uboot/drivers/spi/fsl_qspi.c
<<
>>
Prefs
   1/*
   2 * Copyright 2013-2015 Freescale Semiconductor, Inc.
   3 *
   4 * Freescale Quad Serial Peripheral Interface (QSPI) driver
   5 *
   6 * SPDX-License-Identifier:     GPL-2.0+
   7 */
   8
   9#include <common.h>
  10#include <malloc.h>
  11#include <spi.h>
  12#include <asm/io.h>
  13#include <linux/sizes.h>
  14#include <dm.h>
  15#include <errno.h>
  16#include <watchdog.h>
  17#include "fsl_qspi.h"
  18
  19DECLARE_GLOBAL_DATA_PTR;
  20
  21#define RX_BUFFER_SIZE          0x80
  22#ifdef CONFIG_MX6SX
  23#define TX_BUFFER_SIZE          0x200
  24#else
  25#define TX_BUFFER_SIZE          0x40
  26#endif
  27
  28#define OFFSET_BITS_MASK        GENMASK(23, 0)
  29
  30#define FLASH_STATUS_WEL        0x02
  31
  32/* SEQID */
  33#define SEQID_WREN              1
  34#define SEQID_FAST_READ         2
  35#define SEQID_RDSR              3
  36#define SEQID_SE                4
  37#define SEQID_CHIP_ERASE        5
  38#define SEQID_PP                6
  39#define SEQID_RDID              7
  40#define SEQID_BE_4K             8
  41#ifdef CONFIG_SPI_FLASH_BAR
  42#define SEQID_BRRD              9
  43#define SEQID_BRWR              10
  44#define SEQID_RDEAR             11
  45#define SEQID_WREAR             12
  46#endif
  47#define SEQID_WRAR              13
  48#define SEQID_RDAR              14
  49
  50/* QSPI CMD */
  51#define QSPI_CMD_PP             0x02    /* Page program (up to 256 bytes) */
  52#define QSPI_CMD_RDSR           0x05    /* Read status register */
  53#define QSPI_CMD_WREN           0x06    /* Write enable */
  54#define QSPI_CMD_FAST_READ      0x0b    /* Read data bytes (high frequency) */
  55#define QSPI_CMD_BE_4K          0x20    /* 4K erase */
  56#define QSPI_CMD_CHIP_ERASE     0xc7    /* Erase whole flash chip */
  57#define QSPI_CMD_SE             0xd8    /* Sector erase (usually 64KiB) */
  58#define QSPI_CMD_RDID           0x9f    /* Read JEDEC ID */
  59
  60/* Used for Micron, winbond and Macronix flashes */
  61#define QSPI_CMD_WREAR          0xc5    /* EAR register write */
  62#define QSPI_CMD_RDEAR          0xc8    /* EAR reigster read */
  63
  64/* Used for Spansion flashes only. */
  65#define QSPI_CMD_BRRD           0x16    /* Bank register read */
  66#define QSPI_CMD_BRWR           0x17    /* Bank register write */
  67
  68/* Used for Spansion S25FS-S family flash only. */
  69#define QSPI_CMD_RDAR           0x65    /* Read any device register */
  70#define QSPI_CMD_WRAR           0x71    /* Write any device register */
  71
  72/* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
  73#define QSPI_CMD_FAST_READ_4B   0x0c    /* Read data bytes (high frequency) */
  74#define QSPI_CMD_PP_4B          0x12    /* Page program (up to 256 bytes) */
  75#define QSPI_CMD_SE_4B          0xdc    /* Sector erase (usually 64KiB) */
  76
  77/* fsl_qspi_platdata flags */
  78#define QSPI_FLAG_REGMAP_ENDIAN_BIG     BIT(0)
  79
  80/* default SCK frequency, unit: HZ */
  81#define FSL_QSPI_DEFAULT_SCK_FREQ       50000000
  82
  83/* QSPI max chipselect signals number */
  84#define FSL_QSPI_MAX_CHIPSELECT_NUM     4
  85
  86#ifdef CONFIG_DM_SPI
  87/**
  88 * struct fsl_qspi_platdata - platform data for Freescale QSPI
  89 *
  90 * @flags: Flags for QSPI QSPI_FLAG_...
  91 * @speed_hz: Default SCK frequency
  92 * @reg_base: Base address of QSPI registers
  93 * @amba_base: Base address of QSPI memory mapping
  94 * @amba_total_size: size of QSPI memory mapping
  95 * @flash_num: Number of active slave devices
  96 * @num_chipselect: Number of QSPI chipselect signals
  97 */
  98struct fsl_qspi_platdata {
  99        u32 flags;
 100        u32 speed_hz;
 101        fdt_addr_t reg_base;
 102        fdt_addr_t amba_base;
 103        fdt_size_t amba_total_size;
 104        u32 flash_num;
 105        u32 num_chipselect;
 106};
 107#endif
 108
 109/**
 110 * struct fsl_qspi_priv - private data for Freescale QSPI
 111 *
 112 * @flags: Flags for QSPI QSPI_FLAG_...
 113 * @bus_clk: QSPI input clk frequency
 114 * @speed_hz: Default SCK frequency
 115 * @cur_seqid: current LUT table sequence id
 116 * @sf_addr: flash access offset
 117 * @amba_base: Base address of QSPI memory mapping of every CS
 118 * @amba_total_size: size of QSPI memory mapping
 119 * @cur_amba_base: Base address of QSPI memory mapping of current CS
 120 * @flash_num: Number of active slave devices
 121 * @num_chipselect: Number of QSPI chipselect signals
 122 * @regs: Point to QSPI register structure for I/O access
 123 */
 124struct fsl_qspi_priv {
 125        u32 flags;
 126        u32 bus_clk;
 127        u32 speed_hz;
 128        u32 cur_seqid;
 129        u32 sf_addr;
 130        u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
 131        u32 amba_total_size;
 132        u32 cur_amba_base;
 133        u32 flash_num;
 134        u32 num_chipselect;
 135        struct fsl_qspi_regs *regs;
 136};
 137
 138#ifndef CONFIG_DM_SPI
 139struct fsl_qspi {
 140        struct spi_slave slave;
 141        struct fsl_qspi_priv priv;
 142};
 143#endif
 144
 145static u32 qspi_read32(u32 flags, u32 *addr)
 146{
 147        return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
 148                in_be32(addr) : in_le32(addr);
 149}
 150
 151static void qspi_write32(u32 flags, u32 *addr, u32 val)
 152{
 153        flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
 154                out_be32(addr, val) : out_le32(addr, val);
 155}
 156
 157/* QSPI support swapping the flash read/write data
 158 * in hardware for LS102xA, but not for VF610 */
 159static inline u32 qspi_endian_xchg(u32 data)
 160{
 161#ifdef CONFIG_VF610
 162        return swab32(data);
 163#else
 164        return data;
 165#endif
 166}
 167
 168static void qspi_set_lut(struct fsl_qspi_priv *priv)
 169{
 170        struct fsl_qspi_regs *regs = priv->regs;
 171        u32 lut_base;
 172
 173        /* Unlock the LUT */
 174        qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
 175        qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
 176
 177        /* Write Enable */
 178        lut_base = SEQID_WREN * 4;
 179        qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
 180                PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
 181        qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
 182        qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
 183        qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
 184
 185        /* Fast Read */
 186        lut_base = SEQID_FAST_READ * 4;
 187#ifdef CONFIG_SPI_FLASH_BAR
 188        qspi_write32(priv->flags, &regs->lut[lut_base],
 189                     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
 190                     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
 191                     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
 192#else
 193        if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
 194                qspi_write32(priv->flags, &regs->lut[lut_base],
 195                             OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
 196                             INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
 197                             PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
 198        else
 199                qspi_write32(priv->flags, &regs->lut[lut_base],
 200                             OPRND0(QSPI_CMD_FAST_READ_4B) |
 201                             PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
 202                             OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
 203                             INSTR1(LUT_ADDR));
 204#endif
 205        qspi_write32(priv->flags, &regs->lut[lut_base + 1],
 206                     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
 207                     OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
 208                     INSTR1(LUT_READ));
 209        qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
 210        qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
 211
 212        /* Read Status */
 213        lut_base = SEQID_RDSR * 4;
 214        qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
 215                PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
 216                PAD1(LUT_PAD1) | INSTR1(LUT_READ));
 217        qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
 218        qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
 219        qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
 220
 221        /* Erase a sector */
 222        lut_base = SEQID_SE * 4;
 223#ifdef CONFIG_SPI_FLASH_BAR
 224        qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
 225                     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
 226                     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
 227#else
 228        if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
 229                qspi_write32(priv->flags, &regs->lut[lut_base],
 230                             OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
 231                             INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
 232                             PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
 233        else
 234                qspi_write32(priv->flags, &regs->lut[lut_base],
 235                             OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
 236                             INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
 237                             PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
 238#endif
 239        qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
 240        qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
 241        qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
 242
 243        /* Erase the whole chip */
 244        lut_base = SEQID_CHIP_ERASE * 4;
 245        qspi_write32(priv->flags, &regs->lut[lut_base],
 246                     OPRND0(QSPI_CMD_CHIP_ERASE) |
 247                     PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
 248        qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
 249        qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
 250        qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
 251
 252        /* Page Program */
 253        lut_base = SEQID_PP * 4;
 254#ifdef CONFIG_SPI_FLASH_BAR
 255        qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
 256                     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
 257                     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
 258#else
 259        if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
 260                qspi_write32(priv->flags, &regs->lut[lut_base],
 261                             OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
 262                             INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
 263                             PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
 264        else
 265                qspi_write32(priv->flags, &regs->lut[lut_base],
 266                             OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
 267                             INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
 268                             PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
 269#endif
 270#ifdef CONFIG_MX6SX
 271        /*
 272         * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
 273         * So, Use IDATSZ in IPCR to determine the size and here set 0.
 274         */
 275        qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
 276                     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
 277#else
 278        qspi_write32(priv->flags, &regs->lut[lut_base + 1],
 279                     OPRND0(TX_BUFFER_SIZE) |
 280                     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
 281#endif
 282        qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
 283        qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
 284
 285        /* READ ID */
 286        lut_base = SEQID_RDID * 4;
 287        qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
 288                PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
 289                PAD1(LUT_PAD1) | INSTR1(LUT_READ));
 290        qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
 291        qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
 292        qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
 293
 294        /* SUB SECTOR 4K ERASE */
 295        lut_base = SEQID_BE_4K * 4;
 296        qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
 297                     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
 298                     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
 299
 300#ifdef CONFIG_SPI_FLASH_BAR
 301        /*
 302         * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
 303         * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
 304         * initialization.
 305         */
 306        lut_base = SEQID_BRRD * 4;
 307        qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
 308                     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
 309                     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
 310
 311        lut_base = SEQID_BRWR * 4;
 312        qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
 313                     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
 314                     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
 315
 316        lut_base = SEQID_RDEAR * 4;
 317        qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
 318                     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
 319                     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
 320
 321        lut_base = SEQID_WREAR * 4;
 322        qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
 323                     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
 324                     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
 325#endif
 326
 327        /*
 328         * Read any device register.
 329         * Used for Spansion S25FS-S family flash only.
 330         */
 331        lut_base = SEQID_RDAR * 4;
 332        qspi_write32(priv->flags, &regs->lut[lut_base],
 333                     OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
 334                     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
 335                     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
 336        qspi_write32(priv->flags, &regs->lut[lut_base + 1],
 337                     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
 338                     OPRND1(1) | PAD1(LUT_PAD1) |
 339                     INSTR1(LUT_READ));
 340
 341        /*
 342         * Write any device register.
 343         * Used for Spansion S25FS-S family flash only.
 344         */
 345        lut_base = SEQID_WRAR * 4;
 346        qspi_write32(priv->flags, &regs->lut[lut_base],
 347                     OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
 348                     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
 349                     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
 350        qspi_write32(priv->flags, &regs->lut[lut_base + 1],
 351                     OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
 352
 353        /* Lock the LUT */
 354        qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
 355        qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
 356}
 357
 358#if defined(CONFIG_SYS_FSL_QSPI_AHB)
 359/*
 360 * If we have changed the content of the flash by writing or erasing,
 361 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 362 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 363 * domain at the same time.
 364 */
 365static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
 366{
 367        struct fsl_qspi_regs *regs = priv->regs;
 368        u32 reg;
 369
 370        reg = qspi_read32(priv->flags, &regs->mcr);
 371        reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
 372        qspi_write32(priv->flags, &regs->mcr, reg);
 373
 374        /*
 375         * The minimum delay : 1 AHB + 2 SFCK clocks.
 376         * Delay 1 us is enough.
 377         */
 378        udelay(1);
 379
 380        reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
 381        qspi_write32(priv->flags, &regs->mcr, reg);
 382}
 383
 384/* Read out the data from the AHB buffer. */
 385static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
 386{
 387        struct fsl_qspi_regs *regs = priv->regs;
 388        u32 mcr_reg;
 389        void *rx_addr = NULL;
 390
 391        mcr_reg = qspi_read32(priv->flags, &regs->mcr);
 392
 393        qspi_write32(priv->flags, &regs->mcr,
 394                     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
 395                     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
 396
 397        rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
 398        /* Read out the data directly from the AHB buffer. */
 399        memcpy(rxbuf, rx_addr, len);
 400
 401        qspi_write32(priv->flags, &regs->mcr, mcr_reg);
 402}
 403
 404static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
 405{
 406        u32 reg, reg2;
 407        struct fsl_qspi_regs *regs = priv->regs;
 408
 409        reg = qspi_read32(priv->flags, &regs->mcr);
 410        /* Disable the module */
 411        qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
 412
 413        /* Set the Sampling Register for DDR */
 414        reg2 = qspi_read32(priv->flags, &regs->smpr);
 415        reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
 416        reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
 417        qspi_write32(priv->flags, &regs->smpr, reg2);
 418
 419        /* Enable the module again (enable the DDR too) */
 420        reg |= QSPI_MCR_DDR_EN_MASK;
 421        /* Enable bit 29 for imx6sx */
 422        reg |= BIT(29);
 423
 424        qspi_write32(priv->flags, &regs->mcr, reg);
 425}
 426
 427/*
 428 * There are two different ways to read out the data from the flash:
 429 *  the "IP Command Read" and the "AHB Command Read".
 430 *
 431 * The IC guy suggests we use the "AHB Command Read" which is faster
 432 * then the "IP Command Read". (What's more is that there is a bug in
 433 * the "IP Command Read" in the Vybrid.)
 434 *
 435 * After we set up the registers for the "AHB Command Read", we can use
 436 * the memcpy to read the data directly. A "missed" access to the buffer
 437 * causes the controller to clear the buffer, and use the sequence pointed
 438 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 439 */
 440static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
 441{
 442        struct fsl_qspi_regs *regs = priv->regs;
 443
 444        /* AHB configuration for access buffer 0/1/2 .*/
 445        qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
 446        qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
 447        qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
 448        qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
 449                     (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
 450
 451        /* We only use the buffer3 */
 452        qspi_write32(priv->flags, &regs->buf0ind, 0);
 453        qspi_write32(priv->flags, &regs->buf1ind, 0);
 454        qspi_write32(priv->flags, &regs->buf2ind, 0);
 455
 456        /*
 457         * Set the default lut sequence for AHB Read.
 458         * Parallel mode is disabled.
 459         */
 460        qspi_write32(priv->flags, &regs->bfgencr,
 461                     SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
 462
 463        /*Enable DDR Mode*/
 464        qspi_enable_ddr_mode(priv);
 465}
 466#endif
 467
 468#ifdef CONFIG_SPI_FLASH_BAR
 469/* Bank register read/write, EAR register read/write */
 470static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
 471{
 472        struct fsl_qspi_regs *regs = priv->regs;
 473        u32 reg, mcr_reg, data, seqid;
 474
 475        mcr_reg = qspi_read32(priv->flags, &regs->mcr);
 476        qspi_write32(priv->flags, &regs->mcr,
 477                     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
 478                     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
 479        qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
 480
 481        qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
 482
 483        if (priv->cur_seqid == QSPI_CMD_BRRD)
 484                seqid = SEQID_BRRD;
 485        else
 486                seqid = SEQID_RDEAR;
 487
 488        qspi_write32(priv->flags, &regs->ipcr,
 489                     (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
 490
 491        /* Wait previous command complete */
 492        while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
 493                ;
 494
 495        while (1) {
 496                reg = qspi_read32(priv->flags, &regs->rbsr);
 497                if (reg & QSPI_RBSR_RDBFL_MASK) {
 498                        data = qspi_read32(priv->flags, &regs->rbdr[0]);
 499                        data = qspi_endian_xchg(data);
 500                        memcpy(rxbuf, &data, len);
 501                        qspi_write32(priv->flags, &regs->mcr,
 502                                     qspi_read32(priv->flags, &regs->mcr) |
 503                                     QSPI_MCR_CLR_RXF_MASK);
 504                        break;
 505                }
 506        }
 507
 508        qspi_write32(priv->flags, &regs->mcr, mcr_reg);
 509}
 510#endif
 511
 512static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
 513{
 514        struct fsl_qspi_regs *regs = priv->regs;
 515        u32 mcr_reg, rbsr_reg, data, size;
 516        int i;
 517
 518        mcr_reg = qspi_read32(priv->flags, &regs->mcr);
 519        qspi_write32(priv->flags, &regs->mcr,
 520                     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
 521                     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
 522        qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
 523
 524        qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
 525
 526        qspi_write32(priv->flags, &regs->ipcr,
 527                     (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
 528        while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
 529                ;
 530
 531        i = 0;
 532        while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
 533                rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
 534                if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
 535                        data = qspi_read32(priv->flags, &regs->rbdr[i]);
 536                        data = qspi_endian_xchg(data);
 537                        size = (len < 4) ? len : 4;
 538                        memcpy(rxbuf, &data, size);
 539                        len -= size;
 540                        rxbuf++;
 541                        i++;
 542                }
 543        }
 544
 545        qspi_write32(priv->flags, &regs->mcr, mcr_reg);
 546}
 547
 548/* If not use AHB read, read data from ip interface */
 549static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
 550{
 551        struct fsl_qspi_regs *regs = priv->regs;
 552        u32 mcr_reg, data;
 553        int i, size;
 554        u32 to_or_from;
 555        u32 seqid;
 556
 557        if (priv->cur_seqid == QSPI_CMD_RDAR)
 558                seqid = SEQID_RDAR;
 559        else
 560                seqid = SEQID_FAST_READ;
 561
 562        mcr_reg = qspi_read32(priv->flags, &regs->mcr);
 563        qspi_write32(priv->flags, &regs->mcr,
 564                     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
 565                     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
 566        qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
 567
 568        to_or_from = priv->sf_addr + priv->cur_amba_base;
 569
 570        while (len > 0) {
 571                WATCHDOG_RESET();
 572
 573                qspi_write32(priv->flags, &regs->sfar, to_or_from);
 574
 575                size = (len > RX_BUFFER_SIZE) ?
 576                        RX_BUFFER_SIZE : len;
 577
 578                qspi_write32(priv->flags, &regs->ipcr,
 579                             (seqid << QSPI_IPCR_SEQID_SHIFT) |
 580                             size);
 581                while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
 582                        ;
 583
 584                to_or_from += size;
 585                len -= size;
 586
 587                i = 0;
 588                while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
 589                        data = qspi_read32(priv->flags, &regs->rbdr[i]);
 590                        data = qspi_endian_xchg(data);
 591                        if (size < 4)
 592                                memcpy(rxbuf, &data, size);
 593                        else
 594                                memcpy(rxbuf, &data, 4);
 595                        rxbuf++;
 596                        size -= 4;
 597                        i++;
 598                }
 599                qspi_write32(priv->flags, &regs->mcr,
 600                             qspi_read32(priv->flags, &regs->mcr) |
 601                             QSPI_MCR_CLR_RXF_MASK);
 602        }
 603
 604        qspi_write32(priv->flags, &regs->mcr, mcr_reg);
 605}
 606
 607static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
 608{
 609        struct fsl_qspi_regs *regs = priv->regs;
 610        u32 mcr_reg, data, reg, status_reg, seqid;
 611        int i, size, tx_size;
 612        u32 to_or_from = 0;
 613
 614        mcr_reg = qspi_read32(priv->flags, &regs->mcr);
 615        qspi_write32(priv->flags, &regs->mcr,
 616                     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
 617                     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
 618        qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
 619
 620        status_reg = 0;
 621        while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
 622                WATCHDOG_RESET();
 623
 624                qspi_write32(priv->flags, &regs->ipcr,
 625                             (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
 626                while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
 627                        ;
 628
 629                qspi_write32(priv->flags, &regs->ipcr,
 630                             (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
 631                while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
 632                        ;
 633
 634                reg = qspi_read32(priv->flags, &regs->rbsr);
 635                if (reg & QSPI_RBSR_RDBFL_MASK) {
 636                        status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
 637                        status_reg = qspi_endian_xchg(status_reg);
 638                }
 639                qspi_write32(priv->flags, &regs->mcr,
 640                             qspi_read32(priv->flags, &regs->mcr) |
 641                             QSPI_MCR_CLR_RXF_MASK);
 642        }
 643
 644        /* Default is page programming */
 645        seqid = SEQID_PP;
 646        if (priv->cur_seqid == QSPI_CMD_WRAR)
 647                seqid = SEQID_WRAR;
 648#ifdef CONFIG_SPI_FLASH_BAR
 649        if (priv->cur_seqid == QSPI_CMD_BRWR)
 650                seqid = SEQID_BRWR;
 651        else if (priv->cur_seqid == QSPI_CMD_WREAR)
 652                seqid = SEQID_WREAR;
 653#endif
 654
 655        to_or_from = priv->sf_addr + priv->cur_amba_base;
 656
 657        qspi_write32(priv->flags, &regs->sfar, to_or_from);
 658
 659        tx_size = (len > TX_BUFFER_SIZE) ?
 660                TX_BUFFER_SIZE : len;
 661
 662        size = tx_size / 4;
 663        for (i = 0; i < size; i++) {
 664                memcpy(&data, txbuf, 4);
 665                data = qspi_endian_xchg(data);
 666                qspi_write32(priv->flags, &regs->tbdr, data);
 667                txbuf += 4;
 668        }
 669
 670        size = tx_size % 4;
 671        if (size) {
 672                data = 0;
 673                memcpy(&data, txbuf, size);
 674                data = qspi_endian_xchg(data);
 675                qspi_write32(priv->flags, &regs->tbdr, data);
 676        }
 677
 678        qspi_write32(priv->flags, &regs->ipcr,
 679                     (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
 680        while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
 681                ;
 682
 683        qspi_write32(priv->flags, &regs->mcr, mcr_reg);
 684}
 685
 686static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
 687{
 688        struct fsl_qspi_regs *regs = priv->regs;
 689        u32 mcr_reg, reg, data;
 690
 691        mcr_reg = qspi_read32(priv->flags, &regs->mcr);
 692        qspi_write32(priv->flags, &regs->mcr,
 693                     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
 694                     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
 695        qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
 696
 697        qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
 698
 699        qspi_write32(priv->flags, &regs->ipcr,
 700                     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
 701        while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
 702                ;
 703
 704        while (1) {
 705                reg = qspi_read32(priv->flags, &regs->rbsr);
 706                if (reg & QSPI_RBSR_RDBFL_MASK) {
 707                        data = qspi_read32(priv->flags, &regs->rbdr[0]);
 708                        data = qspi_endian_xchg(data);
 709                        memcpy(rxbuf, &data, len);
 710                        qspi_write32(priv->flags, &regs->mcr,
 711                                     qspi_read32(priv->flags, &regs->mcr) |
 712                                     QSPI_MCR_CLR_RXF_MASK);
 713                        break;
 714                }
 715        }
 716
 717        qspi_write32(priv->flags, &regs->mcr, mcr_reg);
 718}
 719
 720static void qspi_op_erase(struct fsl_qspi_priv *priv)
 721{
 722        struct fsl_qspi_regs *regs = priv->regs;
 723        u32 mcr_reg;
 724        u32 to_or_from = 0;
 725
 726        mcr_reg = qspi_read32(priv->flags, &regs->mcr);
 727        qspi_write32(priv->flags, &regs->mcr,
 728                     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
 729                     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
 730        qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
 731
 732        to_or_from = priv->sf_addr + priv->cur_amba_base;
 733        qspi_write32(priv->flags, &regs->sfar, to_or_from);
 734
 735        qspi_write32(priv->flags, &regs->ipcr,
 736                     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
 737        while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
 738                ;
 739
 740        if (priv->cur_seqid == QSPI_CMD_SE) {
 741                qspi_write32(priv->flags, &regs->ipcr,
 742                             (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
 743        } else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
 744                qspi_write32(priv->flags, &regs->ipcr,
 745                             (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
 746        }
 747        while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
 748                ;
 749
 750        qspi_write32(priv->flags, &regs->mcr, mcr_reg);
 751}
 752
 753int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
 754                const void *dout, void *din, unsigned long flags)
 755{
 756        u32 bytes = DIV_ROUND_UP(bitlen, 8);
 757        static u32 wr_sfaddr;
 758        u32 txbuf;
 759
 760        if (dout) {
 761                if (flags & SPI_XFER_BEGIN) {
 762                        priv->cur_seqid = *(u8 *)dout;
 763                        memcpy(&txbuf, dout, 4);
 764                }
 765
 766                if (flags == SPI_XFER_END) {
 767                        priv->sf_addr = wr_sfaddr;
 768                        qspi_op_write(priv, (u8 *)dout, bytes);
 769                        return 0;
 770                }
 771
 772                if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
 773                    priv->cur_seqid == QSPI_CMD_RDAR) {
 774                        priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
 775                } else if ((priv->cur_seqid == QSPI_CMD_SE) ||
 776                           (priv->cur_seqid == QSPI_CMD_BE_4K)) {
 777                        priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
 778                        qspi_op_erase(priv);
 779                } else if (priv->cur_seqid == QSPI_CMD_PP ||
 780                           priv->cur_seqid == QSPI_CMD_WRAR) {
 781                        wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
 782                } else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
 783                         (priv->cur_seqid == QSPI_CMD_WREAR)) {
 784#ifdef CONFIG_SPI_FLASH_BAR
 785                        wr_sfaddr = 0;
 786#endif
 787                }
 788        }
 789
 790        if (din) {
 791                if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
 792#ifdef CONFIG_SYS_FSL_QSPI_AHB
 793                        qspi_ahb_read(priv, din, bytes);
 794#else
 795                        qspi_op_read(priv, din, bytes);
 796#endif
 797                } else if (priv->cur_seqid == QSPI_CMD_RDAR) {
 798                        qspi_op_read(priv, din, bytes);
 799                } else if (priv->cur_seqid == QSPI_CMD_RDID)
 800                        qspi_op_rdid(priv, din, bytes);
 801                else if (priv->cur_seqid == QSPI_CMD_RDSR)
 802                        qspi_op_rdsr(priv, din, bytes);
 803#ifdef CONFIG_SPI_FLASH_BAR
 804                else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
 805                         (priv->cur_seqid == QSPI_CMD_RDEAR)) {
 806                        priv->sf_addr = 0;
 807                        qspi_op_rdbank(priv, din, bytes);
 808                }
 809#endif
 810        }
 811
 812#ifdef CONFIG_SYS_FSL_QSPI_AHB
 813        if ((priv->cur_seqid == QSPI_CMD_SE) ||
 814            (priv->cur_seqid == QSPI_CMD_PP) ||
 815            (priv->cur_seqid == QSPI_CMD_BE_4K) ||
 816            (priv->cur_seqid == QSPI_CMD_WREAR) ||
 817            (priv->cur_seqid == QSPI_CMD_BRWR))
 818                qspi_ahb_invalid(priv);
 819#endif
 820
 821        return 0;
 822}
 823
 824void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
 825{
 826        u32 mcr_val;
 827
 828        mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
 829        if (disable)
 830                mcr_val |= QSPI_MCR_MDIS_MASK;
 831        else
 832                mcr_val &= ~QSPI_MCR_MDIS_MASK;
 833        qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
 834}
 835
 836void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
 837{
 838        u32 smpr_val;
 839
 840        smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
 841        smpr_val &= ~clear_bits;
 842        smpr_val |= set_bits;
 843        qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
 844}
 845#ifndef CONFIG_DM_SPI
 846static unsigned long spi_bases[] = {
 847        QSPI0_BASE_ADDR,
 848#ifdef CONFIG_MX6SX
 849        QSPI1_BASE_ADDR,
 850#endif
 851};
 852
 853static unsigned long amba_bases[] = {
 854        QSPI0_AMBA_BASE,
 855#ifdef CONFIG_MX6SX
 856        QSPI1_AMBA_BASE,
 857#endif
 858};
 859
 860static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
 861{
 862        return container_of(slave, struct fsl_qspi, slave);
 863}
 864
 865struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
 866                unsigned int max_hz, unsigned int mode)
 867{
 868        u32 mcr_val;
 869        struct fsl_qspi *qspi;
 870        struct fsl_qspi_regs *regs;
 871        u32 total_size;
 872
 873        if (bus >= ARRAY_SIZE(spi_bases))
 874                return NULL;
 875
 876        if (cs >= FSL_QSPI_FLASH_NUM)
 877                return NULL;
 878
 879        qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
 880        if (!qspi)
 881                return NULL;
 882
 883#ifdef CONFIG_SYS_FSL_QSPI_BE
 884        qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
 885#endif
 886
 887        regs = (struct fsl_qspi_regs *)spi_bases[bus];
 888        qspi->priv.regs = regs;
 889        /*
 890         * According cs, use different amba_base to choose the
 891         * corresponding flash devices.
 892         *
 893         * If not, only one flash device is used even if passing
 894         * different cs using `sf probe`
 895         */
 896        qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
 897
 898        qspi->slave.max_write_size = TX_BUFFER_SIZE;
 899
 900        mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
 901        qspi_write32(qspi->priv.flags, &regs->mcr,
 902                     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
 903                     (mcr_val & QSPI_MCR_END_CFD_MASK));
 904
 905        qspi_cfg_smpr(&qspi->priv,
 906                      ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
 907                      QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
 908
 909        total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
 910        /*
 911         * Any read access to non-implemented addresses will provide
 912         * undefined results.
 913         *
 914         * In case single die flash devices, TOP_ADDR_MEMA2 and
 915         * TOP_ADDR_MEMB2 should be initialized/programmed to
 916         * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
 917         * setting the size of these devices to 0.  This would ensure
 918         * that the complete memory map is assigned to only one flash device.
 919         */
 920        qspi_write32(qspi->priv.flags, &regs->sfa1ad,
 921                     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
 922        qspi_write32(qspi->priv.flags, &regs->sfa2ad,
 923                     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
 924        qspi_write32(qspi->priv.flags, &regs->sfb1ad,
 925                     total_size | amba_bases[bus]);
 926        qspi_write32(qspi->priv.flags, &regs->sfb2ad,
 927                     total_size | amba_bases[bus]);
 928
 929        qspi_set_lut(&qspi->priv);
 930
 931#ifdef CONFIG_SYS_FSL_QSPI_AHB
 932        qspi_init_ahb_read(&qspi->priv);
 933#endif
 934
 935        qspi_module_disable(&qspi->priv, 0);
 936
 937        return &qspi->slave;
 938}
 939
 940void spi_free_slave(struct spi_slave *slave)
 941{
 942        struct fsl_qspi *qspi = to_qspi_spi(slave);
 943
 944        free(qspi);
 945}
 946
 947int spi_claim_bus(struct spi_slave *slave)
 948{
 949        return 0;
 950}
 951
 952void spi_release_bus(struct spi_slave *slave)
 953{
 954        /* Nothing to do */
 955}
 956
 957int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
 958                const void *dout, void *din, unsigned long flags)
 959{
 960        struct fsl_qspi *qspi = to_qspi_spi(slave);
 961
 962        return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
 963}
 964
 965void spi_init(void)
 966{
 967        /* Nothing to do */
 968}
 969#else
 970static int fsl_qspi_child_pre_probe(struct udevice *dev)
 971{
 972        struct spi_slave *slave = dev_get_parent_priv(dev);
 973
 974        slave->max_write_size = TX_BUFFER_SIZE;
 975
 976        return 0;
 977}
 978
 979static int fsl_qspi_probe(struct udevice *bus)
 980{
 981        u32 mcr_val;
 982        u32 amba_size_per_chip;
 983        struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
 984        struct fsl_qspi_priv *priv = dev_get_priv(bus);
 985        struct dm_spi_bus *dm_spi_bus;
 986        int i;
 987
 988        dm_spi_bus = bus->uclass_priv;
 989
 990        dm_spi_bus->max_hz = plat->speed_hz;
 991
 992        priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
 993        priv->flags = plat->flags;
 994
 995        priv->speed_hz = plat->speed_hz;
 996        /*
 997         * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
 998         * AMBA memory zone should be located on the 0~4GB space
 999         * even on a 64bits cpu.
1000         */
1001        priv->amba_base[0] = (u32)plat->amba_base;
1002        priv->amba_total_size = (u32)plat->amba_total_size;
1003        priv->flash_num = plat->flash_num;
1004        priv->num_chipselect = plat->num_chipselect;
1005
1006        mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
1007        qspi_write32(priv->flags, &priv->regs->mcr,
1008                     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
1009                     (mcr_val & QSPI_MCR_END_CFD_MASK));
1010
1011        qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
1012                QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
1013
1014        /*
1015         * Assign AMBA memory zone for every chipselect
1016         * QuadSPI has two channels, every channel has two chipselects.
1017         * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
1018         * into two parts and assign to every channel. This indicate that every
1019         * channel only has one valid chipselect.
1020         * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
1021         * into four parts and assign to every chipselect.
1022         * Every channel will has two valid chipselects.
1023         */
1024        amba_size_per_chip = priv->amba_total_size >>
1025                             (priv->num_chipselect >> 1);
1026        for (i = 1 ; i < priv->num_chipselect ; i++)
1027                priv->amba_base[i] =
1028                        amba_size_per_chip + priv->amba_base[i - 1];
1029
1030        /*
1031         * Any read access to non-implemented addresses will provide
1032         * undefined results.
1033         *
1034         * In case single die flash devices, TOP_ADDR_MEMA2 and
1035         * TOP_ADDR_MEMB2 should be initialized/programmed to
1036         * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
1037         * setting the size of these devices to 0.  This would ensure
1038         * that the complete memory map is assigned to only one flash device.
1039         */
1040        qspi_write32(priv->flags, &priv->regs->sfa1ad,
1041                     priv->amba_base[0] + amba_size_per_chip);
1042        switch (priv->num_chipselect) {
1043        case 1:
1044                break;
1045        case 2:
1046                qspi_write32(priv->flags, &priv->regs->sfa2ad,
1047                             priv->amba_base[1]);
1048                qspi_write32(priv->flags, &priv->regs->sfb1ad,
1049                             priv->amba_base[1] + amba_size_per_chip);
1050                qspi_write32(priv->flags, &priv->regs->sfb2ad,
1051                             priv->amba_base[1] + amba_size_per_chip);
1052                break;
1053        case 4:
1054                qspi_write32(priv->flags, &priv->regs->sfa2ad,
1055                             priv->amba_base[2]);
1056                qspi_write32(priv->flags, &priv->regs->sfb1ad,
1057                             priv->amba_base[3]);
1058                qspi_write32(priv->flags, &priv->regs->sfb2ad,
1059                             priv->amba_base[3] + amba_size_per_chip);
1060                break;
1061        default:
1062                debug("Error: Unsupported chipselect number %u!\n",
1063                      priv->num_chipselect);
1064                qspi_module_disable(priv, 1);
1065                return -EINVAL;
1066        }
1067
1068        qspi_set_lut(priv);
1069
1070#ifdef CONFIG_SYS_FSL_QSPI_AHB
1071        qspi_init_ahb_read(priv);
1072#endif
1073
1074        qspi_module_disable(priv, 0);
1075
1076        return 0;
1077}
1078
1079static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
1080{
1081        struct fdt_resource res_regs, res_mem;
1082        struct fsl_qspi_platdata *plat = bus->platdata;
1083        const void *blob = gd->fdt_blob;
1084        int node = dev_of_offset(bus);
1085        int ret, flash_num = 0, subnode;
1086
1087        if (fdtdec_get_bool(blob, node, "big-endian"))
1088                plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
1089
1090        ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1091                                     "QuadSPI", &res_regs);
1092        if (ret) {
1093                debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
1094                return -ENOMEM;
1095        }
1096        ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1097                                     "QuadSPI-memory", &res_mem);
1098        if (ret) {
1099                debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
1100                return -ENOMEM;
1101        }
1102
1103        /* Count flash numbers */
1104        fdt_for_each_subnode(subnode, blob, node)
1105                ++flash_num;
1106
1107        if (flash_num == 0) {
1108                debug("Error: Missing flashes!\n");
1109                return -ENODEV;
1110        }
1111
1112        plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
1113                                        FSL_QSPI_DEFAULT_SCK_FREQ);
1114        plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
1115                                              FSL_QSPI_MAX_CHIPSELECT_NUM);
1116
1117        plat->reg_base = res_regs.start;
1118        plat->amba_base = res_mem.start;
1119        plat->amba_total_size = res_mem.end - res_mem.start + 1;
1120        plat->flash_num = flash_num;
1121
1122        debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
1123              __func__,
1124              (u64)plat->reg_base,
1125              (u64)plat->amba_base,
1126              (u64)plat->amba_total_size,
1127              plat->speed_hz,
1128              plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
1129              );
1130
1131        return 0;
1132}
1133
1134static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
1135                const void *dout, void *din, unsigned long flags)
1136{
1137        struct fsl_qspi_priv *priv;
1138        struct udevice *bus;
1139
1140        bus = dev->parent;
1141        priv = dev_get_priv(bus);
1142
1143        return qspi_xfer(priv, bitlen, dout, din, flags);
1144}
1145
1146static int fsl_qspi_claim_bus(struct udevice *dev)
1147{
1148        struct fsl_qspi_priv *priv;
1149        struct udevice *bus;
1150        struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
1151
1152        bus = dev->parent;
1153        priv = dev_get_priv(bus);
1154
1155        priv->cur_amba_base = priv->amba_base[slave_plat->cs];
1156
1157        qspi_module_disable(priv, 0);
1158
1159        return 0;
1160}
1161
1162static int fsl_qspi_release_bus(struct udevice *dev)
1163{
1164        struct fsl_qspi_priv *priv;
1165        struct udevice *bus;
1166
1167        bus = dev->parent;
1168        priv = dev_get_priv(bus);
1169
1170        qspi_module_disable(priv, 1);
1171
1172        return 0;
1173}
1174
1175static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
1176{
1177        /* Nothing to do */
1178        return 0;
1179}
1180
1181static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
1182{
1183        /* Nothing to do */
1184        return 0;
1185}
1186
1187static const struct dm_spi_ops fsl_qspi_ops = {
1188        .claim_bus      = fsl_qspi_claim_bus,
1189        .release_bus    = fsl_qspi_release_bus,
1190        .xfer           = fsl_qspi_xfer,
1191        .set_speed      = fsl_qspi_set_speed,
1192        .set_mode       = fsl_qspi_set_mode,
1193};
1194
1195static const struct udevice_id fsl_qspi_ids[] = {
1196        { .compatible = "fsl,vf610-qspi" },
1197        { .compatible = "fsl,imx6sx-qspi" },
1198        { }
1199};
1200
1201U_BOOT_DRIVER(fsl_qspi) = {
1202        .name   = "fsl_qspi",
1203        .id     = UCLASS_SPI,
1204        .of_match = fsl_qspi_ids,
1205        .ops    = &fsl_qspi_ops,
1206        .ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
1207        .platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
1208        .priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
1209        .probe  = fsl_qspi_probe,
1210        .child_pre_probe = fsl_qspi_child_pre_probe,
1211};
1212#endif
1213