tRCD) << 24) | (MCTL_DIV2(tCCD) << 16) |
 552               (MCTL_DIV2(tRRD) << 8) | (MCTL_DIV2(tRP) << 0),
 553               &mctl_ctl->dramtmg[4]);
 554        writel((MCTL_DIV2(tCKSRX) << 24) | (MCTL_DIV2(tCKSRE) << 16) |
 555               (MCTL_DIV2(tCKESR) << 8) | (MCTL_DIV2(tCKE) << 0),
 556               &mctl_ctl->dramtmg[5]);
 557
 558        /* These timings are relevant for LPDDR2/LPDDR3 only */
 559        /* writel((MCTL_TCKDPDE << 24) | (MCTL_TCKDPX << 16) |
 560               (MCTL_TCKCSX << 0), &mctl_ctl->dramtmg[6]); */
 561
 562        /* printf("DRAMTMG7 reset value: 0x%x\n",
 563                readl(&mctl_ctl->dramtmg[7])); */
 564        /* DRAMTMG7 reset value: 0x202 */
 565        /* DRAMTMG7 should contain t_ckpde and t_ckpdx: check reset values!!! */
 566        /* printf("DRAMTMG8 reset value: 0x%x\n",
 567                readl(&mctl_ctl->dramtmg[8])); */
 568        /* DRAMTMG8 reset value: 0x44 */
 569
 570        writel((MCTL_DIV32(tXSDLL) << 0), &mctl_ctl->dramtmg[8]);
 571
 572        writel((MCTL_DIV32(tREFI) << 16) | (MCTL_DIV2(tRFC) << 0),
 573               &mctl_ctl->rfshtmg);
 574
 575        if (para->dram_type == DRAM_TYPE_DDR3) {
 576                writel((2 << 24) | ((MCTL_DIV2(CL) - 2) << 16) |
 577                       (1 << 8) | ((MCTL_DIV2(CWL) - 2) << 0),
 578                        &mctl_ctl->dfitmg[0]);
 579        } else {
 580                /* TODO */
 581        }
 582
 583        /* TODO: handle the case of the write latency domain going to 0 ... */
 584
 585        /*
 586         * Disable dfi_init_complete_en (the triggering of the SDRAM
 587         * initialisation when the PHY initialisation completes).
 588         */
 589        clrbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
 590        /* Disable the automatic generation of DLL calibration requests */
 591        setbits_le32(&mctl_ctl->dfiupd[0], MCTL_DFIUPD0_DIS_AUTO_CTRLUPD);
 592
 593        /* A80-Q7: 2T, 1 rank, DDR3, full-32bit-DQ */
 594        /* TODO: make 2T and BUSWIDTH configurable  */
 595        writel(MCTL_MSTR_DEVICETYPE(para->dram_type) |
 596               MCTL_MSTR_BURSTLENGTH(para->dram_type) |
 597               MCTL_MSTR_ACTIVERANKS(para->rank) |
 598               MCTL_MSTR_2TMODE | MCTL_MSTR_BUSWIDTH32,
 599               &mctl_ctl->mstr);
 600
 601        if (para->dram_type == DRAM_TYPE_DDR3) {
 602                writel(MCTL_ZQCTRL0_TZQCL(MCTL_DIV2(tZQoper)) |
 603                       (MCTL_DIV2(tZQCS)), &mctl_ctl->zqctrl[0]);
 604                /*
 605                 * TODO: is the following really necessary as the bottom
 606                 * half should already be 0x100 and the upper half should
 607                 * be ignored for a DDR3 device???
 608                 */
 609                writel(MCTL_ZQCTRL1_TZQSI_x1024(0x100),
 610                       &mctl_ctl->zqctrl[1]);
 611        } else {
 612                writel(MCTL_ZQCTRL0_TZQCL(0x200) | MCTL_ZQCTRL0_TZQCS(0x40),
 613                       &mctl_ctl->zqctrl[0]);
 614                writel(MCTL_ZQCTRL1_TZQRESET(0x28) |
 615                       MCTL_ZQCTRL1_TZQSI_x1024(0x100),
 616                       &mctl_ctl->zqctrl[1]);
 617        }
 618
 619        /* Assert dfi_init_complete signal */
 620        setbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
 621        /* Disable auto-refresh */
 622        setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
 623
 624        /* PHY initialisation */
 625
 626        /* TODO: make 2T and 8-bank mode configurable  */
 627        writel(MCTL_PHY_DCR_BYTEMASK | MCTL_PHY_DCR_2TMODE |
 628               MCTL_PHY_DCR_DDR8BNK | MCTL_PHY_DRAMMODE_DDR3,
 629               &mctl_phy->dcr);
 630
 631        /* For LPDDR2 or LPDDR3, set DQSGX to 0 before training. */
 632        if (para->dram_type != DRAM_TYPE_DDR3)
 633                clrbits_le32(&mctl_phy->dsgcr, (3 << 6));
 634
 635        writel(mr[0], &mctl_phy->mr0);
 636        writel(mr[1], &mctl_phy->mr1);
 637        writel(mr[2], &mctl_phy->mr2);
 638        writel(mr[3], &mctl_phy->mr3);
 639
 640        /*
 641         * The DFI PHY is running at full rate. We thus use the actual
 642         * timings in clock cycles here.
 643         */
 644        writel((tRC << 26) | (tRRD << 22) | (tRAS << 16) |
 645               (tRCD << 12) | (tRP << 8) | (tWTR << 4) | (tRTP << 0),
 646                &mctl_phy->dtpr[0]);
 647        writel((tMRD << 0) | ((tMOD - 12) << 2) | (tFAW << 5) |
 648               (tRFC << 11) | (tWLMRD << 20) | (tWLO << 26),
 649               &mctl_phy->dtpr[1]);
 650        writel((tXS << 0) | (MAX(tXP, tXPDLL) << 10) |
 651               (tCKE << 15) | (tDLLK << 19) |
 652               (MCTL_PHY_TRTODT << 29) | (MCTL_PHY_TRTW << 30) |
 653               (((tCCD - 4) & 0x1) << 31),
 654               &mctl_phy->dtpr[2]);
 655
 656        /* tDQSCK and tDQSCKmax are used LPDDR2/LPDDR3 */
 657        /* writel((tDQSCK << 0) | (tDQSCKMAX << 3), &mctl_phy->dtpr[3]); */
 658
 659        /*
 660         * We use the same values used by Allwinner's Boot0 for the PTR
 661         * (PHY timing register) configuration that is tied to the PHY
 662         * implementation.
 663         */
 664        writel(0x42C21590, &mctl_phy->ptr[0]);
 665        writel(0xD05612C0, &mctl_phy->ptr[1]);
 666        if (para->dram_type == DRAM_TYPE_DDR3) {
 667                const unsigned int tdinit0 = 500 * CONFIG_DRAM_CLK; /* 500us */
 668                const unsigned int tdinit1 = (360 * CONFIG_DRAM_CLK + 999) /
 669                        1000; /* 360ns */
 670                const unsigned int tdinit2 = 200 * CONFIG_DRAM_CLK; /* 200us */
 671                const unsigned int tdinit3 = CONFIG_DRAM_CLK; /* 1us */
 672
 673                writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
 674                writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
 675        } else {
 676                /* LPDDR2 or LPDDR3 */
 677                const unsigned int tdinit0 = (100 * CONFIG_DRAM_CLK + 999) /
 678                        1000; /* 100ns */
 679                const unsigned int tdinit1 = 200 * CONFIG_DRAM_CLK; /* 200us */
 680                const unsigned int tdinit2 = 22 * CONFIG_DRAM_CLK; /* 11us */
 681                const unsigned int tdinit3 = 2 * CONFIG_DRAM_CLK; /* 2us */
 682
 683                writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
 684                writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
 685        }
 686
 687        /* TEST ME */
 688        writel(0x00203131, &mctl_phy->acmdlr);
 689
 690        /* TODO: can we enable this for 2 ranks, even when we don't know yet */
 691        writel(MCTL_DTCR_DEFAULT | MCTL_DTCR_RANKEN(para->rank),
 692               &mctl_phy->dtcr);
 693
 694        /* TODO: half width */
 695        debug("DX2GCR0 reset: 0x%x\n", readl(&mctl_phy->dx[2].gcr[0]));
 696        writel(0x7C000285, &mctl_phy->dx[2].gcr[0]);
 697        writel(0x7C000285, &mctl_phy->dx[3].gcr[0]);
 698
 699        clrsetbits_le32(&mctl_phy->zq[0].pr, 0xff,
 700                        (CONFIG_DRAM_ZQ >>  0) & 0xff);  /* CK/CA */
 701        clrsetbits_le32(&mctl_phy->zq[1].pr, 0xff,
 702                        (CONFIG_DRAM_ZQ >>  8) & 0xff);  /* DX0/DX1 */
 703        clrsetbits_le32(&mctl_phy->zq[2].pr, 0xff,
 704                        (CONFIG_DRAM_ZQ >> 16) & 0xff);  /* DX2/DX3 */
 705
 706        /* TODO: make configurable & implement non-ODT path */
 707        if (1) {
 708                int lane;
 709                for (lane = 0; lane < 4; ++lane) {
 710                        clrbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff);
 711                        clrbits_le32(&mctl_phy->dx[lane].gcr[3],
 712                                     (0x3<<12) | (0x3<<4));
 713                }
 714        } else {
 715                /* TODO: check */
 716                int lane;
 717                for (lane = 0; lane < 4; ++lane) {
 718                        clrsetbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff,
 719                                        0xaaaa);
 720                        if (para->dram_type == DRAM_TYPE_DDR3)
 721                                setbits_le32(&mctl_phy->dx[lane].gcr[3],
 722                                             (0x3<<12) | (0x3<<4));
 723                        else
 724                                setbits_le32(&mctl_phy->dx[lane].gcr[3],
 725                                             0x00000012);
 726                }
 727        }
 728
 729        writel(0x04058D02, &mctl_phy->zq[0].cr); /* CK/CA */
 730        writel(0x04058D02, &mctl_phy->zq[1].cr); /* DX0/DX1 */
 731        writel(0x04058D02, &mctl_phy->zq[2].cr); /* DX2/DX3 */
 732
 733        /* Disable auto-refresh prior to data training */
 734        setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
 735
 736        setbits_le32(&mctl_phy->dsgcr, 0xf << 24); /* unclear what this is... */
 737        /* TODO: IODDRM (IO DDR-MODE) for DDR3L */
 738        clrsetbits_le32(&mctl_phy->pgcr[1],
 739                        MCTL_PGCR1_ZCKSEL_MASK,
 740                        MCTL_PGCR1_IODDRM_DDR3 | MCTL_PGCR1_INHVT_EN);
 741
 742        setbits_le32(&mctl_phy->pllcr, 0x3 << 19); /* PLL frequency select */
 743        /* TODO: single-channel PLL mode??? missing */
 744        setbits_le32(&mctl_phy->pllcr,
 745                     MCTL_PLLGCR_PLL_BYPASS | MCTL_PLLGCR_PLL_POWERDOWN);
 746        /* setbits_le32(&mctl_phy->pir, MCTL_PIR_PLL_BYPASS); included below */
 747
 748        /* Disable VT compensation */
 749        clrbits_le32(&mctl_phy->pgcr[0], 0x3f);
 750
 751        /* TODO: "other" PLL mode ... 0x20000 seems to be the PLL Bypass */
 752        if (para->dram_type == DRAM_TYPE_DDR3)
 753                clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x20df3);
 754        else
 755                clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x2c573);
 756
 757        sdelay(10000); /* XXX necessary? */
 758
 759        /* Wait for the INIT bit to clear itself... */
 760        while ((readl(&mctl_phy->pir) & MCTL_PIR_INIT) != MCTL_PIR_INIT) {
 761                /* not done yet -- keep spinning */
 762                debug("MCTL_PIR_INIT not set\n");
 763                sdelay(1000);
 764                /* TODO: implement timeout */
 765        }
 766
 767        /* TODO: not used --- there's a "2rank debug" section here */
 768
 769        /* Original dram init code which may come in handy later
 770        ********************************************************
 771         * LPDDR2 and LPDDR3 *
 772        if ((para->dram_type) == 6 || (para->dram_type) == 7) {
 773                reg_val = mctl_read_w(P0_DSGCR + ch_offset);
 774                reg_val &= (~(0x3<<6));         * set DQSGX to 1 *
 775                reg_val |= (0x1<<6);            * dqs gate extend *
 776                mctl_write_w(P0_DSGCR + ch_offset, reg_val);
 777                dram_dbg("DQS Gate Extend Enable!\n", ch_index);
 778        }
 779
 780         * Disable ZCAL after initial--for nand dma debug--20140330 by YSZ *
 781        if (para->dram_tpr13 & (0x1<<31)) {
 782                reg_val = mctl_read_w(P0_ZQ0CR + ch_offset);
 783                reg_val |= (0x7<<11);
 784                mctl_write_w(P0_ZQ0CR + ch_offset, reg_val);
 785        }
 786        ********************************************************
 787        */
 788
 789        /*
 790         * TODO: more 2-rank support
 791         * (setting the "dqs gate delay to average between 2 rank")
 792         */
 793
 794        /* check if any errors are set */
 795        if (readl(&mctl_phy->pgsr[0]) & MCTL_PGSR0_ERRORS) {
 796                debug("Channel %d unavailable!\n", ch_index);
 797                return 0;
 798        } else{
 799                /* initial OK */
 800                debug("Channel %d OK!\n", ch_index);
 801                /* return 1; */
 802        }
 803
 804        while ((readl(&mctl_ctl->stat) & 0x1) != 0x1) {
 805                debug("Waiting for INIT to be done (controller to come up into 'normal operating' mode\n");
 806                sdelay(100000);
 807                /* init not done */
 808                /* TODO: implement time-out */
 809        }
 810        debug("done\n");
 811
 812        /* "DDR is controller by contoller" */
 813        clrbits_le32(&mctl_phy->pgcr[3], (1 << 25));
 814
 815        /* TODO: is the following necessary? */
 816        debug("DFIMISC before writing 0: 0x%x\n", readl(&mctl_ctl->dfimisc));
 817        writel(0, &mctl_ctl->dfimisc);
 818
 819        /* Enable auto-refresh */
 820        clrbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
 821
 822        debug("channel_init complete\n");
 823        return 1;
 824}
 825
 826signed int DRAMC_get_dram_size(void)
 827{
 828        struct sunxi_mctl_com_reg * const mctl_com =
 829                (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
 830
 831        unsigned int reg_val;
 832        unsigned int dram_size;
 833        unsigned int temp;
 834
 835        reg_val = readl(&mctl_com->cr);
 836
 837        temp = (reg_val >> 8) & 0xf;    /* page size code */
 838        dram_size = (temp - 6);         /* (1 << dram_size) * 512Bytes */
 839
 840        temp = (reg_val >> 4) & 0xf;    /* row width code */
 841        dram_size += (temp + 1);        /* (1 << dram_size) * 512Bytes */
 842
 843        temp = (reg_val >> 2) & 0x3;    /* bank number code */
 844        dram_size += (temp + 2);        /* (1 << dram_size) * 512Bytes */
 845
 846        temp = reg_val & 0x3;           /* rank number code */
 847        dram_size += temp;              /* (1 << dram_size) * 512Bytes */
 848
 849        temp = (reg_val >> 19) & 0x1;   /* channel number code */
 850        dram_size += temp;              /* (1 << dram_size) * 512Bytes */
 851
 852        dram_size = dram_size - 11;     /* (1 << dram_size) MBytes */
 853
 854        return 1 << dram_size;
 855}
 856
 857unsigned long sunxi_dram_init(void)
 858{
 859        struct sunxi_mctl_com_reg * const mctl_com =
 860                (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
 861
 862        struct dram_sun9i_cl_cwl_timing cl_cwl[] = {
 863                { .CL =  5, .CWL = 5, .tCKmin = 3000, .tCKmax = 3300 },
 864                { .CL =  6, .CWL = 5, .tCKmin = 2500, .tCKmax = 3300 },
 865                { .CL =  8, .CWL = 6, .tCKmin = 1875, .tCKmax = 2500 },
 866                { .CL = 10, .CWL = 7, .tCKmin = 1500, .tCKmax = 1875 },
 867                { .CL = 11, .CWL = 8, .tCKmin = 1250, .tCKmax = 1500 }
 868        };
 869
 870        /* Set initial parameters, these get modified by the autodetect code */
 871        struct dram_sun9i_para para = {
 872                .dram_type = DRAM_TYPE_DDR3,
 873                .bus_width = 32,
 874                .chan = 2,
 875                .rank = 1,
 876                /* .rank = 2, */
 877                .page_size = 4096,
 878                /* .rows = 16, */
 879                .rows = 15,
 880
 881                /* CL/CWL table for the speed bin */
 882                .cl_cwl_table = cl_cwl,
 883                .cl_cwl_numentries = sizeof(cl_cwl) /
 884                        sizeof(struct dram_sun9i_cl_cwl_timing),
 885
 886                /* timings */
 887                .tREFI = 7800,  /* 7.8us (up to 85 degC) */
 888                .tRFC  = 260,   /* 260ns for 4GBit devices */
 889                                /* 350ns @ 8GBit */
 890
 891                .tRCD  = 13750,
 892                .tRP   = 13750,
 893                .tRC   = 48750,
 894                .tRAS  = 35000,
 895
 896                .tDLLK = 512,
 897                .tRTP  = { .ck = 4, .ps = 7500 },
 898                .tWTR  = { .ck = 4, .ps = 7500 },
 899                .tWR   = 15,
 900                .tMRD  = 4,
 901                .tMOD  = { .ck = 12, .ps = 15000 },
 902                .tCCD  = 4,
 903                .tRRD  = { .ck = 4, .ps = 7500 },
 904                .tFAW  = 40,
 905
 906                /* calibration timing */
 907                /* .tZQinit = { .ck = 512, .ps = 640000 }, */
 908                .tZQoper = { .ck = 256, .ps = 320000 },
 909                .tZQCS   = { .ck = 64,  .ps = 80000 },
 910
 911                /* reset timing */
 912                /* .tXPR  = { .ck = 5, .ps = 10000 }, */
 913
 914                /* self-refresh timings */
 915                .tXS  = { .ck = 5, .ps = 10000 },
 916                .tXSDLL = 512,
 917                .tCKSRE = { .ck = 5, .ps = 10000 },
 918                .tCKSRX = { .ck = 5, .ps = 10000 },
 919
 920                /* power-down timings */
 921                .tXP = { .ck = 3, .ps = 6000 },
 922                .tXPDLL = { .ck = 10, .ps = 24000 },
 923                .tCKE = { .ck = 3, .ps = 5000 },
 924
 925                /* write leveling timings */
 926                .tWLMRD = 40,
 927                /* .tWLDQSEN = 25, */
 928                .tWLO = 7500,
 929                /* .tWLOE = 2000, */
 930        };
 931
 932        /*
 933         * Disable A80 internal 240 ohm resistor.
 934         *
 935         * This code sequence is adapated from Allwinner's Boot0 (see
 936         * https://github.com/allwinner-zh/bootloader.git), as there
 937         * is no documentation for these two registers in the R_PRCM
 938         * block.
 939         */
 940        setbits_le32(SUNXI_PRCM_BASE + 0x1e0, (0x3 << 8));
 941        writel(0, SUNXI_PRCM_BASE + 0x1e8);
 942
 943        mctl_sys_init();
 944
 945        if (!mctl_channel_init(0, &para))
 946                return 0;
 947
 948        /* dual-channel */
 949        if (!mctl_channel_init(1, &para)) {
 950                /* disable channel 1 */
 951                clrsetbits_le32(&mctl_com->cr, MCTL_CR_CHANNEL_MASK,
 952                                MCTL_CR_CHANNEL_SINGLE);
 953                /* disable channel 1 global clock */
 954                clrbits_le32(&mctl_com->cr, MCTL_CCR_CH1_CLK_EN);
 955        }
 956
 957        mctl_com_init(&para);
 958
 959        /* return the proper RAM size */
 960        return DRAMC_get_dram_size() << 20;
 961}
 962