uboot/fs/ubifs/lpt.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * SPDX-License-Identifier:     GPL-2.0+
   7 *
   8 * Authors: Adrian Hunter
   9 *          Artem Bityutskiy (Битюцкий Артём)
  10 */
  11
  12/*
  13 * This file implements the LEB properties tree (LPT) area. The LPT area
  14 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
  15 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
  16 * between the log and the orphan area.
  17 *
  18 * The LPT area is like a miniature self-contained file system. It is required
  19 * that it never runs out of space, is fast to access and update, and scales
  20 * logarithmically. The LEB properties tree is implemented as a wandering tree
  21 * much like the TNC, and the LPT area has its own garbage collection.
  22 *
  23 * The LPT has two slightly different forms called the "small model" and the
  24 * "big model". The small model is used when the entire LEB properties table
  25 * can be written into a single eraseblock. In that case, garbage collection
  26 * consists of just writing the whole table, which therefore makes all other
  27 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
  28 * selected for garbage collection, which consists of marking the clean nodes in
  29 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
  30 * the case of the big model, a table of LEB numbers is saved so that the entire
  31 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
  32 * mounted.
  33 */
  34
  35#include "ubifs.h"
  36#ifndef __UBOOT__
  37#include <linux/crc16.h>
  38#include <linux/math64.h>
  39#include <linux/slab.h>
  40#else
  41#include <linux/compat.h>
  42#include <linux/err.h>
  43#include <ubi_uboot.h>
  44#include "crc16.h"
  45#endif
  46
  47/**
  48 * do_calc_lpt_geom - calculate sizes for the LPT area.
  49 * @c: the UBIFS file-system description object
  50 *
  51 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
  52 * properties of the flash and whether LPT is "big" (c->big_lpt).
  53 */
  54static void do_calc_lpt_geom(struct ubifs_info *c)
  55{
  56        int i, n, bits, per_leb_wastage, max_pnode_cnt;
  57        long long sz, tot_wastage;
  58
  59        n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
  60        max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
  61
  62        c->lpt_hght = 1;
  63        n = UBIFS_LPT_FANOUT;
  64        while (n < max_pnode_cnt) {
  65                c->lpt_hght += 1;
  66                n <<= UBIFS_LPT_FANOUT_SHIFT;
  67        }
  68
  69        c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
  70
  71        n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
  72        c->nnode_cnt = n;
  73        for (i = 1; i < c->lpt_hght; i++) {
  74                n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
  75                c->nnode_cnt += n;
  76        }
  77
  78        c->space_bits = fls(c->leb_size) - 3;
  79        c->lpt_lnum_bits = fls(c->lpt_lebs);
  80        c->lpt_offs_bits = fls(c->leb_size - 1);
  81        c->lpt_spc_bits = fls(c->leb_size);
  82
  83        n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
  84        c->pcnt_bits = fls(n - 1);
  85
  86        c->lnum_bits = fls(c->max_leb_cnt - 1);
  87
  88        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  89               (c->big_lpt ? c->pcnt_bits : 0) +
  90               (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
  91        c->pnode_sz = (bits + 7) / 8;
  92
  93        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  94               (c->big_lpt ? c->pcnt_bits : 0) +
  95               (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
  96        c->nnode_sz = (bits + 7) / 8;
  97
  98        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  99               c->lpt_lebs * c->lpt_spc_bits * 2;
 100        c->ltab_sz = (bits + 7) / 8;
 101
 102        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
 103               c->lnum_bits * c->lsave_cnt;
 104        c->lsave_sz = (bits + 7) / 8;
 105
 106        /* Calculate the minimum LPT size */
 107        c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
 108        c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
 109        c->lpt_sz += c->ltab_sz;
 110        if (c->big_lpt)
 111                c->lpt_sz += c->lsave_sz;
 112
 113        /* Add wastage */
 114        sz = c->lpt_sz;
 115        per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
 116        sz += per_leb_wastage;
 117        tot_wastage = per_leb_wastage;
 118        while (sz > c->leb_size) {
 119                sz += per_leb_wastage;
 120                sz -= c->leb_size;
 121                tot_wastage += per_leb_wastage;
 122        }
 123        tot_wastage += ALIGN(sz, c->min_io_size) - sz;
 124        c->lpt_sz += tot_wastage;
 125}
 126
 127/**
 128 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
 129 * @c: the UBIFS file-system description object
 130 *
 131 * This function returns %0 on success and a negative error code on failure.
 132 */
 133int ubifs_calc_lpt_geom(struct ubifs_info *c)
 134{
 135        int lebs_needed;
 136        long long sz;
 137
 138        do_calc_lpt_geom(c);
 139
 140        /* Verify that lpt_lebs is big enough */
 141        sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
 142        lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
 143        if (lebs_needed > c->lpt_lebs) {
 144                ubifs_err(c, "too few LPT LEBs");
 145                return -EINVAL;
 146        }
 147
 148        /* Verify that ltab fits in a single LEB (since ltab is a single node */
 149        if (c->ltab_sz > c->leb_size) {
 150                ubifs_err(c, "LPT ltab too big");
 151                return -EINVAL;
 152        }
 153
 154        c->check_lpt_free = c->big_lpt;
 155        return 0;
 156}
 157
 158/**
 159 * calc_dflt_lpt_geom - calculate default LPT geometry.
 160 * @c: the UBIFS file-system description object
 161 * @main_lebs: number of main area LEBs is passed and returned here
 162 * @big_lpt: whether the LPT area is "big" is returned here
 163 *
 164 * The size of the LPT area depends on parameters that themselves are dependent
 165 * on the size of the LPT area. This function, successively recalculates the LPT
 166 * area geometry until the parameters and resultant geometry are consistent.
 167 *
 168 * This function returns %0 on success and a negative error code on failure.
 169 */
 170static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
 171                              int *big_lpt)
 172{
 173        int i, lebs_needed;
 174        long long sz;
 175
 176        /* Start by assuming the minimum number of LPT LEBs */
 177        c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
 178        c->main_lebs = *main_lebs - c->lpt_lebs;
 179        if (c->main_lebs <= 0)
 180                return -EINVAL;
 181
 182        /* And assume we will use the small LPT model */
 183        c->big_lpt = 0;
 184
 185        /*
 186         * Calculate the geometry based on assumptions above and then see if it
 187         * makes sense
 188         */
 189        do_calc_lpt_geom(c);
 190
 191        /* Small LPT model must have lpt_sz < leb_size */
 192        if (c->lpt_sz > c->leb_size) {
 193                /* Nope, so try again using big LPT model */
 194                c->big_lpt = 1;
 195                do_calc_lpt_geom(c);
 196        }
 197
 198        /* Now check there are enough LPT LEBs */
 199        for (i = 0; i < 64 ; i++) {
 200                sz = c->lpt_sz * 4; /* Allow 4 times the size */
 201                lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
 202                if (lebs_needed > c->lpt_lebs) {
 203                        /* Not enough LPT LEBs so try again with more */
 204                        c->lpt_lebs = lebs_needed;
 205                        c->main_lebs = *main_lebs - c->lpt_lebs;
 206                        if (c->main_lebs <= 0)
 207                                return -EINVAL;
 208                        do_calc_lpt_geom(c);
 209                        continue;
 210                }
 211                if (c->ltab_sz > c->leb_size) {
 212                        ubifs_err(c, "LPT ltab too big");
 213                        return -EINVAL;
 214                }
 215                *main_lebs = c->main_lebs;
 216                *big_lpt = c->big_lpt;
 217                return 0;
 218        }
 219        return -EINVAL;
 220}
 221
 222/**
 223 * pack_bits - pack bit fields end-to-end.
 224 * @addr: address at which to pack (passed and next address returned)
 225 * @pos: bit position at which to pack (passed and next position returned)
 226 * @val: value to pack
 227 * @nrbits: number of bits of value to pack (1-32)
 228 */
 229static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
 230{
 231        uint8_t *p = *addr;
 232        int b = *pos;
 233
 234        ubifs_assert(nrbits > 0);
 235        ubifs_assert(nrbits <= 32);
 236        ubifs_assert(*pos >= 0);
 237        ubifs_assert(*pos < 8);
 238        ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
 239        if (b) {
 240                *p |= ((uint8_t)val) << b;
 241                nrbits += b;
 242                if (nrbits > 8) {
 243                        *++p = (uint8_t)(val >>= (8 - b));
 244                        if (nrbits > 16) {
 245                                *++p = (uint8_t)(val >>= 8);
 246                                if (nrbits > 24) {
 247                                        *++p = (uint8_t)(val >>= 8);
 248                                        if (nrbits > 32)
 249                                                *++p = (uint8_t)(val >>= 8);
 250                                }
 251                        }
 252                }
 253        } else {
 254                *p = (uint8_t)val;
 255                if (nrbits > 8) {
 256                        *++p = (uint8_t)(val >>= 8);
 257                        if (nrbits > 16) {
 258                                *++p = (uint8_t)(val >>= 8);
 259                                if (nrbits > 24)
 260                                        *++p = (uint8_t)(val >>= 8);
 261                        }
 262                }
 263        }
 264        b = nrbits & 7;
 265        if (b == 0)
 266                p++;
 267        *addr = p;
 268        *pos = b;
 269}
 270
 271/**
 272 * ubifs_unpack_bits - unpack bit fields.
 273 * @addr: address at which to unpack (passed and next address returned)
 274 * @pos: bit position at which to unpack (passed and next position returned)
 275 * @nrbits: number of bits of value to unpack (1-32)
 276 *
 277 * This functions returns the value unpacked.
 278 */
 279uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
 280{
 281        const int k = 32 - nrbits;
 282        uint8_t *p = *addr;
 283        int b = *pos;
 284        uint32_t uninitialized_var(val);
 285        const int bytes = (nrbits + b + 7) >> 3;
 286
 287        ubifs_assert(nrbits > 0);
 288        ubifs_assert(nrbits <= 32);
 289        ubifs_assert(*pos >= 0);
 290        ubifs_assert(*pos < 8);
 291        if (b) {
 292                switch (bytes) {
 293                case 2:
 294                        val = p[1];
 295                        break;
 296                case 3:
 297                        val = p[1] | ((uint32_t)p[2] << 8);
 298                        break;
 299                case 4:
 300                        val = p[1] | ((uint32_t)p[2] << 8) |
 301                                     ((uint32_t)p[3] << 16);
 302                        break;
 303                case 5:
 304                        val = p[1] | ((uint32_t)p[2] << 8) |
 305                                     ((uint32_t)p[3] << 16) |
 306                                     ((uint32_t)p[4] << 24);
 307                }
 308                val <<= (8 - b);
 309                val |= *p >> b;
 310                nrbits += b;
 311        } else {
 312                switch (bytes) {
 313                case 1:
 314                        val = p[0];
 315                        break;
 316                case 2:
 317                        val = p[0] | ((uint32_t)p[1] << 8);
 318                        break;
 319                case 3:
 320                        val = p[0] | ((uint32_t)p[1] << 8) |
 321                                     ((uint32_t)p[2] << 16);
 322                        break;
 323                case 4:
 324                        val = p[0] | ((uint32_t)p[1] << 8) |
 325                                     ((uint32_t)p[2] << 16) |
 326                                     ((uint32_t)p[3] << 24);
 327                        break;
 328                }
 329        }
 330        val <<= k;
 331        val >>= k;
 332        b = nrbits & 7;
 333        p += nrbits >> 3;
 334        *addr = p;
 335        *pos = b;
 336        ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
 337        return val;
 338}
 339
 340/**
 341 * ubifs_pack_pnode - pack all the bit fields of a pnode.
 342 * @c: UBIFS file-system description object
 343 * @buf: buffer into which to pack
 344 * @pnode: pnode to pack
 345 */
 346void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
 347                      struct ubifs_pnode *pnode)
 348{
 349        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 350        int i, pos = 0;
 351        uint16_t crc;
 352
 353        pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
 354        if (c->big_lpt)
 355                pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
 356        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 357                pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
 358                          c->space_bits);
 359                pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
 360                          c->space_bits);
 361                if (pnode->lprops[i].flags & LPROPS_INDEX)
 362                        pack_bits(&addr, &pos, 1, 1);
 363                else
 364                        pack_bits(&addr, &pos, 0, 1);
 365        }
 366        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 367                    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
 368        addr = buf;
 369        pos = 0;
 370        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 371}
 372
 373/**
 374 * ubifs_pack_nnode - pack all the bit fields of a nnode.
 375 * @c: UBIFS file-system description object
 376 * @buf: buffer into which to pack
 377 * @nnode: nnode to pack
 378 */
 379void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
 380                      struct ubifs_nnode *nnode)
 381{
 382        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 383        int i, pos = 0;
 384        uint16_t crc;
 385
 386        pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
 387        if (c->big_lpt)
 388                pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
 389        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 390                int lnum = nnode->nbranch[i].lnum;
 391
 392                if (lnum == 0)
 393                        lnum = c->lpt_last + 1;
 394                pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
 395                pack_bits(&addr, &pos, nnode->nbranch[i].offs,
 396                          c->lpt_offs_bits);
 397        }
 398        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 399                    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
 400        addr = buf;
 401        pos = 0;
 402        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 403}
 404
 405/**
 406 * ubifs_pack_ltab - pack the LPT's own lprops table.
 407 * @c: UBIFS file-system description object
 408 * @buf: buffer into which to pack
 409 * @ltab: LPT's own lprops table to pack
 410 */
 411void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
 412                     struct ubifs_lpt_lprops *ltab)
 413{
 414        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 415        int i, pos = 0;
 416        uint16_t crc;
 417
 418        pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
 419        for (i = 0; i < c->lpt_lebs; i++) {
 420                pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
 421                pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
 422        }
 423        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 424                    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
 425        addr = buf;
 426        pos = 0;
 427        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 428}
 429
 430/**
 431 * ubifs_pack_lsave - pack the LPT's save table.
 432 * @c: UBIFS file-system description object
 433 * @buf: buffer into which to pack
 434 * @lsave: LPT's save table to pack
 435 */
 436void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
 437{
 438        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 439        int i, pos = 0;
 440        uint16_t crc;
 441
 442        pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
 443        for (i = 0; i < c->lsave_cnt; i++)
 444                pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
 445        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 446                    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
 447        addr = buf;
 448        pos = 0;
 449        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 450}
 451
 452/**
 453 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
 454 * @c: UBIFS file-system description object
 455 * @lnum: LEB number to which to add dirty space
 456 * @dirty: amount of dirty space to add
 457 */
 458void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
 459{
 460        if (!dirty || !lnum)
 461                return;
 462        dbg_lp("LEB %d add %d to %d",
 463               lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
 464        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 465        c->ltab[lnum - c->lpt_first].dirty += dirty;
 466}
 467
 468/**
 469 * set_ltab - set LPT LEB properties.
 470 * @c: UBIFS file-system description object
 471 * @lnum: LEB number
 472 * @free: amount of free space
 473 * @dirty: amount of dirty space
 474 */
 475static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
 476{
 477        dbg_lp("LEB %d free %d dirty %d to %d %d",
 478               lnum, c->ltab[lnum - c->lpt_first].free,
 479               c->ltab[lnum - c->lpt_first].dirty, free, dirty);
 480        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 481        c->ltab[lnum - c->lpt_first].free = free;
 482        c->ltab[lnum - c->lpt_first].dirty = dirty;
 483}
 484
 485/**
 486 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
 487 * @c: UBIFS file-system description object
 488 * @nnode: nnode for which to add dirt
 489 */
 490void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
 491{
 492        struct ubifs_nnode *np = nnode->parent;
 493
 494        if (np)
 495                ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
 496                                   c->nnode_sz);
 497        else {
 498                ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
 499                if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
 500                        c->lpt_drty_flgs |= LTAB_DIRTY;
 501                        ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
 502                }
 503        }
 504}
 505
 506/**
 507 * add_pnode_dirt - add dirty space to LPT LEB properties.
 508 * @c: UBIFS file-system description object
 509 * @pnode: pnode for which to add dirt
 510 */
 511static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
 512{
 513        ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
 514                           c->pnode_sz);
 515}
 516
 517/**
 518 * calc_nnode_num - calculate nnode number.
 519 * @row: the row in the tree (root is zero)
 520 * @col: the column in the row (leftmost is zero)
 521 *
 522 * The nnode number is a number that uniquely identifies a nnode and can be used
 523 * easily to traverse the tree from the root to that nnode.
 524 *
 525 * This function calculates and returns the nnode number for the nnode at @row
 526 * and @col.
 527 */
 528static int calc_nnode_num(int row, int col)
 529{
 530        int num, bits;
 531
 532        num = 1;
 533        while (row--) {
 534                bits = (col & (UBIFS_LPT_FANOUT - 1));
 535                col >>= UBIFS_LPT_FANOUT_SHIFT;
 536                num <<= UBIFS_LPT_FANOUT_SHIFT;
 537                num |= bits;
 538        }
 539        return num;
 540}
 541
 542/**
 543 * calc_nnode_num_from_parent - calculate nnode number.
 544 * @c: UBIFS file-system description object
 545 * @parent: parent nnode
 546 * @iip: index in parent
 547 *
 548 * The nnode number is a number that uniquely identifies a nnode and can be used
 549 * easily to traverse the tree from the root to that nnode.
 550 *
 551 * This function calculates and returns the nnode number based on the parent's
 552 * nnode number and the index in parent.
 553 */
 554static int calc_nnode_num_from_parent(const struct ubifs_info *c,
 555                                      struct ubifs_nnode *parent, int iip)
 556{
 557        int num, shft;
 558
 559        if (!parent)
 560                return 1;
 561        shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
 562        num = parent->num ^ (1 << shft);
 563        num |= (UBIFS_LPT_FANOUT + iip) << shft;
 564        return num;
 565}
 566
 567/**
 568 * calc_pnode_num_from_parent - calculate pnode number.
 569 * @c: UBIFS file-system description object
 570 * @parent: parent nnode
 571 * @iip: index in parent
 572 *
 573 * The pnode number is a number that uniquely identifies a pnode and can be used
 574 * easily to traverse the tree from the root to that pnode.
 575 *
 576 * This function calculates and returns the pnode number based on the parent's
 577 * nnode number and the index in parent.
 578 */
 579static int calc_pnode_num_from_parent(const struct ubifs_info *c,
 580                                      struct ubifs_nnode *parent, int iip)
 581{
 582        int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
 583
 584        for (i = 0; i < n; i++) {
 585                num <<= UBIFS_LPT_FANOUT_SHIFT;
 586                num |= pnum & (UBIFS_LPT_FANOUT - 1);
 587                pnum >>= UBIFS_LPT_FANOUT_SHIFT;
 588        }
 589        num <<= UBIFS_LPT_FANOUT_SHIFT;
 590        num |= iip;
 591        return num;
 592}
 593
 594/**
 595 * ubifs_create_dflt_lpt - create default LPT.
 596 * @c: UBIFS file-system description object
 597 * @main_lebs: number of main area LEBs is passed and returned here
 598 * @lpt_first: LEB number of first LPT LEB
 599 * @lpt_lebs: number of LEBs for LPT is passed and returned here
 600 * @big_lpt: use big LPT model is passed and returned here
 601 *
 602 * This function returns %0 on success and a negative error code on failure.
 603 */
 604int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
 605                          int *lpt_lebs, int *big_lpt)
 606{
 607        int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
 608        int blnum, boffs, bsz, bcnt;
 609        struct ubifs_pnode *pnode = NULL;
 610        struct ubifs_nnode *nnode = NULL;
 611        void *buf = NULL, *p;
 612        struct ubifs_lpt_lprops *ltab = NULL;
 613        int *lsave = NULL;
 614
 615        err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
 616        if (err)
 617                return err;
 618        *lpt_lebs = c->lpt_lebs;
 619
 620        /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
 621        c->lpt_first = lpt_first;
 622        /* Needed by 'set_ltab()' */
 623        c->lpt_last = lpt_first + c->lpt_lebs - 1;
 624        /* Needed by 'ubifs_pack_lsave()' */
 625        c->main_first = c->leb_cnt - *main_lebs;
 626
 627        lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
 628        pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
 629        nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
 630        buf = vmalloc(c->leb_size);
 631        ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
 632        if (!pnode || !nnode || !buf || !ltab || !lsave) {
 633                err = -ENOMEM;
 634                goto out;
 635        }
 636
 637        ubifs_assert(!c->ltab);
 638        c->ltab = ltab; /* Needed by set_ltab */
 639
 640        /* Initialize LPT's own lprops */
 641        for (i = 0; i < c->lpt_lebs; i++) {
 642                ltab[i].free = c->leb_size;
 643                ltab[i].dirty = 0;
 644                ltab[i].tgc = 0;
 645                ltab[i].cmt = 0;
 646        }
 647
 648        lnum = lpt_first;
 649        p = buf;
 650        /* Number of leaf nodes (pnodes) */
 651        cnt = c->pnode_cnt;
 652
 653        /*
 654         * The first pnode contains the LEB properties for the LEBs that contain
 655         * the root inode node and the root index node of the index tree.
 656         */
 657        node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
 658        iopos = ALIGN(node_sz, c->min_io_size);
 659        pnode->lprops[0].free = c->leb_size - iopos;
 660        pnode->lprops[0].dirty = iopos - node_sz;
 661        pnode->lprops[0].flags = LPROPS_INDEX;
 662
 663        node_sz = UBIFS_INO_NODE_SZ;
 664        iopos = ALIGN(node_sz, c->min_io_size);
 665        pnode->lprops[1].free = c->leb_size - iopos;
 666        pnode->lprops[1].dirty = iopos - node_sz;
 667
 668        for (i = 2; i < UBIFS_LPT_FANOUT; i++)
 669                pnode->lprops[i].free = c->leb_size;
 670
 671        /* Add first pnode */
 672        ubifs_pack_pnode(c, p, pnode);
 673        p += c->pnode_sz;
 674        len = c->pnode_sz;
 675        pnode->num += 1;
 676
 677        /* Reset pnode values for remaining pnodes */
 678        pnode->lprops[0].free = c->leb_size;
 679        pnode->lprops[0].dirty = 0;
 680        pnode->lprops[0].flags = 0;
 681
 682        pnode->lprops[1].free = c->leb_size;
 683        pnode->lprops[1].dirty = 0;
 684
 685        /*
 686         * To calculate the internal node branches, we keep information about
 687         * the level below.
 688         */
 689        blnum = lnum; /* LEB number of level below */
 690        boffs = 0; /* Offset of level below */
 691        bcnt = cnt; /* Number of nodes in level below */
 692        bsz = c->pnode_sz; /* Size of nodes in level below */
 693
 694        /* Add all remaining pnodes */
 695        for (i = 1; i < cnt; i++) {
 696                if (len + c->pnode_sz > c->leb_size) {
 697                        alen = ALIGN(len, c->min_io_size);
 698                        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 699                        memset(p, 0xff, alen - len);
 700                        err = ubifs_leb_change(c, lnum++, buf, alen);
 701                        if (err)
 702                                goto out;
 703                        p = buf;
 704                        len = 0;
 705                }
 706                ubifs_pack_pnode(c, p, pnode);
 707                p += c->pnode_sz;
 708                len += c->pnode_sz;
 709                /*
 710                 * pnodes are simply numbered left to right starting at zero,
 711                 * which means the pnode number can be used easily to traverse
 712                 * down the tree to the corresponding pnode.
 713                 */
 714                pnode->num += 1;
 715        }
 716
 717        row = 0;
 718        for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
 719                row += 1;
 720        /* Add all nnodes, one level at a time */
 721        while (1) {
 722                /* Number of internal nodes (nnodes) at next level */
 723                cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
 724                for (i = 0; i < cnt; i++) {
 725                        if (len + c->nnode_sz > c->leb_size) {
 726                                alen = ALIGN(len, c->min_io_size);
 727                                set_ltab(c, lnum, c->leb_size - alen,
 728                                            alen - len);
 729                                memset(p, 0xff, alen - len);
 730                                err = ubifs_leb_change(c, lnum++, buf, alen);
 731                                if (err)
 732                                        goto out;
 733                                p = buf;
 734                                len = 0;
 735                        }
 736                        /* Only 1 nnode at this level, so it is the root */
 737                        if (cnt == 1) {
 738                                c->lpt_lnum = lnum;
 739                                c->lpt_offs = len;
 740                        }
 741                        /* Set branches to the level below */
 742                        for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
 743                                if (bcnt) {
 744                                        if (boffs + bsz > c->leb_size) {
 745                                                blnum += 1;
 746                                                boffs = 0;
 747                                        }
 748                                        nnode->nbranch[j].lnum = blnum;
 749                                        nnode->nbranch[j].offs = boffs;
 750                                        boffs += bsz;
 751                                        bcnt--;
 752                                } else {
 753                                        nnode->nbranch[j].lnum = 0;
 754                                        nnode->nbranch[j].offs = 0;
 755                                }
 756                        }
 757                        nnode->num = calc_nnode_num(row, i);
 758                        ubifs_pack_nnode(c, p, nnode);
 759                        p += c->nnode_sz;
 760                        len += c->nnode_sz;
 761                }
 762                /* Only 1 nnode at this level, so it is the root */
 763                if (cnt == 1)
 764                        break;
 765                /* Update the information about the level below */
 766                bcnt = cnt;
 767                bsz = c->nnode_sz;
 768                row -= 1;
 769        }
 770
 771        if (*big_lpt) {
 772                /* Need to add LPT's save table */
 773                if (len + c->lsave_sz > c->leb_size) {
 774                        alen = ALIGN(len, c->min_io_size);
 775                        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 776                        memset(p, 0xff, alen - len);
 777                        err = ubifs_leb_change(c, lnum++, buf, alen);
 778                        if (err)
 779                                goto out;
 780                        p = buf;
 781                        len = 0;
 782                }
 783
 784                c->lsave_lnum = lnum;
 785                c->lsave_offs = len;
 786
 787                for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
 788                        lsave[i] = c->main_first + i;
 789                for (; i < c->lsave_cnt; i++)
 790                        lsave[i] = c->main_first;
 791
 792                ubifs_pack_lsave(c, p, lsave);
 793                p += c->lsave_sz;
 794                len += c->lsave_sz;
 795        }
 796
 797        /* Need to add LPT's own LEB properties table */
 798        if (len + c->ltab_sz > c->leb_size) {
 799                alen = ALIGN(len, c->min_io_size);
 800                set_ltab(c, lnum, c->leb_size - alen, alen - len);
 801                memset(p, 0xff, alen - len);
 802                err = ubifs_leb_change(c, lnum++, buf, alen);
 803                if (err)
 804                        goto out;
 805                p = buf;
 806                len = 0;
 807        }
 808
 809        c->ltab_lnum = lnum;
 810        c->ltab_offs = len;
 811
 812        /* Update ltab before packing it */
 813        len += c->ltab_sz;
 814        alen = ALIGN(len, c->min_io_size);
 815        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 816
 817        ubifs_pack_ltab(c, p, ltab);
 818        p += c->ltab_sz;
 819
 820        /* Write remaining buffer */
 821        memset(p, 0xff, alen - len);
 822        err = ubifs_leb_change(c, lnum, buf, alen);
 823        if (err)
 824                goto out;
 825
 826        c->nhead_lnum = lnum;
 827        c->nhead_offs = ALIGN(len, c->min_io_size);
 828
 829        dbg_lp("space_bits %d", c->space_bits);
 830        dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
 831        dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
 832        dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
 833        dbg_lp("pcnt_bits %d", c->pcnt_bits);
 834        dbg_lp("lnum_bits %d", c->lnum_bits);
 835        dbg_lp("pnode_sz %d", c->pnode_sz);
 836        dbg_lp("nnode_sz %d", c->nnode_sz);
 837        dbg_lp("ltab_sz %d", c->ltab_sz);
 838        dbg_lp("lsave_sz %d", c->lsave_sz);
 839        dbg_lp("lsave_cnt %d", c->lsave_cnt);
 840        dbg_lp("lpt_hght %d", c->lpt_hght);
 841        dbg_lp("big_lpt %d", c->big_lpt);
 842        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
 843        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
 844        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
 845        if (c->big_lpt)
 846                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
 847out:
 848        c->ltab = NULL;
 849        kfree(lsave);
 850        vfree(ltab);
 851        vfree(buf);
 852        kfree(nnode);
 853        kfree(pnode);
 854        return err;
 855}
 856
 857/**
 858 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
 859 * @c: UBIFS file-system description object
 860 * @pnode: pnode
 861 *
 862 * When a pnode is loaded into memory, the LEB properties it contains are added,
 863 * by this function, to the LEB category lists and heaps.
 864 */
 865static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
 866{
 867        int i;
 868
 869        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 870                int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
 871                int lnum = pnode->lprops[i].lnum;
 872
 873                if (!lnum)
 874                        return;
 875                ubifs_add_to_cat(c, &pnode->lprops[i], cat);
 876        }
 877}
 878
 879/**
 880 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
 881 * @c: UBIFS file-system description object
 882 * @old_pnode: pnode copied
 883 * @new_pnode: pnode copy
 884 *
 885 * During commit it is sometimes necessary to copy a pnode
 886 * (see dirty_cow_pnode).  When that happens, references in
 887 * category lists and heaps must be replaced.  This function does that.
 888 */
 889static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
 890                         struct ubifs_pnode *new_pnode)
 891{
 892        int i;
 893
 894        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 895                if (!new_pnode->lprops[i].lnum)
 896                        return;
 897                ubifs_replace_cat(c, &old_pnode->lprops[i],
 898                                  &new_pnode->lprops[i]);
 899        }
 900}
 901
 902/**
 903 * check_lpt_crc - check LPT node crc is correct.
 904 * @c: UBIFS file-system description object
 905 * @buf: buffer containing node
 906 * @len: length of node
 907 *
 908 * This function returns %0 on success and a negative error code on failure.
 909 */
 910static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
 911{
 912        int pos = 0;
 913        uint8_t *addr = buf;
 914        uint16_t crc, calc_crc;
 915
 916        crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
 917        calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 918                         len - UBIFS_LPT_CRC_BYTES);
 919        if (crc != calc_crc) {
 920                ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
 921                          crc, calc_crc);
 922                dump_stack();
 923                return -EINVAL;
 924        }
 925        return 0;
 926}
 927
 928/**
 929 * check_lpt_type - check LPT node type is correct.
 930 * @c: UBIFS file-system description object
 931 * @addr: address of type bit field is passed and returned updated here
 932 * @pos: position of type bit field is passed and returned updated here
 933 * @type: expected type
 934 *
 935 * This function returns %0 on success and a negative error code on failure.
 936 */
 937static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
 938                          int *pos, int type)
 939{
 940        int node_type;
 941
 942        node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
 943        if (node_type != type) {
 944                ubifs_err(c, "invalid type (%d) in LPT node type %d",
 945                          node_type, type);
 946                dump_stack();
 947                return -EINVAL;
 948        }
 949        return 0;
 950}
 951
 952/**
 953 * unpack_pnode - unpack a pnode.
 954 * @c: UBIFS file-system description object
 955 * @buf: buffer containing packed pnode to unpack
 956 * @pnode: pnode structure to fill
 957 *
 958 * This function returns %0 on success and a negative error code on failure.
 959 */
 960static int unpack_pnode(const struct ubifs_info *c, void *buf,
 961                        struct ubifs_pnode *pnode)
 962{
 963        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 964        int i, pos = 0, err;
 965
 966        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
 967        if (err)
 968                return err;
 969        if (c->big_lpt)
 970                pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
 971        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 972                struct ubifs_lprops * const lprops = &pnode->lprops[i];
 973
 974                lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
 975                lprops->free <<= 3;
 976                lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
 977                lprops->dirty <<= 3;
 978
 979                if (ubifs_unpack_bits(&addr, &pos, 1))
 980                        lprops->flags = LPROPS_INDEX;
 981                else
 982                        lprops->flags = 0;
 983                lprops->flags |= ubifs_categorize_lprops(c, lprops);
 984        }
 985        err = check_lpt_crc(c, buf, c->pnode_sz);
 986        return err;
 987}
 988
 989/**
 990 * ubifs_unpack_nnode - unpack a nnode.
 991 * @c: UBIFS file-system description object
 992 * @buf: buffer containing packed nnode to unpack
 993 * @nnode: nnode structure to fill
 994 *
 995 * This function returns %0 on success and a negative error code on failure.
 996 */
 997int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
 998                       struct ubifs_nnode *nnode)
 999{
1000        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1001        int i, pos = 0, err;
1002
1003        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1004        if (err)
1005                return err;
1006        if (c->big_lpt)
1007                nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1008        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1009                int lnum;
1010
1011                lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1012                       c->lpt_first;
1013                if (lnum == c->lpt_last + 1)
1014                        lnum = 0;
1015                nnode->nbranch[i].lnum = lnum;
1016                nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1017                                                     c->lpt_offs_bits);
1018        }
1019        err = check_lpt_crc(c, buf, c->nnode_sz);
1020        return err;
1021}
1022
1023/**
1024 * unpack_ltab - unpack the LPT's own lprops table.
1025 * @c: UBIFS file-system description object
1026 * @buf: buffer from which to unpack
1027 *
1028 * This function returns %0 on success and a negative error code on failure.
1029 */
1030static int unpack_ltab(const struct ubifs_info *c, void *buf)
1031{
1032        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1033        int i, pos = 0, err;
1034
1035        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1036        if (err)
1037                return err;
1038        for (i = 0; i < c->lpt_lebs; i++) {
1039                int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1040                int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1041
1042                if (free < 0 || free > c->leb_size || dirty < 0 ||
1043                    dirty > c->leb_size || free + dirty > c->leb_size)
1044                        return -EINVAL;
1045
1046                c->ltab[i].free = free;
1047                c->ltab[i].dirty = dirty;
1048                c->ltab[i].tgc = 0;
1049                c->ltab[i].cmt = 0;
1050        }
1051        err = check_lpt_crc(c, buf, c->ltab_sz);
1052        return err;
1053}
1054
1055#ifndef __UBOOT__
1056/**
1057 * unpack_lsave - unpack the LPT's save table.
1058 * @c: UBIFS file-system description object
1059 * @buf: buffer from which to unpack
1060 *
1061 * This function returns %0 on success and a negative error code on failure.
1062 */
1063static int unpack_lsave(const struct ubifs_info *c, void *buf)
1064{
1065        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1066        int i, pos = 0, err;
1067
1068        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1069        if (err)
1070                return err;
1071        for (i = 0; i < c->lsave_cnt; i++) {
1072                int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1073
1074                if (lnum < c->main_first || lnum >= c->leb_cnt)
1075                        return -EINVAL;
1076                c->lsave[i] = lnum;
1077        }
1078        err = check_lpt_crc(c, buf, c->lsave_sz);
1079        return err;
1080}
1081#endif
1082
1083/**
1084 * validate_nnode - validate a nnode.
1085 * @c: UBIFS file-system description object
1086 * @nnode: nnode to validate
1087 * @parent: parent nnode (or NULL for the root nnode)
1088 * @iip: index in parent
1089 *
1090 * This function returns %0 on success and a negative error code on failure.
1091 */
1092static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1093                          struct ubifs_nnode *parent, int iip)
1094{
1095        int i, lvl, max_offs;
1096
1097        if (c->big_lpt) {
1098                int num = calc_nnode_num_from_parent(c, parent, iip);
1099
1100                if (nnode->num != num)
1101                        return -EINVAL;
1102        }
1103        lvl = parent ? parent->level - 1 : c->lpt_hght;
1104        if (lvl < 1)
1105                return -EINVAL;
1106        if (lvl == 1)
1107                max_offs = c->leb_size - c->pnode_sz;
1108        else
1109                max_offs = c->leb_size - c->nnode_sz;
1110        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1111                int lnum = nnode->nbranch[i].lnum;
1112                int offs = nnode->nbranch[i].offs;
1113
1114                if (lnum == 0) {
1115                        if (offs != 0)
1116                                return -EINVAL;
1117                        continue;
1118                }
1119                if (lnum < c->lpt_first || lnum > c->lpt_last)
1120                        return -EINVAL;
1121                if (offs < 0 || offs > max_offs)
1122                        return -EINVAL;
1123        }
1124        return 0;
1125}
1126
1127/**
1128 * validate_pnode - validate a pnode.
1129 * @c: UBIFS file-system description object
1130 * @pnode: pnode to validate
1131 * @parent: parent nnode
1132 * @iip: index in parent
1133 *
1134 * This function returns %0 on success and a negative error code on failure.
1135 */
1136static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1137                          struct ubifs_nnode *parent, int iip)
1138{
1139        int i;
1140
1141        if (c->big_lpt) {
1142                int num = calc_pnode_num_from_parent(c, parent, iip);
1143
1144                if (pnode->num != num)
1145                        return -EINVAL;
1146        }
1147        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1148                int free = pnode->lprops[i].free;
1149                int dirty = pnode->lprops[i].dirty;
1150
1151                if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1152                    (free & 7))
1153                        return -EINVAL;
1154                if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1155                        return -EINVAL;
1156                if (dirty + free > c->leb_size)
1157                        return -EINVAL;
1158        }
1159        return 0;
1160}
1161
1162/**
1163 * set_pnode_lnum - set LEB numbers on a pnode.
1164 * @c: UBIFS file-system description object
1165 * @pnode: pnode to update
1166 *
1167 * This function calculates the LEB numbers for the LEB properties it contains
1168 * based on the pnode number.
1169 */
1170static void set_pnode_lnum(const struct ubifs_info *c,
1171                           struct ubifs_pnode *pnode)
1172{
1173        int i, lnum;
1174
1175        lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1176        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1177                if (lnum >= c->leb_cnt)
1178                        return;
1179                pnode->lprops[i].lnum = lnum++;
1180        }
1181}
1182
1183/**
1184 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1185 * @c: UBIFS file-system description object
1186 * @parent: parent nnode (or NULL for the root)
1187 * @iip: index in parent
1188 *
1189 * This function returns %0 on success and a negative error code on failure.
1190 */
1191int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1192{
1193        struct ubifs_nbranch *branch = NULL;
1194        struct ubifs_nnode *nnode = NULL;
1195        void *buf = c->lpt_nod_buf;
1196        int err, lnum, offs;
1197
1198        if (parent) {
1199                branch = &parent->nbranch[iip];
1200                lnum = branch->lnum;
1201                offs = branch->offs;
1202        } else {
1203                lnum = c->lpt_lnum;
1204                offs = c->lpt_offs;
1205        }
1206        nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1207        if (!nnode) {
1208                err = -ENOMEM;
1209                goto out;
1210        }
1211        if (lnum == 0) {
1212                /*
1213                 * This nnode was not written which just means that the LEB
1214                 * properties in the subtree below it describe empty LEBs. We
1215                 * make the nnode as though we had read it, which in fact means
1216                 * doing almost nothing.
1217                 */
1218                if (c->big_lpt)
1219                        nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1220        } else {
1221                err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1222                if (err)
1223                        goto out;
1224                err = ubifs_unpack_nnode(c, buf, nnode);
1225                if (err)
1226                        goto out;
1227        }
1228        err = validate_nnode(c, nnode, parent, iip);
1229        if (err)
1230                goto out;
1231        if (!c->big_lpt)
1232                nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1233        if (parent) {
1234                branch->nnode = nnode;
1235                nnode->level = parent->level - 1;
1236        } else {
1237                c->nroot = nnode;
1238                nnode->level = c->lpt_hght;
1239        }
1240        nnode->parent = parent;
1241        nnode->iip = iip;
1242        return 0;
1243
1244out:
1245        ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1246        dump_stack();
1247        kfree(nnode);
1248        return err;
1249}
1250
1251/**
1252 * read_pnode - read a pnode from flash and link it to the tree in memory.
1253 * @c: UBIFS file-system description object
1254 * @parent: parent nnode
1255 * @iip: index in parent
1256 *
1257 * This function returns %0 on success and a negative error code on failure.
1258 */
1259static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1260{
1261        struct ubifs_nbranch *branch;
1262        struct ubifs_pnode *pnode = NULL;
1263        void *buf = c->lpt_nod_buf;
1264        int err, lnum, offs;
1265
1266        branch = &parent->nbranch[iip];
1267        lnum = branch->lnum;
1268        offs = branch->offs;
1269        pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1270        if (!pnode)
1271                return -ENOMEM;
1272
1273        if (lnum == 0) {
1274                /*
1275                 * This pnode was not written which just means that the LEB
1276                 * properties in it describe empty LEBs. We make the pnode as
1277                 * though we had read it.
1278                 */
1279                int i;
1280
1281                if (c->big_lpt)
1282                        pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1283                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1284                        struct ubifs_lprops * const lprops = &pnode->lprops[i];
1285
1286                        lprops->free = c->leb_size;
1287                        lprops->flags = ubifs_categorize_lprops(c, lprops);
1288                }
1289        } else {
1290                err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1291                if (err)
1292                        goto out;
1293                err = unpack_pnode(c, buf, pnode);
1294                if (err)
1295                        goto out;
1296        }
1297        err = validate_pnode(c, pnode, parent, iip);
1298        if (err)
1299                goto out;
1300        if (!c->big_lpt)
1301                pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1302        branch->pnode = pnode;
1303        pnode->parent = parent;
1304        pnode->iip = iip;
1305        set_pnode_lnum(c, pnode);
1306        c->pnodes_have += 1;
1307        return 0;
1308
1309out:
1310        ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1311        ubifs_dump_pnode(c, pnode, parent, iip);
1312        dump_stack();
1313        ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1314        kfree(pnode);
1315        return err;
1316}
1317
1318/**
1319 * read_ltab - read LPT's own lprops table.
1320 * @c: UBIFS file-system description object
1321 *
1322 * This function returns %0 on success and a negative error code on failure.
1323 */
1324static int read_ltab(struct ubifs_info *c)
1325{
1326        int err;
1327        void *buf;
1328
1329        buf = vmalloc(c->ltab_sz);
1330        if (!buf)
1331                return -ENOMEM;
1332        err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1333        if (err)
1334                goto out;
1335        err = unpack_ltab(c, buf);
1336out:
1337        vfree(buf);
1338        return err;
1339}
1340
1341#ifndef __UBOOT__
1342/**
1343 * read_lsave - read LPT's save table.
1344 * @c: UBIFS file-system description object
1345 *
1346 * This function returns %0 on success and a negative error code on failure.
1347 */
1348static int read_lsave(struct ubifs_info *c)
1349{
1350        int err, i;
1351        void *buf;
1352
1353        buf = vmalloc(c->lsave_sz);
1354        if (!buf)
1355                return -ENOMEM;
1356        err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1357                             c->lsave_sz, 1);
1358        if (err)
1359                goto out;
1360        err = unpack_lsave(c, buf);
1361        if (err)
1362                goto out;
1363        for (i = 0; i < c->lsave_cnt; i++) {
1364                int lnum = c->lsave[i];
1365                struct ubifs_lprops *lprops;
1366
1367                /*
1368                 * Due to automatic resizing, the values in the lsave table
1369                 * could be beyond the volume size - just ignore them.
1370                 */
1371                if (lnum >= c->leb_cnt)
1372                        continue;
1373                lprops = ubifs_lpt_lookup(c, lnum);
1374                if (IS_ERR(lprops)) {
1375                        err = PTR_ERR(lprops);
1376                        goto out;
1377                }
1378        }
1379out:
1380        vfree(buf);
1381        return err;
1382}
1383#endif
1384
1385/**
1386 * ubifs_get_nnode - get a nnode.
1387 * @c: UBIFS file-system description object
1388 * @parent: parent nnode (or NULL for the root)
1389 * @iip: index in parent
1390 *
1391 * This function returns a pointer to the nnode on success or a negative error
1392 * code on failure.
1393 */
1394struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1395                                    struct ubifs_nnode *parent, int iip)
1396{
1397        struct ubifs_nbranch *branch;
1398        struct ubifs_nnode *nnode;
1399        int err;
1400
1401        branch = &parent->nbranch[iip];
1402        nnode = branch->nnode;
1403        if (nnode)
1404                return nnode;
1405        err = ubifs_read_nnode(c, parent, iip);
1406        if (err)
1407                return ERR_PTR(err);
1408        return branch->nnode;
1409}
1410
1411/**
1412 * ubifs_get_pnode - get a pnode.
1413 * @c: UBIFS file-system description object
1414 * @parent: parent nnode
1415 * @iip: index in parent
1416 *
1417 * This function returns a pointer to the pnode on success or a negative error
1418 * code on failure.
1419 */
1420struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1421                                    struct ubifs_nnode *parent, int iip)
1422{
1423        struct ubifs_nbranch *branch;
1424        struct ubifs_pnode *pnode;
1425        int err;
1426
1427        branch = &parent->nbranch[iip];
1428        pnode = branch->pnode;
1429        if (pnode)
1430                return pnode;
1431        err = read_pnode(c, parent, iip);
1432        if (err)
1433                return ERR_PTR(err);
1434        update_cats(c, branch->pnode);
1435        return branch->pnode;
1436}
1437
1438/**
1439 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1440 * @c: UBIFS file-system description object
1441 * @lnum: LEB number to lookup
1442 *
1443 * This function returns a pointer to the LEB properties on success or a
1444 * negative error code on failure.
1445 */
1446struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1447{
1448        int err, i, h, iip, shft;
1449        struct ubifs_nnode *nnode;
1450        struct ubifs_pnode *pnode;
1451
1452        if (!c->nroot) {
1453                err = ubifs_read_nnode(c, NULL, 0);
1454                if (err)
1455                        return ERR_PTR(err);
1456        }
1457        nnode = c->nroot;
1458        i = lnum - c->main_first;
1459        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1460        for (h = 1; h < c->lpt_hght; h++) {
1461                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1462                shft -= UBIFS_LPT_FANOUT_SHIFT;
1463                nnode = ubifs_get_nnode(c, nnode, iip);
1464                if (IS_ERR(nnode))
1465                        return ERR_CAST(nnode);
1466        }
1467        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1468        pnode = ubifs_get_pnode(c, nnode, iip);
1469        if (IS_ERR(pnode))
1470                return ERR_CAST(pnode);
1471        iip = (i & (UBIFS_LPT_FANOUT - 1));
1472        dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1473               pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1474               pnode->lprops[iip].flags);
1475        return &pnode->lprops[iip];
1476}
1477
1478/**
1479 * dirty_cow_nnode - ensure a nnode is not being committed.
1480 * @c: UBIFS file-system description object
1481 * @nnode: nnode to check
1482 *
1483 * Returns dirtied nnode on success or negative error code on failure.
1484 */
1485static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1486                                           struct ubifs_nnode *nnode)
1487{
1488        struct ubifs_nnode *n;
1489        int i;
1490
1491        if (!test_bit(COW_CNODE, &nnode->flags)) {
1492                /* nnode is not being committed */
1493                if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1494                        c->dirty_nn_cnt += 1;
1495                        ubifs_add_nnode_dirt(c, nnode);
1496                }
1497                return nnode;
1498        }
1499
1500        /* nnode is being committed, so copy it */
1501        n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1502        if (unlikely(!n))
1503                return ERR_PTR(-ENOMEM);
1504
1505        memcpy(n, nnode, sizeof(struct ubifs_nnode));
1506        n->cnext = NULL;
1507        __set_bit(DIRTY_CNODE, &n->flags);
1508        __clear_bit(COW_CNODE, &n->flags);
1509
1510        /* The children now have new parent */
1511        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1512                struct ubifs_nbranch *branch = &n->nbranch[i];
1513
1514                if (branch->cnode)
1515                        branch->cnode->parent = n;
1516        }
1517
1518        ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1519        __set_bit(OBSOLETE_CNODE, &nnode->flags);
1520
1521        c->dirty_nn_cnt += 1;
1522        ubifs_add_nnode_dirt(c, nnode);
1523        if (nnode->parent)
1524                nnode->parent->nbranch[n->iip].nnode = n;
1525        else
1526                c->nroot = n;
1527        return n;
1528}
1529
1530/**
1531 * dirty_cow_pnode - ensure a pnode is not being committed.
1532 * @c: UBIFS file-system description object
1533 * @pnode: pnode to check
1534 *
1535 * Returns dirtied pnode on success or negative error code on failure.
1536 */
1537static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1538                                           struct ubifs_pnode *pnode)
1539{
1540        struct ubifs_pnode *p;
1541
1542        if (!test_bit(COW_CNODE, &pnode->flags)) {
1543                /* pnode is not being committed */
1544                if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1545                        c->dirty_pn_cnt += 1;
1546                        add_pnode_dirt(c, pnode);
1547                }
1548                return pnode;
1549        }
1550
1551        /* pnode is being committed, so copy it */
1552        p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1553        if (unlikely(!p))
1554                return ERR_PTR(-ENOMEM);
1555
1556        memcpy(p, pnode, sizeof(struct ubifs_pnode));
1557        p->cnext = NULL;
1558        __set_bit(DIRTY_CNODE, &p->flags);
1559        __clear_bit(COW_CNODE, &p->flags);
1560        replace_cats(c, pnode, p);
1561
1562        ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1563        __set_bit(OBSOLETE_CNODE, &pnode->flags);
1564
1565        c->dirty_pn_cnt += 1;
1566        add_pnode_dirt(c, pnode);
1567        pnode->parent->nbranch[p->iip].pnode = p;
1568        return p;
1569}
1570
1571/**
1572 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1573 * @c: UBIFS file-system description object
1574 * @lnum: LEB number to lookup
1575 *
1576 * This function returns a pointer to the LEB properties on success or a
1577 * negative error code on failure.
1578 */
1579struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1580{
1581        int err, i, h, iip, shft;
1582        struct ubifs_nnode *nnode;
1583        struct ubifs_pnode *pnode;
1584
1585        if (!c->nroot) {
1586                err = ubifs_read_nnode(c, NULL, 0);
1587                if (err)
1588                        return ERR_PTR(err);
1589        }
1590        nnode = c->nroot;
1591        nnode = dirty_cow_nnode(c, nnode);
1592        if (IS_ERR(nnode))
1593                return ERR_CAST(nnode);
1594        i = lnum - c->main_first;
1595        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1596        for (h = 1; h < c->lpt_hght; h++) {
1597                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1598                shft -= UBIFS_LPT_FANOUT_SHIFT;
1599                nnode = ubifs_get_nnode(c, nnode, iip);
1600                if (IS_ERR(nnode))
1601                        return ERR_CAST(nnode);
1602                nnode = dirty_cow_nnode(c, nnode);
1603                if (IS_ERR(nnode))
1604                        return ERR_CAST(nnode);
1605        }
1606        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1607        pnode = ubifs_get_pnode(c, nnode, iip);
1608        if (IS_ERR(pnode))
1609                return ERR_CAST(pnode);
1610        pnode = dirty_cow_pnode(c, pnode);
1611        if (IS_ERR(pnode))
1612                return ERR_CAST(pnode);
1613        iip = (i & (UBIFS_LPT_FANOUT - 1));
1614        dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1615               pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1616               pnode->lprops[iip].flags);
1617        ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1618        return &pnode->lprops[iip];
1619}
1620
1621/**
1622 * lpt_init_rd - initialize the LPT for reading.
1623 * @c: UBIFS file-system description object
1624 *
1625 * This function returns %0 on success and a negative error code on failure.
1626 */
1627static int lpt_init_rd(struct ubifs_info *c)
1628{
1629        int err, i;
1630
1631        c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1632        if (!c->ltab)
1633                return -ENOMEM;
1634
1635        i = max_t(int, c->nnode_sz, c->pnode_sz);
1636        c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1637        if (!c->lpt_nod_buf)
1638                return -ENOMEM;
1639
1640        for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1641                c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1642                                             GFP_KERNEL);
1643                if (!c->lpt_heap[i].arr)
1644                        return -ENOMEM;
1645                c->lpt_heap[i].cnt = 0;
1646                c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1647        }
1648
1649        c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1650        if (!c->dirty_idx.arr)
1651                return -ENOMEM;
1652        c->dirty_idx.cnt = 0;
1653        c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1654
1655        err = read_ltab(c);
1656        if (err)
1657                return err;
1658
1659        dbg_lp("space_bits %d", c->space_bits);
1660        dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1661        dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1662        dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1663        dbg_lp("pcnt_bits %d", c->pcnt_bits);
1664        dbg_lp("lnum_bits %d", c->lnum_bits);
1665        dbg_lp("pnode_sz %d", c->pnode_sz);
1666        dbg_lp("nnode_sz %d", c->nnode_sz);
1667        dbg_lp("ltab_sz %d", c->ltab_sz);
1668        dbg_lp("lsave_sz %d", c->lsave_sz);
1669        dbg_lp("lsave_cnt %d", c->lsave_cnt);
1670        dbg_lp("lpt_hght %d", c->lpt_hght);
1671        dbg_lp("big_lpt %d", c->big_lpt);
1672        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1673        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1674        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1675        if (c->big_lpt)
1676                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1677
1678        return 0;
1679}
1680
1681#ifndef __UBOOT__
1682/**
1683 * lpt_init_wr - initialize the LPT for writing.
1684 * @c: UBIFS file-system description object
1685 *
1686 * 'lpt_init_rd()' must have been called already.
1687 *
1688 * This function returns %0 on success and a negative error code on failure.
1689 */
1690static int lpt_init_wr(struct ubifs_info *c)
1691{
1692        int err, i;
1693
1694        c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1695        if (!c->ltab_cmt)
1696                return -ENOMEM;
1697
1698        c->lpt_buf = vmalloc(c->leb_size);
1699        if (!c->lpt_buf)
1700                return -ENOMEM;
1701
1702        if (c->big_lpt) {
1703                c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1704                if (!c->lsave)
1705                        return -ENOMEM;
1706                err = read_lsave(c);
1707                if (err)
1708                        return err;
1709        }
1710
1711        for (i = 0; i < c->lpt_lebs; i++)
1712                if (c->ltab[i].free == c->leb_size) {
1713                        err = ubifs_leb_unmap(c, i + c->lpt_first);
1714                        if (err)
1715                                return err;
1716                }
1717
1718        return 0;
1719}
1720#endif
1721
1722/**
1723 * ubifs_lpt_init - initialize the LPT.
1724 * @c: UBIFS file-system description object
1725 * @rd: whether to initialize lpt for reading
1726 * @wr: whether to initialize lpt for writing
1727 *
1728 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1729 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1730 * true.
1731 *
1732 * This function returns %0 on success and a negative error code on failure.
1733 */
1734int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1735{
1736        int err;
1737
1738        if (rd) {
1739                err = lpt_init_rd(c);
1740                if (err)
1741                        goto out_err;
1742        }
1743
1744#ifndef __UBOOT__
1745        if (wr) {
1746                err = lpt_init_wr(c);
1747                if (err)
1748                        goto out_err;
1749        }
1750#endif
1751
1752        return 0;
1753
1754out_err:
1755#ifndef __UBOOT__
1756        if (wr)
1757                ubifs_lpt_free(c, 1);
1758#endif
1759        if (rd)
1760                ubifs_lpt_free(c, 0);
1761        return err;
1762}
1763
1764/**
1765 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1766 * @nnode: where to keep a nnode
1767 * @pnode: where to keep a pnode
1768 * @cnode: where to keep a cnode
1769 * @in_tree: is the node in the tree in memory
1770 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1771 * the tree
1772 * @ptr.pnode: ditto for pnode
1773 * @ptr.cnode: ditto for cnode
1774 */
1775struct lpt_scan_node {
1776        union {
1777                struct ubifs_nnode nnode;
1778                struct ubifs_pnode pnode;
1779                struct ubifs_cnode cnode;
1780        };
1781        int in_tree;
1782        union {
1783                struct ubifs_nnode *nnode;
1784                struct ubifs_pnode *pnode;
1785                struct ubifs_cnode *cnode;
1786        } ptr;
1787};
1788
1789/**
1790 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1791 * @c: the UBIFS file-system description object
1792 * @path: where to put the nnode
1793 * @parent: parent of the nnode
1794 * @iip: index in parent of the nnode
1795 *
1796 * This function returns a pointer to the nnode on success or a negative error
1797 * code on failure.
1798 */
1799static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1800                                          struct lpt_scan_node *path,
1801                                          struct ubifs_nnode *parent, int iip)
1802{
1803        struct ubifs_nbranch *branch;
1804        struct ubifs_nnode *nnode;
1805        void *buf = c->lpt_nod_buf;
1806        int err;
1807
1808        branch = &parent->nbranch[iip];
1809        nnode = branch->nnode;
1810        if (nnode) {
1811                path->in_tree = 1;
1812                path->ptr.nnode = nnode;
1813                return nnode;
1814        }
1815        nnode = &path->nnode;
1816        path->in_tree = 0;
1817        path->ptr.nnode = nnode;
1818        memset(nnode, 0, sizeof(struct ubifs_nnode));
1819        if (branch->lnum == 0) {
1820                /*
1821                 * This nnode was not written which just means that the LEB
1822                 * properties in the subtree below it describe empty LEBs. We
1823                 * make the nnode as though we had read it, which in fact means
1824                 * doing almost nothing.
1825                 */
1826                if (c->big_lpt)
1827                        nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1828        } else {
1829                err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1830                                     c->nnode_sz, 1);
1831                if (err)
1832                        return ERR_PTR(err);
1833                err = ubifs_unpack_nnode(c, buf, nnode);
1834                if (err)
1835                        return ERR_PTR(err);
1836        }
1837        err = validate_nnode(c, nnode, parent, iip);
1838        if (err)
1839                return ERR_PTR(err);
1840        if (!c->big_lpt)
1841                nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1842        nnode->level = parent->level - 1;
1843        nnode->parent = parent;
1844        nnode->iip = iip;
1845        return nnode;
1846}
1847
1848/**
1849 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1850 * @c: the UBIFS file-system description object
1851 * @path: where to put the pnode
1852 * @parent: parent of the pnode
1853 * @iip: index in parent of the pnode
1854 *
1855 * This function returns a pointer to the pnode on success or a negative error
1856 * code on failure.
1857 */
1858static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1859                                          struct lpt_scan_node *path,
1860                                          struct ubifs_nnode *parent, int iip)
1861{
1862        struct ubifs_nbranch *branch;
1863        struct ubifs_pnode *pnode;
1864        void *buf = c->lpt_nod_buf;
1865        int err;
1866
1867        branch = &parent->nbranch[iip];
1868        pnode = branch->pnode;
1869        if (pnode) {
1870                path->in_tree = 1;
1871                path->ptr.pnode = pnode;
1872                return pnode;
1873        }
1874        pnode = &path->pnode;
1875        path->in_tree = 0;
1876        path->ptr.pnode = pnode;
1877        memset(pnode, 0, sizeof(struct ubifs_pnode));
1878        if (branch->lnum == 0) {
1879                /*
1880                 * This pnode was not written which just means that the LEB
1881                 * properties in it describe empty LEBs. We make the pnode as
1882                 * though we had read it.
1883                 */
1884                int i;
1885
1886                if (c->big_lpt)
1887                        pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1888                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1889                        struct ubifs_lprops * const lprops = &pnode->lprops[i];
1890
1891                        lprops->free = c->leb_size;
1892                        lprops->flags = ubifs_categorize_lprops(c, lprops);
1893                }
1894        } else {
1895                ubifs_assert(branch->lnum >= c->lpt_first &&
1896                             branch->lnum <= c->lpt_last);
1897                ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1898                err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1899                                     c->pnode_sz, 1);
1900                if (err)
1901                        return ERR_PTR(err);
1902                err = unpack_pnode(c, buf, pnode);
1903                if (err)
1904                        return ERR_PTR(err);
1905        }
1906        err = validate_pnode(c, pnode, parent, iip);
1907        if (err)
1908                return ERR_PTR(err);
1909        if (!c->big_lpt)
1910                pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1911        pnode->parent = parent;
1912        pnode->iip = iip;
1913        set_pnode_lnum(c, pnode);
1914        return pnode;
1915}
1916
1917/**
1918 * ubifs_lpt_scan_nolock - scan the LPT.
1919 * @c: the UBIFS file-system description object
1920 * @start_lnum: LEB number from which to start scanning
1921 * @end_lnum: LEB number at which to stop scanning
1922 * @scan_cb: callback function called for each lprops
1923 * @data: data to be passed to the callback function
1924 *
1925 * This function returns %0 on success and a negative error code on failure.
1926 */
1927int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1928                          ubifs_lpt_scan_callback scan_cb, void *data)
1929{
1930        int err = 0, i, h, iip, shft;
1931        struct ubifs_nnode *nnode;
1932        struct ubifs_pnode *pnode;
1933        struct lpt_scan_node *path;
1934
1935        if (start_lnum == -1) {
1936                start_lnum = end_lnum + 1;
1937                if (start_lnum >= c->leb_cnt)
1938                        start_lnum = c->main_first;
1939        }
1940
1941        ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1942        ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1943
1944        if (!c->nroot) {
1945                err = ubifs_read_nnode(c, NULL, 0);
1946                if (err)
1947                        return err;
1948        }
1949
1950        path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1951                       GFP_NOFS);
1952        if (!path)
1953                return -ENOMEM;
1954
1955        path[0].ptr.nnode = c->nroot;
1956        path[0].in_tree = 1;
1957again:
1958        /* Descend to the pnode containing start_lnum */
1959        nnode = c->nroot;
1960        i = start_lnum - c->main_first;
1961        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1962        for (h = 1; h < c->lpt_hght; h++) {
1963                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1964                shft -= UBIFS_LPT_FANOUT_SHIFT;
1965                nnode = scan_get_nnode(c, path + h, nnode, iip);
1966                if (IS_ERR(nnode)) {
1967                        err = PTR_ERR(nnode);
1968                        goto out;
1969                }
1970        }
1971        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1972        pnode = scan_get_pnode(c, path + h, nnode, iip);
1973        if (IS_ERR(pnode)) {
1974                err = PTR_ERR(pnode);
1975                goto out;
1976        }
1977        iip = (i & (UBIFS_LPT_FANOUT - 1));
1978
1979        /* Loop for each lprops */
1980        while (1) {
1981                struct ubifs_lprops *lprops = &pnode->lprops[iip];
1982                int ret, lnum = lprops->lnum;
1983
1984                ret = scan_cb(c, lprops, path[h].in_tree, data);
1985                if (ret < 0) {
1986                        err = ret;
1987                        goto out;
1988                }
1989                if (ret & LPT_SCAN_ADD) {
1990                        /* Add all the nodes in path to the tree in memory */
1991                        for (h = 1; h < c->lpt_hght; h++) {
1992                                const size_t sz = sizeof(struct ubifs_nnode);
1993                                struct ubifs_nnode *parent;
1994
1995                                if (path[h].in_tree)
1996                                        continue;
1997                                nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1998                                if (!nnode) {
1999                                        err = -ENOMEM;
2000                                        goto out;
2001                                }
2002                                parent = nnode->parent;
2003                                parent->nbranch[nnode->iip].nnode = nnode;
2004                                path[h].ptr.nnode = nnode;
2005                                path[h].in_tree = 1;
2006                                path[h + 1].cnode.parent = nnode;
2007                        }
2008                        if (path[h].in_tree)
2009                                ubifs_ensure_cat(c, lprops);
2010                        else {
2011                                const size_t sz = sizeof(struct ubifs_pnode);
2012                                struct ubifs_nnode *parent;
2013
2014                                pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2015                                if (!pnode) {
2016                                        err = -ENOMEM;
2017                                        goto out;
2018                                }
2019                                parent = pnode->parent;
2020                                parent->nbranch[pnode->iip].pnode = pnode;
2021                                path[h].ptr.pnode = pnode;
2022                                path[h].in_tree = 1;
2023                                update_cats(c, pnode);
2024                                c->pnodes_have += 1;
2025                        }
2026                        err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2027                                                  c->nroot, 0, 0);
2028                        if (err)
2029                                goto out;
2030                        err = dbg_check_cats(c);
2031                        if (err)
2032                                goto out;
2033                }
2034                if (ret & LPT_SCAN_STOP) {
2035                        err = 0;
2036                        break;
2037                }
2038                /* Get the next lprops */
2039                if (lnum == end_lnum) {
2040                        /*
2041                         * We got to the end without finding what we were
2042                         * looking for
2043                         */
2044                        err = -ENOSPC;
2045                        goto out;
2046                }
2047                if (lnum + 1 >= c->leb_cnt) {
2048                        /* Wrap-around to the beginning */
2049                        start_lnum = c->main_first;
2050                        goto again;
2051                }
2052                if (iip + 1 < UBIFS_LPT_FANOUT) {
2053                        /* Next lprops is in the same pnode */
2054                        iip += 1;
2055                        continue;
2056                }
2057                /* We need to get the next pnode. Go up until we can go right */
2058                iip = pnode->iip;
2059                while (1) {
2060                        h -= 1;
2061                        ubifs_assert(h >= 0);
2062                        nnode = path[h].ptr.nnode;
2063                        if (iip + 1 < UBIFS_LPT_FANOUT)
2064                                break;
2065                        iip = nnode->iip;
2066                }
2067                /* Go right */
2068                iip += 1;
2069                /* Descend to the pnode */
2070                h += 1;
2071                for (; h < c->lpt_hght; h++) {
2072                        nnode = scan_get_nnode(c, path + h, nnode, iip);
2073                        if (IS_ERR(nnode)) {
2074                                err = PTR_ERR(nnode);
2075                                goto out;
2076                        }
2077                        iip = 0;
2078                }
2079                pnode = scan_get_pnode(c, path + h, nnode, iip);
2080                if (IS_ERR(pnode)) {
2081                        err = PTR_ERR(pnode);
2082                        goto out;
2083                }
2084                iip = 0;
2085        }
2086out:
2087        kfree(path);
2088        return err;
2089}
2090
2091/**
2092 * dbg_chk_pnode - check a pnode.
2093 * @c: the UBIFS file-system description object
2094 * @pnode: pnode to check
2095 * @col: pnode column
2096 *
2097 * This function returns %0 on success and a negative error code on failure.
2098 */
2099static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2100                         int col)
2101{
2102        int i;
2103
2104        if (pnode->num != col) {
2105                ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2106                          pnode->num, col, pnode->parent->num, pnode->iip);
2107                return -EINVAL;
2108        }
2109        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2110                struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2111                int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2112                           c->main_first;
2113                int found, cat = lprops->flags & LPROPS_CAT_MASK;
2114                struct ubifs_lpt_heap *heap;
2115                struct list_head *list = NULL;
2116
2117                if (lnum >= c->leb_cnt)
2118                        continue;
2119                if (lprops->lnum != lnum) {
2120                        ubifs_err(c, "bad LEB number %d expected %d",
2121                                  lprops->lnum, lnum);
2122                        return -EINVAL;
2123                }
2124                if (lprops->flags & LPROPS_TAKEN) {
2125                        if (cat != LPROPS_UNCAT) {
2126                                ubifs_err(c, "LEB %d taken but not uncat %d",
2127                                          lprops->lnum, cat);
2128                                return -EINVAL;
2129                        }
2130                        continue;
2131                }
2132                if (lprops->flags & LPROPS_INDEX) {
2133                        switch (cat) {
2134                        case LPROPS_UNCAT:
2135                        case LPROPS_DIRTY_IDX:
2136                        case LPROPS_FRDI_IDX:
2137                                break;
2138                        default:
2139                                ubifs_err(c, "LEB %d index but cat %d",
2140                                          lprops->lnum, cat);
2141                                return -EINVAL;
2142                        }
2143                } else {
2144                        switch (cat) {
2145                        case LPROPS_UNCAT:
2146                        case LPROPS_DIRTY:
2147                        case LPROPS_FREE:
2148                        case LPROPS_EMPTY:
2149                        case LPROPS_FREEABLE:
2150                                break;
2151                        default:
2152                                ubifs_err(c, "LEB %d not index but cat %d",
2153                                          lprops->lnum, cat);
2154                                return -EINVAL;
2155                        }
2156                }
2157                switch (cat) {
2158                case LPROPS_UNCAT:
2159                        list = &c->uncat_list;
2160                        break;
2161                case LPROPS_EMPTY:
2162                        list = &c->empty_list;
2163                        break;
2164                case LPROPS_FREEABLE:
2165                        list = &c->freeable_list;
2166                        break;
2167                case LPROPS_FRDI_IDX:
2168                        list = &c->frdi_idx_list;
2169                        break;
2170                }
2171                found = 0;
2172                switch (cat) {
2173                case LPROPS_DIRTY:
2174                case LPROPS_DIRTY_IDX:
2175                case LPROPS_FREE:
2176                        heap = &c->lpt_heap[cat - 1];
2177                        if (lprops->hpos < heap->cnt &&
2178                            heap->arr[lprops->hpos] == lprops)
2179                                found = 1;
2180                        break;
2181                case LPROPS_UNCAT:
2182                case LPROPS_EMPTY:
2183                case LPROPS_FREEABLE:
2184                case LPROPS_FRDI_IDX:
2185                        list_for_each_entry(lp, list, list)
2186                                if (lprops == lp) {
2187                                        found = 1;
2188                                        break;
2189                                }
2190                        break;
2191                }
2192                if (!found) {
2193                        ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2194                                  lprops->lnum, cat);
2195                        return -EINVAL;
2196                }
2197                switch (cat) {
2198                case LPROPS_EMPTY:
2199                        if (lprops->free != c->leb_size) {
2200                                ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2201                                          lprops->lnum, cat, lprops->free,
2202                                          lprops->dirty);
2203                                return -EINVAL;
2204                        }
2205                        break;
2206                case LPROPS_FREEABLE:
2207                case LPROPS_FRDI_IDX:
2208                        if (lprops->free + lprops->dirty != c->leb_size) {
2209                                ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2210                                          lprops->lnum, cat, lprops->free,
2211                                          lprops->dirty);
2212                                return -EINVAL;
2213                        }
2214                        break;
2215                }
2216        }
2217        return 0;
2218}
2219
2220/**
2221 * dbg_check_lpt_nodes - check nnodes and pnodes.
2222 * @c: the UBIFS file-system description object
2223 * @cnode: next cnode (nnode or pnode) to check
2224 * @row: row of cnode (root is zero)
2225 * @col: column of cnode (leftmost is zero)
2226 *
2227 * This function returns %0 on success and a negative error code on failure.
2228 */
2229int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2230                        int row, int col)
2231{
2232        struct ubifs_nnode *nnode, *nn;
2233        struct ubifs_cnode *cn;
2234        int num, iip = 0, err;
2235
2236        if (!dbg_is_chk_lprops(c))
2237                return 0;
2238
2239        while (cnode) {
2240                ubifs_assert(row >= 0);
2241                nnode = cnode->parent;
2242                if (cnode->level) {
2243                        /* cnode is a nnode */
2244                        num = calc_nnode_num(row, col);
2245                        if (cnode->num != num) {
2246                                ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2247                                          cnode->num, num,
2248                                          (nnode ? nnode->num : 0), cnode->iip);
2249                                return -EINVAL;
2250                        }
2251                        nn = (struct ubifs_nnode *)cnode;
2252                        while (iip < UBIFS_LPT_FANOUT) {
2253                                cn = nn->nbranch[iip].cnode;
2254                                if (cn) {
2255                                        /* Go down */
2256                                        row += 1;
2257                                        col <<= UBIFS_LPT_FANOUT_SHIFT;
2258                                        col += iip;
2259                                        iip = 0;
2260                                        cnode = cn;
2261                                        break;
2262                                }
2263                                /* Go right */
2264                                iip += 1;
2265                        }
2266                        if (iip < UBIFS_LPT_FANOUT)
2267                                continue;
2268                } else {
2269                        struct ubifs_pnode *pnode;
2270
2271                        /* cnode is a pnode */
2272                        pnode = (struct ubifs_pnode *)cnode;
2273                        err = dbg_chk_pnode(c, pnode, col);
2274                        if (err)
2275                                return err;
2276                }
2277                /* Go up and to the right */
2278                row -= 1;
2279                col >>= UBIFS_LPT_FANOUT_SHIFT;
2280                iip = cnode->iip + 1;
2281                cnode = (struct ubifs_cnode *)nnode;
2282        }
2283        return 0;
2284}
2285