uboot/drivers/mtd/nand/mxs_nand.c
<<
>>
Prefs
   1/*
   2 * Freescale i.MX28 NAND flash driver
   3 *
   4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
   5 * on behalf of DENX Software Engineering GmbH
   6 *
   7 * Based on code from LTIB:
   8 * Freescale GPMI NFC NAND Flash Driver
   9 *
  10 * Copyright (C) 2010 Freescale Semiconductor, Inc.
  11 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
  12 *
  13 * SPDX-License-Identifier:     GPL-2.0+
  14 */
  15
  16#include <common.h>
  17#include <linux/mtd/mtd.h>
  18#include <linux/mtd/nand.h>
  19#include <linux/types.h>
  20#include <malloc.h>
  21#include <linux/errno.h>
  22#include <asm/io.h>
  23#include <asm/arch/clock.h>
  24#include <asm/arch/imx-regs.h>
  25#include <asm/imx-common/regs-bch.h>
  26#include <asm/imx-common/regs-gpmi.h>
  27#include <asm/arch/sys_proto.h>
  28#include <asm/imx-common/dma.h>
  29
  30#define MXS_NAND_DMA_DESCRIPTOR_COUNT           4
  31
  32#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE          512
  33#if (defined(CONFIG_MX6) || defined(CONFIG_MX7))
  34#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT    2
  35#else
  36#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT    0
  37#endif
  38#define MXS_NAND_METADATA_SIZE                  10
  39#define MXS_NAND_BITS_PER_ECC_LEVEL             13
  40
  41#if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32
  42#define MXS_NAND_COMMAND_BUFFER_SIZE            32
  43#else
  44#define MXS_NAND_COMMAND_BUFFER_SIZE            CONFIG_SYS_CACHELINE_SIZE
  45#endif
  46
  47#define MXS_NAND_BCH_TIMEOUT                    10000
  48
  49struct mxs_nand_info {
  50        int             cur_chip;
  51
  52        uint32_t        cmd_queue_len;
  53        uint32_t        data_buf_size;
  54
  55        uint8_t         *cmd_buf;
  56        uint8_t         *data_buf;
  57        uint8_t         *oob_buf;
  58
  59        uint8_t         marking_block_bad;
  60        uint8_t         raw_oob_mode;
  61
  62        /* Functions with altered behaviour */
  63        int             (*hooked_read_oob)(struct mtd_info *mtd,
  64                                loff_t from, struct mtd_oob_ops *ops);
  65        int             (*hooked_write_oob)(struct mtd_info *mtd,
  66                                loff_t to, struct mtd_oob_ops *ops);
  67        int             (*hooked_block_markbad)(struct mtd_info *mtd,
  68                                loff_t ofs);
  69
  70        /* DMA descriptors */
  71        struct mxs_dma_desc     **desc;
  72        uint32_t                desc_index;
  73};
  74
  75struct nand_ecclayout fake_ecc_layout;
  76static int chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
  77static int galois_field = 13;
  78
  79/*
  80 * Cache management functions
  81 */
  82#ifndef CONFIG_SYS_DCACHE_OFF
  83static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
  84{
  85        uint32_t addr = (uint32_t)info->data_buf;
  86
  87        flush_dcache_range(addr, addr + info->data_buf_size);
  88}
  89
  90static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
  91{
  92        uint32_t addr = (uint32_t)info->data_buf;
  93
  94        invalidate_dcache_range(addr, addr + info->data_buf_size);
  95}
  96
  97static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
  98{
  99        uint32_t addr = (uint32_t)info->cmd_buf;
 100
 101        flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
 102}
 103#else
 104static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
 105static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
 106static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
 107#endif
 108
 109static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
 110{
 111        struct mxs_dma_desc *desc;
 112
 113        if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
 114                printf("MXS NAND: Too many DMA descriptors requested\n");
 115                return NULL;
 116        }
 117
 118        desc = info->desc[info->desc_index];
 119        info->desc_index++;
 120
 121        return desc;
 122}
 123
 124static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
 125{
 126        int i;
 127        struct mxs_dma_desc *desc;
 128
 129        for (i = 0; i < info->desc_index; i++) {
 130                desc = info->desc[i];
 131                memset(desc, 0, sizeof(struct mxs_dma_desc));
 132                desc->address = (dma_addr_t)desc;
 133        }
 134
 135        info->desc_index = 0;
 136}
 137
 138static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
 139{
 140        return page_data_size / chunk_data_size;
 141}
 142
 143static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
 144{
 145        return ecc_strength * galois_field;
 146}
 147
 148static uint32_t mxs_nand_aux_status_offset(void)
 149{
 150        return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
 151}
 152
 153static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
 154                                                uint32_t page_oob_size)
 155{
 156        int ecc_strength;
 157        int max_ecc_strength_supported;
 158
 159        /* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
 160        if (is_mx6sx() || is_mx7())
 161                max_ecc_strength_supported = 62;
 162        else
 163                max_ecc_strength_supported = 40;
 164
 165        /*
 166         * Determine the ECC layout with the formula:
 167         *      ECC bits per chunk = (total page spare data bits) /
 168         *              (bits per ECC level) / (chunks per page)
 169         * where:
 170         *      total page spare data bits =
 171         *              (page oob size - meta data size) * (bits per byte)
 172         */
 173        ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8)
 174                        / (galois_field *
 175                           mxs_nand_ecc_chunk_cnt(page_data_size));
 176
 177        return min(round_down(ecc_strength, 2), max_ecc_strength_supported);
 178}
 179
 180static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
 181                                                uint32_t ecc_strength)
 182{
 183        uint32_t chunk_data_size_in_bits;
 184        uint32_t chunk_ecc_size_in_bits;
 185        uint32_t chunk_total_size_in_bits;
 186        uint32_t block_mark_chunk_number;
 187        uint32_t block_mark_chunk_bit_offset;
 188        uint32_t block_mark_bit_offset;
 189
 190        chunk_data_size_in_bits = chunk_data_size * 8;
 191        chunk_ecc_size_in_bits  = mxs_nand_ecc_size_in_bits(ecc_strength);
 192
 193        chunk_total_size_in_bits =
 194                        chunk_data_size_in_bits + chunk_ecc_size_in_bits;
 195
 196        /* Compute the bit offset of the block mark within the physical page. */
 197        block_mark_bit_offset = page_data_size * 8;
 198
 199        /* Subtract the metadata bits. */
 200        block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
 201
 202        /*
 203         * Compute the chunk number (starting at zero) in which the block mark
 204         * appears.
 205         */
 206        block_mark_chunk_number =
 207                        block_mark_bit_offset / chunk_total_size_in_bits;
 208
 209        /*
 210         * Compute the bit offset of the block mark within its chunk, and
 211         * validate it.
 212         */
 213        block_mark_chunk_bit_offset = block_mark_bit_offset -
 214                        (block_mark_chunk_number * chunk_total_size_in_bits);
 215
 216        if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
 217                return 1;
 218
 219        /*
 220         * Now that we know the chunk number in which the block mark appears,
 221         * we can subtract all the ECC bits that appear before it.
 222         */
 223        block_mark_bit_offset -=
 224                block_mark_chunk_number * chunk_ecc_size_in_bits;
 225
 226        return block_mark_bit_offset;
 227}
 228
 229static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
 230{
 231        uint32_t ecc_strength;
 232        ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
 233        return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
 234}
 235
 236static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
 237{
 238        uint32_t ecc_strength;
 239        ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
 240        return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
 241}
 242
 243/*
 244 * Wait for BCH complete IRQ and clear the IRQ
 245 */
 246static int mxs_nand_wait_for_bch_complete(void)
 247{
 248        struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 249        int timeout = MXS_NAND_BCH_TIMEOUT;
 250        int ret;
 251
 252        ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
 253                BCH_CTRL_COMPLETE_IRQ, timeout);
 254
 255        writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
 256
 257        return ret;
 258}
 259
 260/*
 261 * This is the function that we install in the cmd_ctrl function pointer of the
 262 * owning struct nand_chip. The only functions in the reference implementation
 263 * that use these functions pointers are cmdfunc and select_chip.
 264 *
 265 * In this driver, we implement our own select_chip, so this function will only
 266 * be called by the reference implementation's cmdfunc. For this reason, we can
 267 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
 268 * Flash.
 269 */
 270static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
 271{
 272        struct nand_chip *nand = mtd_to_nand(mtd);
 273        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 274        struct mxs_dma_desc *d;
 275        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 276        int ret;
 277
 278        /*
 279         * If this condition is true, something is _VERY_ wrong in MTD
 280         * subsystem!
 281         */
 282        if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
 283                printf("MXS NAND: Command queue too long\n");
 284                return;
 285        }
 286
 287        /*
 288         * Every operation begins with a command byte and a series of zero or
 289         * more address bytes. These are distinguished by either the Address
 290         * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
 291         * asserted. When MTD is ready to execute the command, it will
 292         * deasert both latch enables.
 293         *
 294         * Rather than run a separate DMA operation for every single byte, we
 295         * queue them up and run a single DMA operation for the entire series
 296         * of command and data bytes.
 297         */
 298        if (ctrl & (NAND_ALE | NAND_CLE)) {
 299                if (data != NAND_CMD_NONE)
 300                        nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
 301                return;
 302        }
 303
 304        /*
 305         * If control arrives here, MTD has deasserted both the ALE and CLE,
 306         * which means it's ready to run an operation. Check if we have any
 307         * bytes to send.
 308         */
 309        if (nand_info->cmd_queue_len == 0)
 310                return;
 311
 312        /* Compile the DMA descriptor -- a descriptor that sends command. */
 313        d = mxs_nand_get_dma_desc(nand_info);
 314        d->cmd.data =
 315                MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
 316                MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
 317                MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 318                (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
 319
 320        d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
 321
 322        d->cmd.pio_words[0] =
 323                GPMI_CTRL0_COMMAND_MODE_WRITE |
 324                GPMI_CTRL0_WORD_LENGTH |
 325                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 326                GPMI_CTRL0_ADDRESS_NAND_CLE |
 327                GPMI_CTRL0_ADDRESS_INCREMENT |
 328                nand_info->cmd_queue_len;
 329
 330        mxs_dma_desc_append(channel, d);
 331
 332        /* Flush caches */
 333        mxs_nand_flush_cmd_buf(nand_info);
 334
 335        /* Execute the DMA chain. */
 336        ret = mxs_dma_go(channel);
 337        if (ret)
 338                printf("MXS NAND: Error sending command\n");
 339
 340        mxs_nand_return_dma_descs(nand_info);
 341
 342        /* Reset the command queue. */
 343        nand_info->cmd_queue_len = 0;
 344}
 345
 346/*
 347 * Test if the NAND flash is ready.
 348 */
 349static int mxs_nand_device_ready(struct mtd_info *mtd)
 350{
 351        struct nand_chip *chip = mtd_to_nand(mtd);
 352        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 353        struct mxs_gpmi_regs *gpmi_regs =
 354                (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
 355        uint32_t tmp;
 356
 357        tmp = readl(&gpmi_regs->hw_gpmi_stat);
 358        tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
 359
 360        return tmp & 1;
 361}
 362
 363/*
 364 * Select the NAND chip.
 365 */
 366static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
 367{
 368        struct nand_chip *nand = mtd_to_nand(mtd);
 369        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 370
 371        nand_info->cur_chip = chip;
 372}
 373
 374/*
 375 * Handle block mark swapping.
 376 *
 377 * Note that, when this function is called, it doesn't know whether it's
 378 * swapping the block mark, or swapping it *back* -- but it doesn't matter
 379 * because the the operation is the same.
 380 */
 381static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
 382                                        uint8_t *data_buf, uint8_t *oob_buf)
 383{
 384        uint32_t bit_offset;
 385        uint32_t buf_offset;
 386
 387        uint32_t src;
 388        uint32_t dst;
 389
 390        bit_offset = mxs_nand_mark_bit_offset(mtd);
 391        buf_offset = mxs_nand_mark_byte_offset(mtd);
 392
 393        /*
 394         * Get the byte from the data area that overlays the block mark. Since
 395         * the ECC engine applies its own view to the bits in the page, the
 396         * physical block mark won't (in general) appear on a byte boundary in
 397         * the data.
 398         */
 399        src = data_buf[buf_offset] >> bit_offset;
 400        src |= data_buf[buf_offset + 1] << (8 - bit_offset);
 401
 402        dst = oob_buf[0];
 403
 404        oob_buf[0] = src;
 405
 406        data_buf[buf_offset] &= ~(0xff << bit_offset);
 407        data_buf[buf_offset + 1] &= 0xff << bit_offset;
 408
 409        data_buf[buf_offset] |= dst << bit_offset;
 410        data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
 411}
 412
 413/*
 414 * Read data from NAND.
 415 */
 416static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
 417{
 418        struct nand_chip *nand = mtd_to_nand(mtd);
 419        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 420        struct mxs_dma_desc *d;
 421        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 422        int ret;
 423
 424        if (length > NAND_MAX_PAGESIZE) {
 425                printf("MXS NAND: DMA buffer too big\n");
 426                return;
 427        }
 428
 429        if (!buf) {
 430                printf("MXS NAND: DMA buffer is NULL\n");
 431                return;
 432        }
 433
 434        /* Compile the DMA descriptor - a descriptor that reads data. */
 435        d = mxs_nand_get_dma_desc(nand_info);
 436        d->cmd.data =
 437                MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
 438                MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 439                (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 440                (length << MXS_DMA_DESC_BYTES_OFFSET);
 441
 442        d->cmd.address = (dma_addr_t)nand_info->data_buf;
 443
 444        d->cmd.pio_words[0] =
 445                GPMI_CTRL0_COMMAND_MODE_READ |
 446                GPMI_CTRL0_WORD_LENGTH |
 447                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 448                GPMI_CTRL0_ADDRESS_NAND_DATA |
 449                length;
 450
 451        mxs_dma_desc_append(channel, d);
 452
 453        /*
 454         * A DMA descriptor that waits for the command to end and the chip to
 455         * become ready.
 456         *
 457         * I think we actually should *not* be waiting for the chip to become
 458         * ready because, after all, we don't care. I think the original code
 459         * did that and no one has re-thought it yet.
 460         */
 461        d = mxs_nand_get_dma_desc(nand_info);
 462        d->cmd.data =
 463                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 464                MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
 465                MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 466
 467        d->cmd.address = 0;
 468
 469        d->cmd.pio_words[0] =
 470                GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 471                GPMI_CTRL0_WORD_LENGTH |
 472                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 473                GPMI_CTRL0_ADDRESS_NAND_DATA;
 474
 475        mxs_dma_desc_append(channel, d);
 476
 477        /* Invalidate caches */
 478        mxs_nand_inval_data_buf(nand_info);
 479
 480        /* Execute the DMA chain. */
 481        ret = mxs_dma_go(channel);
 482        if (ret) {
 483                printf("MXS NAND: DMA read error\n");
 484                goto rtn;
 485        }
 486
 487        /* Invalidate caches */
 488        mxs_nand_inval_data_buf(nand_info);
 489
 490        memcpy(buf, nand_info->data_buf, length);
 491
 492rtn:
 493        mxs_nand_return_dma_descs(nand_info);
 494}
 495
 496/*
 497 * Write data to NAND.
 498 */
 499static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
 500                                int length)
 501{
 502        struct nand_chip *nand = mtd_to_nand(mtd);
 503        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 504        struct mxs_dma_desc *d;
 505        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 506        int ret;
 507
 508        if (length > NAND_MAX_PAGESIZE) {
 509                printf("MXS NAND: DMA buffer too big\n");
 510                return;
 511        }
 512
 513        if (!buf) {
 514                printf("MXS NAND: DMA buffer is NULL\n");
 515                return;
 516        }
 517
 518        memcpy(nand_info->data_buf, buf, length);
 519
 520        /* Compile the DMA descriptor - a descriptor that writes data. */
 521        d = mxs_nand_get_dma_desc(nand_info);
 522        d->cmd.data =
 523                MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
 524                MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 525                (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 526                (length << MXS_DMA_DESC_BYTES_OFFSET);
 527
 528        d->cmd.address = (dma_addr_t)nand_info->data_buf;
 529
 530        d->cmd.pio_words[0] =
 531                GPMI_CTRL0_COMMAND_MODE_WRITE |
 532                GPMI_CTRL0_WORD_LENGTH |
 533                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 534                GPMI_CTRL0_ADDRESS_NAND_DATA |
 535                length;
 536
 537        mxs_dma_desc_append(channel, d);
 538
 539        /* Flush caches */
 540        mxs_nand_flush_data_buf(nand_info);
 541
 542        /* Execute the DMA chain. */
 543        ret = mxs_dma_go(channel);
 544        if (ret)
 545                printf("MXS NAND: DMA write error\n");
 546
 547        mxs_nand_return_dma_descs(nand_info);
 548}
 549
 550/*
 551 * Read a single byte from NAND.
 552 */
 553static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
 554{
 555        uint8_t buf;
 556        mxs_nand_read_buf(mtd, &buf, 1);
 557        return buf;
 558}
 559
 560/*
 561 * Read a page from NAND.
 562 */
 563static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
 564                                        uint8_t *buf, int oob_required,
 565                                        int page)
 566{
 567        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 568        struct mxs_dma_desc *d;
 569        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 570        uint32_t corrected = 0, failed = 0;
 571        uint8_t *status;
 572        int i, ret;
 573
 574        /* Compile the DMA descriptor - wait for ready. */
 575        d = mxs_nand_get_dma_desc(nand_info);
 576        d->cmd.data =
 577                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 578                MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
 579                (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 580
 581        d->cmd.address = 0;
 582
 583        d->cmd.pio_words[0] =
 584                GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 585                GPMI_CTRL0_WORD_LENGTH |
 586                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 587                GPMI_CTRL0_ADDRESS_NAND_DATA;
 588
 589        mxs_dma_desc_append(channel, d);
 590
 591        /* Compile the DMA descriptor - enable the BCH block and read. */
 592        d = mxs_nand_get_dma_desc(nand_info);
 593        d->cmd.data =
 594                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 595                MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 596
 597        d->cmd.address = 0;
 598
 599        d->cmd.pio_words[0] =
 600                GPMI_CTRL0_COMMAND_MODE_READ |
 601                GPMI_CTRL0_WORD_LENGTH |
 602                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 603                GPMI_CTRL0_ADDRESS_NAND_DATA |
 604                (mtd->writesize + mtd->oobsize);
 605        d->cmd.pio_words[1] = 0;
 606        d->cmd.pio_words[2] =
 607                GPMI_ECCCTRL_ENABLE_ECC |
 608                GPMI_ECCCTRL_ECC_CMD_DECODE |
 609                GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
 610        d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
 611        d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
 612        d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
 613
 614        mxs_dma_desc_append(channel, d);
 615
 616        /* Compile the DMA descriptor - disable the BCH block. */
 617        d = mxs_nand_get_dma_desc(nand_info);
 618        d->cmd.data =
 619                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 620                MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
 621                (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 622
 623        d->cmd.address = 0;
 624
 625        d->cmd.pio_words[0] =
 626                GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 627                GPMI_CTRL0_WORD_LENGTH |
 628                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 629                GPMI_CTRL0_ADDRESS_NAND_DATA |
 630                (mtd->writesize + mtd->oobsize);
 631        d->cmd.pio_words[1] = 0;
 632        d->cmd.pio_words[2] = 0;
 633
 634        mxs_dma_desc_append(channel, d);
 635
 636        /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
 637        d = mxs_nand_get_dma_desc(nand_info);
 638        d->cmd.data =
 639                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 640                MXS_DMA_DESC_DEC_SEM;
 641
 642        d->cmd.address = 0;
 643
 644        mxs_dma_desc_append(channel, d);
 645
 646        /* Invalidate caches */
 647        mxs_nand_inval_data_buf(nand_info);
 648
 649        /* Execute the DMA chain. */
 650        ret = mxs_dma_go(channel);
 651        if (ret) {
 652                printf("MXS NAND: DMA read error\n");
 653                goto rtn;
 654        }
 655
 656        ret = mxs_nand_wait_for_bch_complete();
 657        if (ret) {
 658                printf("MXS NAND: BCH read timeout\n");
 659                goto rtn;
 660        }
 661
 662        /* Invalidate caches */
 663        mxs_nand_inval_data_buf(nand_info);
 664
 665        /* Read DMA completed, now do the mark swapping. */
 666        mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
 667
 668        /* Loop over status bytes, accumulating ECC status. */
 669        status = nand_info->oob_buf + mxs_nand_aux_status_offset();
 670        for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
 671                if (status[i] == 0x00)
 672                        continue;
 673
 674                if (status[i] == 0xff)
 675                        continue;
 676
 677                if (status[i] == 0xfe) {
 678                        failed++;
 679                        continue;
 680                }
 681
 682                corrected += status[i];
 683        }
 684
 685        /* Propagate ECC status to the owning MTD. */
 686        mtd->ecc_stats.failed += failed;
 687        mtd->ecc_stats.corrected += corrected;
 688
 689        /*
 690         * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
 691         * details about our policy for delivering the OOB.
 692         *
 693         * We fill the caller's buffer with set bits, and then copy the block
 694         * mark to the caller's buffer. Note that, if block mark swapping was
 695         * necessary, it has already been done, so we can rely on the first
 696         * byte of the auxiliary buffer to contain the block mark.
 697         */
 698        memset(nand->oob_poi, 0xff, mtd->oobsize);
 699
 700        nand->oob_poi[0] = nand_info->oob_buf[0];
 701
 702        memcpy(buf, nand_info->data_buf, mtd->writesize);
 703
 704rtn:
 705        mxs_nand_return_dma_descs(nand_info);
 706
 707        return ret;
 708}
 709
 710/*
 711 * Write a page to NAND.
 712 */
 713static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
 714                                struct nand_chip *nand, const uint8_t *buf,
 715                                int oob_required, int page)
 716{
 717        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 718        struct mxs_dma_desc *d;
 719        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 720        int ret;
 721
 722        memcpy(nand_info->data_buf, buf, mtd->writesize);
 723        memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
 724
 725        /* Handle block mark swapping. */
 726        mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
 727
 728        /* Compile the DMA descriptor - write data. */
 729        d = mxs_nand_get_dma_desc(nand_info);
 730        d->cmd.data =
 731                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 732                MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 733                (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 734
 735        d->cmd.address = 0;
 736
 737        d->cmd.pio_words[0] =
 738                GPMI_CTRL0_COMMAND_MODE_WRITE |
 739                GPMI_CTRL0_WORD_LENGTH |
 740                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 741                GPMI_CTRL0_ADDRESS_NAND_DATA;
 742        d->cmd.pio_words[1] = 0;
 743        d->cmd.pio_words[2] =
 744                GPMI_ECCCTRL_ENABLE_ECC |
 745                GPMI_ECCCTRL_ECC_CMD_ENCODE |
 746                GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
 747        d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
 748        d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
 749        d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
 750
 751        mxs_dma_desc_append(channel, d);
 752
 753        /* Flush caches */
 754        mxs_nand_flush_data_buf(nand_info);
 755
 756        /* Execute the DMA chain. */
 757        ret = mxs_dma_go(channel);
 758        if (ret) {
 759                printf("MXS NAND: DMA write error\n");
 760                goto rtn;
 761        }
 762
 763        ret = mxs_nand_wait_for_bch_complete();
 764        if (ret) {
 765                printf("MXS NAND: BCH write timeout\n");
 766                goto rtn;
 767        }
 768
 769rtn:
 770        mxs_nand_return_dma_descs(nand_info);
 771        return 0;
 772}
 773
 774/*
 775 * Read OOB from NAND.
 776 *
 777 * This function is a veneer that replaces the function originally installed by
 778 * the NAND Flash MTD code.
 779 */
 780static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
 781                                        struct mtd_oob_ops *ops)
 782{
 783        struct nand_chip *chip = mtd_to_nand(mtd);
 784        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 785        int ret;
 786
 787        if (ops->mode == MTD_OPS_RAW)
 788                nand_info->raw_oob_mode = 1;
 789        else
 790                nand_info->raw_oob_mode = 0;
 791
 792        ret = nand_info->hooked_read_oob(mtd, from, ops);
 793
 794        nand_info->raw_oob_mode = 0;
 795
 796        return ret;
 797}
 798
 799/*
 800 * Write OOB to NAND.
 801 *
 802 * This function is a veneer that replaces the function originally installed by
 803 * the NAND Flash MTD code.
 804 */
 805static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
 806                                        struct mtd_oob_ops *ops)
 807{
 808        struct nand_chip *chip = mtd_to_nand(mtd);
 809        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 810        int ret;
 811
 812        if (ops->mode == MTD_OPS_RAW)
 813                nand_info->raw_oob_mode = 1;
 814        else
 815                nand_info->raw_oob_mode = 0;
 816
 817        ret = nand_info->hooked_write_oob(mtd, to, ops);
 818
 819        nand_info->raw_oob_mode = 0;
 820
 821        return ret;
 822}
 823
 824/*
 825 * Mark a block bad in NAND.
 826 *
 827 * This function is a veneer that replaces the function originally installed by
 828 * the NAND Flash MTD code.
 829 */
 830static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
 831{
 832        struct nand_chip *chip = mtd_to_nand(mtd);
 833        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 834        int ret;
 835
 836        nand_info->marking_block_bad = 1;
 837
 838        ret = nand_info->hooked_block_markbad(mtd, ofs);
 839
 840        nand_info->marking_block_bad = 0;
 841
 842        return ret;
 843}
 844
 845/*
 846 * There are several places in this driver where we have to handle the OOB and
 847 * block marks. This is the function where things are the most complicated, so
 848 * this is where we try to explain it all. All the other places refer back to
 849 * here.
 850 *
 851 * These are the rules, in order of decreasing importance:
 852 *
 853 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
 854 *    write operations take measures to protect it.
 855 *
 856 * 2) In read operations, the first byte of the OOB we return must reflect the
 857 *    true state of the block mark, no matter where that block mark appears in
 858 *    the physical page.
 859 *
 860 * 3) ECC-based read operations return an OOB full of set bits (since we never
 861 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 862 *    return).
 863 *
 864 * 4) "Raw" read operations return a direct view of the physical bytes in the
 865 *    page, using the conventional definition of which bytes are data and which
 866 *    are OOB. This gives the caller a way to see the actual, physical bytes
 867 *    in the page, without the distortions applied by our ECC engine.
 868 *
 869 * What we do for this specific read operation depends on whether we're doing
 870 * "raw" read, or an ECC-based read.
 871 *
 872 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 873 * easy. When reading a page, for example, the NAND Flash MTD code calls our
 874 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 875 * ECC-based or raw view of the page is implicit in which function it calls
 876 * (there is a similar pair of ECC-based/raw functions for writing).
 877 *
 878 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
 879 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
 880 * caller wants an ECC-based or raw view of the page is not propagated down to
 881 * this driver.
 882 *
 883 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
 884 * ecc.read_oob and ecc.write_oob function pointers in the owning
 885 * struct mtd_info with our own functions. These hook functions set the
 886 * raw_oob_mode field so that, when control finally arrives here, we'll know
 887 * what to do.
 888 */
 889static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
 890                                int page)
 891{
 892        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 893
 894        /*
 895         * First, fill in the OOB buffer. If we're doing a raw read, we need to
 896         * get the bytes from the physical page. If we're not doing a raw read,
 897         * we need to fill the buffer with set bits.
 898         */
 899        if (nand_info->raw_oob_mode) {
 900                /*
 901                 * If control arrives here, we're doing a "raw" read. Send the
 902                 * command to read the conventional OOB and read it.
 903                 */
 904                nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
 905                nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
 906        } else {
 907                /*
 908                 * If control arrives here, we're not doing a "raw" read. Fill
 909                 * the OOB buffer with set bits and correct the block mark.
 910                 */
 911                memset(nand->oob_poi, 0xff, mtd->oobsize);
 912
 913                nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
 914                mxs_nand_read_buf(mtd, nand->oob_poi, 1);
 915        }
 916
 917        return 0;
 918
 919}
 920
 921/*
 922 * Write OOB data to NAND.
 923 */
 924static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
 925                                        int page)
 926{
 927        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 928        uint8_t block_mark = 0;
 929
 930        /*
 931         * There are fundamental incompatibilities between the i.MX GPMI NFC and
 932         * the NAND Flash MTD model that make it essentially impossible to write
 933         * the out-of-band bytes.
 934         *
 935         * We permit *ONE* exception. If the *intent* of writing the OOB is to
 936         * mark a block bad, we can do that.
 937         */
 938
 939        if (!nand_info->marking_block_bad) {
 940                printf("NXS NAND: Writing OOB isn't supported\n");
 941                return -EIO;
 942        }
 943
 944        /* Write the block mark. */
 945        nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 946        nand->write_buf(mtd, &block_mark, 1);
 947        nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 948
 949        /* Check if it worked. */
 950        if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
 951                return -EIO;
 952
 953        return 0;
 954}
 955
 956/*
 957 * Claims all blocks are good.
 958 *
 959 * In principle, this function is *only* called when the NAND Flash MTD system
 960 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
 961 * the driver for bad block information.
 962 *
 963 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
 964 * this function is *only* called when we take it away.
 965 *
 966 * Thus, this function is only called when we want *all* blocks to look good,
 967 * so it *always* return success.
 968 */
 969static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
 970{
 971        return 0;
 972}
 973
 974/*
 975 * Nominally, the purpose of this function is to look for or create the bad
 976 * block table. In fact, since the we call this function at the very end of
 977 * the initialization process started by nand_scan(), and we doesn't have a
 978 * more formal mechanism, we "hook" this function to continue init process.
 979 *
 980 * At this point, the physical NAND Flash chips have been identified and
 981 * counted, so we know the physical geometry. This enables us to make some
 982 * important configuration decisions.
 983 *
 984 * The return value of this function propagates directly back to this driver's
 985 * call to nand_scan(). Anything other than zero will cause this driver to
 986 * tear everything down and declare failure.
 987 */
 988static int mxs_nand_scan_bbt(struct mtd_info *mtd)
 989{
 990        struct nand_chip *nand = mtd_to_nand(mtd);
 991        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 992        struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 993        uint32_t tmp;
 994
 995        if (mtd->oobsize > MXS_NAND_CHUNK_DATA_CHUNK_SIZE) {
 996                galois_field = 14;
 997                chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 2;
 998        }
 999
1000        if (mtd->oobsize > chunk_data_size) {
1001                printf("Not support the NAND chips whose oob size is larger then %d bytes!\n", chunk_data_size);
1002                return -EINVAL;
1003        }
1004
1005        /* Configure BCH and set NFC geometry */
1006        mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1007
1008        /* Configure layout 0 */
1009        tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
1010                << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
1011        tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
1012        tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
1013                << BCH_FLASHLAYOUT0_ECC0_OFFSET;
1014        tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1015        tmp |= (14 == galois_field ? 1 : 0) <<
1016                BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
1017        writel(tmp, &bch_regs->hw_bch_flash0layout0);
1018
1019        tmp = (mtd->writesize + mtd->oobsize)
1020                << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
1021        tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
1022                << BCH_FLASHLAYOUT1_ECCN_OFFSET;
1023        tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1024        tmp |= (14 == galois_field ? 1 : 0) <<
1025                BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
1026        writel(tmp, &bch_regs->hw_bch_flash0layout1);
1027
1028        /* Set *all* chip selects to use layout 0 */
1029        writel(0, &bch_regs->hw_bch_layoutselect);
1030
1031        /* Enable BCH complete interrupt */
1032        writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
1033
1034        /* Hook some operations at the MTD level. */
1035        if (mtd->_read_oob != mxs_nand_hook_read_oob) {
1036                nand_info->hooked_read_oob = mtd->_read_oob;
1037                mtd->_read_oob = mxs_nand_hook_read_oob;
1038        }
1039
1040        if (mtd->_write_oob != mxs_nand_hook_write_oob) {
1041                nand_info->hooked_write_oob = mtd->_write_oob;
1042                mtd->_write_oob = mxs_nand_hook_write_oob;
1043        }
1044
1045        if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
1046                nand_info->hooked_block_markbad = mtd->_block_markbad;
1047                mtd->_block_markbad = mxs_nand_hook_block_markbad;
1048        }
1049
1050        /* We use the reference implementation for bad block management. */
1051        return nand_default_bbt(mtd);
1052}
1053
1054/*
1055 * Allocate DMA buffers
1056 */
1057int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1058{
1059        uint8_t *buf;
1060        const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1061
1062        nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1063
1064        /* DMA buffers */
1065        buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
1066        if (!buf) {
1067                printf("MXS NAND: Error allocating DMA buffers\n");
1068                return -ENOMEM;
1069        }
1070
1071        memset(buf, 0, nand_info->data_buf_size);
1072
1073        nand_info->data_buf = buf;
1074        nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
1075        /* Command buffers */
1076        nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1077                                MXS_NAND_COMMAND_BUFFER_SIZE);
1078        if (!nand_info->cmd_buf) {
1079                free(buf);
1080                printf("MXS NAND: Error allocating command buffers\n");
1081                return -ENOMEM;
1082        }
1083        memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1084        nand_info->cmd_queue_len = 0;
1085
1086        return 0;
1087}
1088
1089/*
1090 * Initializes the NFC hardware.
1091 */
1092int mxs_nand_init(struct mxs_nand_info *info)
1093{
1094        struct mxs_gpmi_regs *gpmi_regs =
1095                (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1096        struct mxs_bch_regs *bch_regs =
1097                (struct mxs_bch_regs *)MXS_BCH_BASE;
1098        int i = 0, j, ret = 0;
1099
1100        info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1101                                MXS_NAND_DMA_DESCRIPTOR_COUNT);
1102        if (!info->desc) {
1103                ret = -ENOMEM;
1104                goto err1;
1105        }
1106
1107        /* Allocate the DMA descriptors. */
1108        for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1109                info->desc[i] = mxs_dma_desc_alloc();
1110                if (!info->desc[i]) {
1111                        ret = -ENOMEM;
1112                        goto err2;
1113                }
1114        }
1115
1116        /* Init the DMA controller. */
1117        for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1118                j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1119                ret = mxs_dma_init_channel(j);
1120                if (ret)
1121                        goto err3;
1122        }
1123
1124        /* Reset the GPMI block. */
1125        mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
1126        mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1127
1128        /*
1129         * Choose NAND mode, set IRQ polarity, disable write protection and
1130         * select BCH ECC.
1131         */
1132        clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
1133                        GPMI_CTRL1_GPMI_MODE,
1134                        GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1135                        GPMI_CTRL1_BCH_MODE);
1136
1137        return 0;
1138
1139err3:
1140        for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
1141                mxs_dma_release(j);
1142err2:
1143        for (--i; i >= 0; i--)
1144                mxs_dma_desc_free(info->desc[i]);
1145        free(info->desc);
1146err1:
1147        if (ret == -ENOMEM)
1148                printf("MXS NAND: Unable to allocate DMA descriptors\n");
1149        return ret;
1150}
1151
1152/*!
1153 * This function is called during the driver binding process.
1154 *
1155 * @param   pdev  the device structure used to store device specific
1156 *                information that is used by the suspend, resume and
1157 *                remove functions
1158 *
1159 * @return  The function always returns 0.
1160 */
1161int board_nand_init(struct nand_chip *nand)
1162{
1163        struct mxs_nand_info *nand_info;
1164        int err;
1165
1166        nand_info = malloc(sizeof(struct mxs_nand_info));
1167        if (!nand_info) {
1168                printf("MXS NAND: Failed to allocate private data\n");
1169                return -ENOMEM;
1170        }
1171        memset(nand_info, 0, sizeof(struct mxs_nand_info));
1172
1173        err = mxs_nand_alloc_buffers(nand_info);
1174        if (err)
1175                goto err1;
1176
1177        err = mxs_nand_init(nand_info);
1178        if (err)
1179                goto err2;
1180
1181        memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1182
1183        nand_set_controller_data(nand, nand_info);
1184        nand->options |= NAND_NO_SUBPAGE_WRITE;
1185
1186        nand->cmd_ctrl          = mxs_nand_cmd_ctrl;
1187
1188        nand->dev_ready         = mxs_nand_device_ready;
1189        nand->select_chip       = mxs_nand_select_chip;
1190        nand->block_bad         = mxs_nand_block_bad;
1191        nand->scan_bbt          = mxs_nand_scan_bbt;
1192
1193        nand->read_byte         = mxs_nand_read_byte;
1194
1195        nand->read_buf          = mxs_nand_read_buf;
1196        nand->write_buf         = mxs_nand_write_buf;
1197
1198        nand->ecc.read_page     = mxs_nand_ecc_read_page;
1199        nand->ecc.write_page    = mxs_nand_ecc_write_page;
1200        nand->ecc.read_oob      = mxs_nand_ecc_read_oob;
1201        nand->ecc.write_oob     = mxs_nand_ecc_write_oob;
1202
1203        nand->ecc.layout        = &fake_ecc_layout;
1204        nand->ecc.mode          = NAND_ECC_HW;
1205        nand->ecc.bytes         = 9;
1206        nand->ecc.size          = 512;
1207        nand->ecc.strength      = 8;
1208
1209        return 0;
1210
1211err2:
1212        free(nand_info->data_buf);
1213        free(nand_info->cmd_buf);
1214err1:
1215        free(nand_info);
1216        return err;
1217}
1218