1
2
3
4
5
6
7#include <common.h>
8#include <malloc.h>
9#include <asm/io.h>
10#include <linux/errno.h>
11
12#include "fm.h"
13#include <fsl_qe.h>
14
15#ifdef CONFIG_SYS_QE_FMAN_FW_IN_NAND
16#include <nand.h>
17#elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH)
18#include <spi_flash.h>
19#elif defined(CONFIG_SYS_QE_FMAN_FW_IN_MMC)
20#include <mmc.h>
21#endif
22
23struct fm_muram muram[CONFIG_SYS_NUM_FMAN];
24
25void *fm_muram_base(int fm_idx)
26{
27 return muram[fm_idx].base;
28}
29
30void *fm_muram_alloc(int fm_idx, size_t size, ulong align)
31{
32 void *ret;
33 ulong align_mask;
34 size_t off;
35 void *save;
36
37 align_mask = align - 1;
38 save = muram[fm_idx].alloc;
39
40 off = (ulong)save & align_mask;
41 if (off != 0)
42 muram[fm_idx].alloc += (align - off);
43 off = size & align_mask;
44 if (off != 0)
45 size += (align - off);
46 if ((muram[fm_idx].alloc + size) >= muram[fm_idx].top) {
47 muram[fm_idx].alloc = save;
48 printf("%s: run out of ram.\n", __func__);
49 return NULL;
50 }
51
52 ret = muram[fm_idx].alloc;
53 muram[fm_idx].alloc += size;
54 memset((void *)ret, 0, size);
55
56 return ret;
57}
58
59static void fm_init_muram(int fm_idx, void *reg)
60{
61 void *base = reg;
62
63 muram[fm_idx].base = base;
64 muram[fm_idx].size = CONFIG_SYS_FM_MURAM_SIZE;
65 muram[fm_idx].alloc = base + FM_MURAM_RES_SIZE;
66 muram[fm_idx].top = base + CONFIG_SYS_FM_MURAM_SIZE;
67}
68
69
70
71
72
73
74
75static void fm_upload_ucode(int fm_idx, struct fm_imem *imem,
76 u32 *ucode, unsigned int size)
77{
78 unsigned int i;
79 unsigned int timeout = 1000000;
80
81
82 out_be32(&imem->iadd, IRAM_IADD_AIE);
83
84 for (i = 0; i < size / 4; i++)
85 out_be32(&imem->idata, (be32_to_cpu(ucode[i])));
86
87
88 out_be32(&imem->iadd, 0);
89 while ((in_be32(&imem->idata) != be32_to_cpu(ucode[0])) && --timeout)
90 ;
91 if (!timeout)
92 printf("Fman%u: microcode upload timeout\n", fm_idx + 1);
93
94
95 out_be32(&imem->iready, IRAM_READY);
96}
97
98
99
100
101
102
103
104
105
106
107
108
109static int fman_upload_firmware(int fm_idx,
110 struct fm_imem *fm_imem,
111 const struct qe_firmware *firmware)
112{
113 unsigned int i;
114 u32 crc;
115 size_t calc_size = sizeof(struct qe_firmware);
116 size_t length;
117 const struct qe_header *hdr;
118
119 if (!firmware) {
120 printf("Fman%u: Invalid address for firmware\n", fm_idx + 1);
121 return -EINVAL;
122 }
123
124 hdr = &firmware->header;
125 length = be32_to_cpu(hdr->length);
126
127
128 if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
129 (hdr->magic[2] != 'F')) {
130 printf("Fman%u: Data at %p is not a firmware\n", fm_idx + 1,
131 firmware);
132 return -EPERM;
133 }
134
135
136 if (hdr->version != 1) {
137 printf("Fman%u: Unsupported firmware version %u\n", fm_idx + 1,
138 hdr->version);
139 return -EPERM;
140 }
141
142
143 if ((firmware->count != 1)) {
144 printf("Fman%u: Invalid data in firmware header\n", fm_idx + 1);
145 return -EINVAL;
146 }
147
148
149 calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
150
151 for (i = 0; i < firmware->count; i++)
152
153
154
155
156
157 calc_size += sizeof(u32) *
158 be32_to_cpu(firmware->microcode[i].count);
159
160
161 if (length != calc_size + sizeof(u32)) {
162 printf("Fman%u: Invalid length in firmware header\n",
163 fm_idx + 1);
164 return -EPERM;
165 }
166
167
168
169
170
171 crc = be32_to_cpu(*(u32 *)((void *)firmware + calc_size));
172 if (crc != (crc32(-1, (const void *)firmware, calc_size) ^ -1)) {
173 printf("Fman%u: Firmware CRC is invalid\n", fm_idx + 1);
174 return -EIO;
175 }
176
177
178 for (i = 0; i < firmware->count; i++) {
179 const struct qe_microcode *ucode = &firmware->microcode[i];
180
181
182 if (be32_to_cpu(ucode->code_offset)) {
183 u32 ucode_size;
184 u32 *code;
185 printf("Fman%u: Uploading microcode version %u.%u.%u\n",
186 fm_idx + 1, ucode->major, ucode->minor,
187 ucode->revision);
188 code = (void *)firmware +
189 be32_to_cpu(ucode->code_offset);
190 ucode_size = sizeof(u32) * be32_to_cpu(ucode->count);
191 fm_upload_ucode(fm_idx, fm_imem, code, ucode_size);
192 }
193 }
194
195 return 0;
196}
197
198static u32 fm_assign_risc(int port_id)
199{
200 u32 risc_sel, val;
201 risc_sel = (port_id & 0x1) ? FMFPPRC_RISC2 : FMFPPRC_RISC1;
202 val = (port_id << FMFPPRC_PORTID_SHIFT) & FMFPPRC_PORTID_MASK;
203 val |= ((risc_sel << FMFPPRC_ORA_SHIFT) | risc_sel);
204
205 return val;
206}
207
208static void fm_init_fpm(struct fm_fpm *fpm)
209{
210 int i, port_id;
211 u32 val;
212
213 setbits_be32(&fpm->fmfpee, FMFPEE_EHM | FMFPEE_UEC |
214 FMFPEE_CER | FMFPEE_DER);
215
216
217
218
219 for (i = 0; i < MAX_NUM_OH_PORT; i++) {
220 port_id = OH_PORT_ID_BASE + i;
221 val = fm_assign_risc(port_id);
222 out_be32(&fpm->fpmprc, val);
223 }
224
225 for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) {
226 port_id = RX_PORT_1G_BASE + i;
227 val = fm_assign_risc(port_id);
228 out_be32(&fpm->fpmprc, val);
229 }
230
231 for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) {
232 port_id = TX_PORT_1G_BASE + i;
233 val = fm_assign_risc(port_id);
234 out_be32(&fpm->fpmprc, val);
235 }
236
237 port_id = RX_PORT_10G_BASE;
238 val = fm_assign_risc(port_id);
239 out_be32(&fpm->fpmprc, val);
240
241 port_id = TX_PORT_10G_BASE;
242 val = fm_assign_risc(port_id);
243 out_be32(&fpm->fpmprc, val);
244
245
246 out_be32(&fpm->fpmflc, FMFP_FLC_DISP_LIM_NONE);
247
248 out_be32(&fpm->fmfpee, FMFPEE_CLEAR_EVENT);
249
250
251 for (i = 0; i < 4; i++)
252 out_be32(&fpm->fpmcev[i], 0xffffffff);
253
254
255 out_be32(&fpm->fpmrcr, FMFP_RCR_MDEC | FMFP_RCR_IDEC);
256}
257
258static int fm_init_bmi(int fm_idx, struct fm_bmi_common *bmi)
259{
260 int blk, i, port_id;
261 u32 val;
262 size_t offset;
263 void *base;
264
265
266 base = fm_muram_alloc(fm_idx, FM_FREE_POOL_SIZE, FM_FREE_POOL_ALIGN);
267 if (!base) {
268 printf("%s: no muram for free buffer pool\n", __func__);
269 return -ENOMEM;
270 }
271 offset = base - fm_muram_base(fm_idx);
272
273
274 val = offset / 256;
275 blk = FM_FREE_POOL_SIZE / 256;
276
277 val |= ((blk - 1) << FMBM_CFG1_FBPS_SHIFT);
278 out_be32(&bmi->fmbm_cfg1, val);
279
280
281 out_be32(&bmi->fmbm_ier, FMBM_IER_DISABLE_ALL);
282
283
284 out_be32(&bmi->fmbm_ievr, FMBM_IEVR_CLEAR_ALL);
285
286
287
288
289
290
291
292
293
294 for (i = 0; i < MAX_NUM_OH_PORT; i++) {
295 port_id = OH_PORT_ID_BASE + i - 1;
296
297 out_be32(&bmi->fmbm_pp[port_id], 0);
298
299 out_be32(&bmi->fmbm_pfs[port_id], 0);
300 }
301
302 for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) {
303 port_id = RX_PORT_1G_BASE + i - 1;
304
305 out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4));
306
307 out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
308 }
309
310 for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) {
311 port_id = TX_PORT_1G_BASE + i - 1;
312
313 out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4));
314
315 out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
316 }
317
318 port_id = RX_PORT_10G_BASE - 1;
319
320 out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3));
321
322 out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
323
324
325 port_id = TX_PORT_10G_BASE - 1;
326
327 out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3));
328
329 out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
330
331
332 out_be32(&bmi->fmbm_init, FMBM_INIT_START);
333
334 return 0;
335}
336
337static void fm_init_qmi(struct fm_qmi_common *qmi)
338{
339
340 out_be32(&qmi->fmqm_eien, FMQM_EIEN_DISABLE_ALL);
341
342 out_be32(&qmi->fmqm_eie, FMQM_EIE_CLEAR_ALL);
343
344
345 out_be32(&qmi->fmqm_ien, FMQM_IEN_DISABLE_ALL);
346
347 out_be32(&qmi->fmqm_ie, FMQM_IE_CLEAR_ALL);
348}
349
350
351int fm_init_common(int index, struct ccsr_fman *reg)
352{
353 int rc;
354#if defined(CONFIG_SYS_QE_FMAN_FW_IN_NOR)
355 void *addr = (void *)CONFIG_SYS_FMAN_FW_ADDR;
356#elif defined(CONFIG_SYS_QE_FMAN_FW_IN_NAND)
357 size_t fw_length = CONFIG_SYS_QE_FMAN_FW_LENGTH;
358 void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
359
360 rc = nand_read(nand_info[0], (loff_t)CONFIG_SYS_FMAN_FW_ADDR,
361 &fw_length, (u_char *)addr);
362 if (rc == -EUCLEAN) {
363 printf("NAND read of FMAN firmware at offset 0x%x failed %d\n",
364 CONFIG_SYS_FMAN_FW_ADDR, rc);
365 }
366#elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH)
367 struct spi_flash *ucode_flash;
368 void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
369 int ret = 0;
370
371#ifdef CONFIG_DM_SPI_FLASH
372 struct udevice *new;
373
374
375 ret = spi_flash_probe_bus_cs(CONFIG_ENV_SPI_BUS, CONFIG_ENV_SPI_CS,
376 0, 0, &new);
377
378 ucode_flash = dev_get_uclass_priv(new);
379#else
380 ucode_flash = spi_flash_probe(CONFIG_ENV_SPI_BUS, CONFIG_ENV_SPI_CS,
381 CONFIG_ENV_SPI_MAX_HZ, CONFIG_ENV_SPI_MODE);
382#endif
383 if (!ucode_flash)
384 printf("SF: probe for ucode failed\n");
385 else {
386 ret = spi_flash_read(ucode_flash, CONFIG_SYS_FMAN_FW_ADDR,
387 CONFIG_SYS_QE_FMAN_FW_LENGTH, addr);
388 if (ret)
389 printf("SF: read for ucode failed\n");
390 spi_flash_free(ucode_flash);
391 }
392#elif defined(CONFIG_SYS_QE_FMAN_FW_IN_MMC)
393 int dev = CONFIG_SYS_MMC_ENV_DEV;
394 void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
395 u32 cnt = CONFIG_SYS_QE_FMAN_FW_LENGTH / 512;
396 u32 blk = CONFIG_SYS_FMAN_FW_ADDR / 512;
397 struct mmc *mmc = find_mmc_device(CONFIG_SYS_MMC_ENV_DEV);
398
399 if (!mmc)
400 printf("\nMMC cannot find device for ucode\n");
401 else {
402 printf("\nMMC read: dev # %u, block # %u, count %u ...\n",
403 dev, blk, cnt);
404 mmc_init(mmc);
405 (void)mmc->block_dev.block_read(&mmc->block_dev, blk, cnt,
406 addr);
407
408 flush_cache((ulong)addr, cnt * 512);
409 }
410#elif defined(CONFIG_SYS_QE_FMAN_FW_IN_REMOTE)
411 void *addr = (void *)CONFIG_SYS_FMAN_FW_ADDR;
412#else
413 void *addr = NULL;
414#endif
415
416
417 rc = fman_upload_firmware(index, ®->fm_imem, addr);
418 if (rc)
419 return rc;
420 setenv_addr("fman_ucode", addr);
421
422 fm_init_muram(index, ®->muram);
423 fm_init_qmi(®->fm_qmi_common);
424 fm_init_fpm(®->fm_fpm);
425
426
427 setbits_be32(®->fm_dma.fmdmsr, FMDMSR_CLEAR_ALL);
428
429
430 setbits_be32(®->fm_dma.fmdmmr, FMDMMR_SBER);
431
432 return fm_init_bmi(index, ®->fm_bmi_common);
433}
434