uboot/fs/ubifs/gc.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * SPDX-License-Identifier:     GPL-2.0
   7 *
   8 * Authors: Adrian Hunter
   9 *          Artem Bityutskiy (Битюцкий Артём)
  10 */
  11
  12/*
  13 * This file implements garbage collection. The procedure for garbage collection
  14 * is different depending on whether a LEB as an index LEB (contains index
  15 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
  16 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
  17 * nodes to the journal, at which point the garbage-collected LEB is free to be
  18 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
  19 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
  20 * to be reused. Garbage collection will cause the number of dirty index nodes
  21 * to grow, however sufficient space is reserved for the index to ensure the
  22 * commit will never run out of space.
  23 *
  24 * Notes about dead watermark. At current UBIFS implementation we assume that
  25 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
  26 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
  27 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
  28 * Garbage Collector has to synchronize the GC head's write buffer before
  29 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
  30 * actually reclaim even very small pieces of dirty space by garbage collecting
  31 * enough dirty LEBs, but we do not bother doing this at this implementation.
  32 *
  33 * Notes about dark watermark. The results of GC work depends on how big are
  34 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
  35 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
  36 * have to waste large pieces of free space at the end of LEB B, because nodes
  37 * from LEB A would not fit. And the worst situation is when all nodes are of
  38 * maximum size. So dark watermark is the amount of free + dirty space in LEB
  39 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
  40 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
  41 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
  42 * good, and GC takes extra care when moving them.
  43 */
  44#ifndef __UBOOT__
  45#include <linux/slab.h>
  46#include <linux/pagemap.h>
  47#include <linux/list_sort.h>
  48#endif
  49#include "ubifs.h"
  50
  51#ifndef __UBOOT__
  52/*
  53 * GC may need to move more than one LEB to make progress. The below constants
  54 * define "soft" and "hard" limits on the number of LEBs the garbage collector
  55 * may move.
  56 */
  57#define SOFT_LEBS_LIMIT 4
  58#define HARD_LEBS_LIMIT 32
  59
  60/**
  61 * switch_gc_head - switch the garbage collection journal head.
  62 * @c: UBIFS file-system description object
  63 * @buf: buffer to write
  64 * @len: length of the buffer to write
  65 * @lnum: LEB number written is returned here
  66 * @offs: offset written is returned here
  67 *
  68 * This function switch the GC head to the next LEB which is reserved in
  69 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
  70 * and other negative error code in case of failures.
  71 */
  72static int switch_gc_head(struct ubifs_info *c)
  73{
  74        int err, gc_lnum = c->gc_lnum;
  75        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  76
  77        ubifs_assert(gc_lnum != -1);
  78        dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
  79               wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
  80               c->leb_size - wbuf->offs - wbuf->used);
  81
  82        err = ubifs_wbuf_sync_nolock(wbuf);
  83        if (err)
  84                return err;
  85
  86        /*
  87         * The GC write-buffer was synchronized, we may safely unmap
  88         * 'c->gc_lnum'.
  89         */
  90        err = ubifs_leb_unmap(c, gc_lnum);
  91        if (err)
  92                return err;
  93
  94        err = ubifs_wbuf_sync_nolock(wbuf);
  95        if (err)
  96                return err;
  97
  98        err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
  99        if (err)
 100                return err;
 101
 102        c->gc_lnum = -1;
 103        err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
 104        return err;
 105}
 106
 107/**
 108 * data_nodes_cmp - compare 2 data nodes.
 109 * @priv: UBIFS file-system description object
 110 * @a: first data node
 111 * @a: second data node
 112 *
 113 * This function compares data nodes @a and @b. Returns %1 if @a has greater
 114 * inode or block number, and %-1 otherwise.
 115 */
 116static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
 117{
 118        ino_t inuma, inumb;
 119        struct ubifs_info *c = priv;
 120        struct ubifs_scan_node *sa, *sb;
 121
 122        cond_resched();
 123        if (a == b)
 124                return 0;
 125
 126        sa = list_entry(a, struct ubifs_scan_node, list);
 127        sb = list_entry(b, struct ubifs_scan_node, list);
 128
 129        ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
 130        ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
 131        ubifs_assert(sa->type == UBIFS_DATA_NODE);
 132        ubifs_assert(sb->type == UBIFS_DATA_NODE);
 133
 134        inuma = key_inum(c, &sa->key);
 135        inumb = key_inum(c, &sb->key);
 136
 137        if (inuma == inumb) {
 138                unsigned int blka = key_block(c, &sa->key);
 139                unsigned int blkb = key_block(c, &sb->key);
 140
 141                if (blka <= blkb)
 142                        return -1;
 143        } else if (inuma <= inumb)
 144                return -1;
 145
 146        return 1;
 147}
 148
 149/*
 150 * nondata_nodes_cmp - compare 2 non-data nodes.
 151 * @priv: UBIFS file-system description object
 152 * @a: first node
 153 * @a: second node
 154 *
 155 * This function compares nodes @a and @b. It makes sure that inode nodes go
 156 * first and sorted by length in descending order. Directory entry nodes go
 157 * after inode nodes and are sorted in ascending hash valuer order.
 158 */
 159static int nondata_nodes_cmp(void *priv, struct list_head *a,
 160                             struct list_head *b)
 161{
 162        ino_t inuma, inumb;
 163        struct ubifs_info *c = priv;
 164        struct ubifs_scan_node *sa, *sb;
 165
 166        cond_resched();
 167        if (a == b)
 168                return 0;
 169
 170        sa = list_entry(a, struct ubifs_scan_node, list);
 171        sb = list_entry(b, struct ubifs_scan_node, list);
 172
 173        ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
 174                     key_type(c, &sb->key) != UBIFS_DATA_KEY);
 175        ubifs_assert(sa->type != UBIFS_DATA_NODE &&
 176                     sb->type != UBIFS_DATA_NODE);
 177
 178        /* Inodes go before directory entries */
 179        if (sa->type == UBIFS_INO_NODE) {
 180                if (sb->type == UBIFS_INO_NODE)
 181                        return sb->len - sa->len;
 182                return -1;
 183        }
 184        if (sb->type == UBIFS_INO_NODE)
 185                return 1;
 186
 187        ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
 188                     key_type(c, &sa->key) == UBIFS_XENT_KEY);
 189        ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
 190                     key_type(c, &sb->key) == UBIFS_XENT_KEY);
 191        ubifs_assert(sa->type == UBIFS_DENT_NODE ||
 192                     sa->type == UBIFS_XENT_NODE);
 193        ubifs_assert(sb->type == UBIFS_DENT_NODE ||
 194                     sb->type == UBIFS_XENT_NODE);
 195
 196        inuma = key_inum(c, &sa->key);
 197        inumb = key_inum(c, &sb->key);
 198
 199        if (inuma == inumb) {
 200                uint32_t hasha = key_hash(c, &sa->key);
 201                uint32_t hashb = key_hash(c, &sb->key);
 202
 203                if (hasha <= hashb)
 204                        return -1;
 205        } else if (inuma <= inumb)
 206                return -1;
 207
 208        return 1;
 209}
 210
 211/**
 212 * sort_nodes - sort nodes for GC.
 213 * @c: UBIFS file-system description object
 214 * @sleb: describes nodes to sort and contains the result on exit
 215 * @nondata: contains non-data nodes on exit
 216 * @min: minimum node size is returned here
 217 *
 218 * This function sorts the list of inodes to garbage collect. First of all, it
 219 * kills obsolete nodes and separates data and non-data nodes to the
 220 * @sleb->nodes and @nondata lists correspondingly.
 221 *
 222 * Data nodes are then sorted in block number order - this is important for
 223 * bulk-read; data nodes with lower inode number go before data nodes with
 224 * higher inode number, and data nodes with lower block number go before data
 225 * nodes with higher block number;
 226 *
 227 * Non-data nodes are sorted as follows.
 228 *   o First go inode nodes - they are sorted in descending length order.
 229 *   o Then go directory entry nodes - they are sorted in hash order, which
 230 *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
 231 *     inode number go before direntry nodes with higher parent inode number,
 232 *     and direntry nodes with lower name hash values go before direntry nodes
 233 *     with higher name hash values.
 234 *
 235 * This function returns zero in case of success and a negative error code in
 236 * case of failure.
 237 */
 238static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 239                      struct list_head *nondata, int *min)
 240{
 241        int err;
 242        struct ubifs_scan_node *snod, *tmp;
 243
 244        *min = INT_MAX;
 245
 246        /* Separate data nodes and non-data nodes */
 247        list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
 248                ubifs_assert(snod->type == UBIFS_INO_NODE  ||
 249                             snod->type == UBIFS_DATA_NODE ||
 250                             snod->type == UBIFS_DENT_NODE ||
 251                             snod->type == UBIFS_XENT_NODE ||
 252                             snod->type == UBIFS_TRUN_NODE);
 253
 254                if (snod->type != UBIFS_INO_NODE  &&
 255                    snod->type != UBIFS_DATA_NODE &&
 256                    snod->type != UBIFS_DENT_NODE &&
 257                    snod->type != UBIFS_XENT_NODE) {
 258                        /* Probably truncation node, zap it */
 259                        list_del(&snod->list);
 260                        kfree(snod);
 261                        continue;
 262                }
 263
 264                ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
 265                             key_type(c, &snod->key) == UBIFS_INO_KEY  ||
 266                             key_type(c, &snod->key) == UBIFS_DENT_KEY ||
 267                             key_type(c, &snod->key) == UBIFS_XENT_KEY);
 268
 269                err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
 270                                         snod->offs, 0);
 271                if (err < 0)
 272                        return err;
 273
 274                if (!err) {
 275                        /* The node is obsolete, remove it from the list */
 276                        list_del(&snod->list);
 277                        kfree(snod);
 278                        continue;
 279                }
 280
 281                if (snod->len < *min)
 282                        *min = snod->len;
 283
 284                if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
 285                        list_move_tail(&snod->list, nondata);
 286        }
 287
 288        /* Sort data and non-data nodes */
 289        list_sort(c, &sleb->nodes, &data_nodes_cmp);
 290        list_sort(c, nondata, &nondata_nodes_cmp);
 291
 292        err = dbg_check_data_nodes_order(c, &sleb->nodes);
 293        if (err)
 294                return err;
 295        err = dbg_check_nondata_nodes_order(c, nondata);
 296        if (err)
 297                return err;
 298        return 0;
 299}
 300
 301/**
 302 * move_node - move a node.
 303 * @c: UBIFS file-system description object
 304 * @sleb: describes the LEB to move nodes from
 305 * @snod: the mode to move
 306 * @wbuf: write-buffer to move node to
 307 *
 308 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
 309 * destroys @snod. Returns zero in case of success and a negative error code in
 310 * case of failure.
 311 */
 312static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 313                     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
 314{
 315        int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
 316
 317        cond_resched();
 318        err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
 319        if (err)
 320                return err;
 321
 322        err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
 323                                snod->offs, new_lnum, new_offs,
 324                                snod->len);
 325        list_del(&snod->list);
 326        kfree(snod);
 327        return err;
 328}
 329
 330/**
 331 * move_nodes - move nodes.
 332 * @c: UBIFS file-system description object
 333 * @sleb: describes the LEB to move nodes from
 334 *
 335 * This function moves valid nodes from data LEB described by @sleb to the GC
 336 * journal head. This function returns zero in case of success, %-EAGAIN if
 337 * commit is required, and other negative error codes in case of other
 338 * failures.
 339 */
 340static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
 341{
 342        int err, min;
 343        LIST_HEAD(nondata);
 344        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 345
 346        if (wbuf->lnum == -1) {
 347                /*
 348                 * The GC journal head is not set, because it is the first GC
 349                 * invocation since mount.
 350                 */
 351                err = switch_gc_head(c);
 352                if (err)
 353                        return err;
 354        }
 355
 356        err = sort_nodes(c, sleb, &nondata, &min);
 357        if (err)
 358                goto out;
 359
 360        /* Write nodes to their new location. Use the first-fit strategy */
 361        while (1) {
 362                int avail;
 363                struct ubifs_scan_node *snod, *tmp;
 364
 365                /* Move data nodes */
 366                list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
 367                        avail = c->leb_size - wbuf->offs - wbuf->used;
 368                        if  (snod->len > avail)
 369                                /*
 370                                 * Do not skip data nodes in order to optimize
 371                                 * bulk-read.
 372                                 */
 373                                break;
 374
 375                        err = move_node(c, sleb, snod, wbuf);
 376                        if (err)
 377                                goto out;
 378                }
 379
 380                /* Move non-data nodes */
 381                list_for_each_entry_safe(snod, tmp, &nondata, list) {
 382                        avail = c->leb_size - wbuf->offs - wbuf->used;
 383                        if (avail < min)
 384                                break;
 385
 386                        if  (snod->len > avail) {
 387                                /*
 388                                 * Keep going only if this is an inode with
 389                                 * some data. Otherwise stop and switch the GC
 390                                 * head. IOW, we assume that data-less inode
 391                                 * nodes and direntry nodes are roughly of the
 392                                 * same size.
 393                                 */
 394                                if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
 395                                    snod->len == UBIFS_INO_NODE_SZ)
 396                                        break;
 397                                continue;
 398                        }
 399
 400                        err = move_node(c, sleb, snod, wbuf);
 401                        if (err)
 402                                goto out;
 403                }
 404
 405                if (list_empty(&sleb->nodes) && list_empty(&nondata))
 406                        break;
 407
 408                /*
 409                 * Waste the rest of the space in the LEB and switch to the
 410                 * next LEB.
 411                 */
 412                err = switch_gc_head(c);
 413                if (err)
 414                        goto out;
 415        }
 416
 417        return 0;
 418
 419out:
 420        list_splice_tail(&nondata, &sleb->nodes);
 421        return err;
 422}
 423
 424/**
 425 * gc_sync_wbufs - sync write-buffers for GC.
 426 * @c: UBIFS file-system description object
 427 *
 428 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
 429 * be in a write-buffer instead. That is, a node could be written to a
 430 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
 431 * erased before the write-buffer is sync'd and then there is an unclean
 432 * unmount, then an existing node is lost. To avoid this, we sync all
 433 * write-buffers.
 434 *
 435 * This function returns %0 on success or a negative error code on failure.
 436 */
 437static int gc_sync_wbufs(struct ubifs_info *c)
 438{
 439        int err, i;
 440
 441        for (i = 0; i < c->jhead_cnt; i++) {
 442                if (i == GCHD)
 443                        continue;
 444                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 445                if (err)
 446                        return err;
 447        }
 448        return 0;
 449}
 450
 451/**
 452 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
 453 * @c: UBIFS file-system description object
 454 * @lp: describes the LEB to garbage collect
 455 *
 456 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
 457 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
 458 * required, and other negative error codes in case of failures.
 459 */
 460int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
 461{
 462        struct ubifs_scan_leb *sleb;
 463        struct ubifs_scan_node *snod;
 464        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 465        int err = 0, lnum = lp->lnum;
 466
 467        ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
 468                     c->need_recovery);
 469        ubifs_assert(c->gc_lnum != lnum);
 470        ubifs_assert(wbuf->lnum != lnum);
 471
 472        if (lp->free + lp->dirty == c->leb_size) {
 473                /* Special case - a free LEB  */
 474                dbg_gc("LEB %d is free, return it", lp->lnum);
 475                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 476
 477                if (lp->free != c->leb_size) {
 478                        /*
 479                         * Write buffers must be sync'd before unmapping
 480                         * freeable LEBs, because one of them may contain data
 481                         * which obsoletes something in 'lp->pnum'.
 482                         */
 483                        err = gc_sync_wbufs(c);
 484                        if (err)
 485                                return err;
 486                        err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
 487                                                  0, 0, 0, 0);
 488                        if (err)
 489                                return err;
 490                }
 491                err = ubifs_leb_unmap(c, lp->lnum);
 492                if (err)
 493                        return err;
 494
 495                if (c->gc_lnum == -1) {
 496                        c->gc_lnum = lnum;
 497                        return LEB_RETAINED;
 498                }
 499
 500                return LEB_FREED;
 501        }
 502
 503        /*
 504         * We scan the entire LEB even though we only really need to scan up to
 505         * (c->leb_size - lp->free).
 506         */
 507        sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
 508        if (IS_ERR(sleb))
 509                return PTR_ERR(sleb);
 510
 511        ubifs_assert(!list_empty(&sleb->nodes));
 512        snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 513
 514        if (snod->type == UBIFS_IDX_NODE) {
 515                struct ubifs_gced_idx_leb *idx_gc;
 516
 517                dbg_gc("indexing LEB %d (free %d, dirty %d)",
 518                       lnum, lp->free, lp->dirty);
 519                list_for_each_entry(snod, &sleb->nodes, list) {
 520                        struct ubifs_idx_node *idx = snod->node;
 521                        int level = le16_to_cpu(idx->level);
 522
 523                        ubifs_assert(snod->type == UBIFS_IDX_NODE);
 524                        key_read(c, ubifs_idx_key(c, idx), &snod->key);
 525                        err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
 526                                                   snod->offs);
 527                        if (err)
 528                                goto out;
 529                }
 530
 531                idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 532                if (!idx_gc) {
 533                        err = -ENOMEM;
 534                        goto out;
 535                }
 536
 537                idx_gc->lnum = lnum;
 538                idx_gc->unmap = 0;
 539                list_add(&idx_gc->list, &c->idx_gc);
 540
 541                /*
 542                 * Don't release the LEB until after the next commit, because
 543                 * it may contain data which is needed for recovery. So
 544                 * although we freed this LEB, it will become usable only after
 545                 * the commit.
 546                 */
 547                err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
 548                                          LPROPS_INDEX, 1);
 549                if (err)
 550                        goto out;
 551                err = LEB_FREED_IDX;
 552        } else {
 553                dbg_gc("data LEB %d (free %d, dirty %d)",
 554                       lnum, lp->free, lp->dirty);
 555
 556                err = move_nodes(c, sleb);
 557                if (err)
 558                        goto out_inc_seq;
 559
 560                err = gc_sync_wbufs(c);
 561                if (err)
 562                        goto out_inc_seq;
 563
 564                err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
 565                if (err)
 566                        goto out_inc_seq;
 567
 568                /* Allow for races with TNC */
 569                c->gced_lnum = lnum;
 570                smp_wmb();
 571                c->gc_seq += 1;
 572                smp_wmb();
 573
 574                if (c->gc_lnum == -1) {
 575                        c->gc_lnum = lnum;
 576                        err = LEB_RETAINED;
 577                } else {
 578                        err = ubifs_wbuf_sync_nolock(wbuf);
 579                        if (err)
 580                                goto out;
 581
 582                        err = ubifs_leb_unmap(c, lnum);
 583                        if (err)
 584                                goto out;
 585
 586                        err = LEB_FREED;
 587                }
 588        }
 589
 590out:
 591        ubifs_scan_destroy(sleb);
 592        return err;
 593
 594out_inc_seq:
 595        /* We may have moved at least some nodes so allow for races with TNC */
 596        c->gced_lnum = lnum;
 597        smp_wmb();
 598        c->gc_seq += 1;
 599        smp_wmb();
 600        goto out;
 601}
 602
 603/**
 604 * ubifs_garbage_collect - UBIFS garbage collector.
 605 * @c: UBIFS file-system description object
 606 * @anyway: do GC even if there are free LEBs
 607 *
 608 * This function does out-of-place garbage collection. The return codes are:
 609 *   o positive LEB number if the LEB has been freed and may be used;
 610 *   o %-EAGAIN if the caller has to run commit;
 611 *   o %-ENOSPC if GC failed to make any progress;
 612 *   o other negative error codes in case of other errors.
 613 *
 614 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
 615 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
 616 * commit may be required. But commit cannot be run from inside GC, because the
 617 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
 618 * And this error code means that the caller has to run commit, and re-run GC
 619 * if there is still no free space.
 620 *
 621 * There are many reasons why this function may return %-EAGAIN:
 622 * o the log is full and there is no space to write an LEB reference for
 623 *   @c->gc_lnum;
 624 * o the journal is too large and exceeds size limitations;
 625 * o GC moved indexing LEBs, but they can be used only after the commit;
 626 * o the shrinker fails to find clean znodes to free and requests the commit;
 627 * o etc.
 628 *
 629 * Note, if the file-system is close to be full, this function may return
 630 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
 631 * the function. E.g., this happens if the limits on the journal size are too
 632 * tough and GC writes too much to the journal before an LEB is freed. This
 633 * might also mean that the journal is too large, and the TNC becomes to big,
 634 * so that the shrinker is constantly called, finds not clean znodes to free,
 635 * and requests commit. Well, this may also happen if the journal is all right,
 636 * but another kernel process consumes too much memory. Anyway, infinite
 637 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
 638 */
 639int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
 640{
 641        int i, err, ret, min_space = c->dead_wm;
 642        struct ubifs_lprops lp;
 643        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 644
 645        ubifs_assert_cmt_locked(c);
 646        ubifs_assert(!c->ro_media && !c->ro_mount);
 647
 648        if (ubifs_gc_should_commit(c))
 649                return -EAGAIN;
 650
 651        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 652
 653        if (c->ro_error) {
 654                ret = -EROFS;
 655                goto out_unlock;
 656        }
 657
 658        /* We expect the write-buffer to be empty on entry */
 659        ubifs_assert(!wbuf->used);
 660
 661        for (i = 0; ; i++) {
 662                int space_before, space_after;
 663
 664                cond_resched();
 665
 666                /* Give the commit an opportunity to run */
 667                if (ubifs_gc_should_commit(c)) {
 668                        ret = -EAGAIN;
 669                        break;
 670                }
 671
 672                if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
 673                        /*
 674                         * We've done enough iterations. Indexing LEBs were
 675                         * moved and will be available after the commit.
 676                         */
 677                        dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
 678                        ubifs_commit_required(c);
 679                        ret = -EAGAIN;
 680                        break;
 681                }
 682
 683                if (i > HARD_LEBS_LIMIT) {
 684                        /*
 685                         * We've moved too many LEBs and have not made
 686                         * progress, give up.
 687                         */
 688                        dbg_gc("hard limit, -ENOSPC");
 689                        ret = -ENOSPC;
 690                        break;
 691                }
 692
 693                /*
 694                 * Empty and freeable LEBs can turn up while we waited for
 695                 * the wbuf lock, or while we have been running GC. In that
 696                 * case, we should just return one of those instead of
 697                 * continuing to GC dirty LEBs. Hence we request
 698                 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
 699                 */
 700                ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
 701                if (ret) {
 702                        if (ret == -ENOSPC)
 703                                dbg_gc("no more dirty LEBs");
 704                        break;
 705                }
 706
 707                dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
 708                       lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
 709                       min_space);
 710
 711                space_before = c->leb_size - wbuf->offs - wbuf->used;
 712                if (wbuf->lnum == -1)
 713                        space_before = 0;
 714
 715                ret = ubifs_garbage_collect_leb(c, &lp);
 716                if (ret < 0) {
 717                        if (ret == -EAGAIN) {
 718                                /*
 719                                 * This is not error, so we have to return the
 720                                 * LEB to lprops. But if 'ubifs_return_leb()'
 721                                 * fails, its failure code is propagated to the
 722                                 * caller instead of the original '-EAGAIN'.
 723                                 */
 724                                err = ubifs_return_leb(c, lp.lnum);
 725                                if (err)
 726                                        ret = err;
 727                                break;
 728                        }
 729                        goto out;
 730                }
 731
 732                if (ret == LEB_FREED) {
 733                        /* An LEB has been freed and is ready for use */
 734                        dbg_gc("LEB %d freed, return", lp.lnum);
 735                        ret = lp.lnum;
 736                        break;
 737                }
 738
 739                if (ret == LEB_FREED_IDX) {
 740                        /*
 741                         * This was an indexing LEB and it cannot be
 742                         * immediately used. And instead of requesting the
 743                         * commit straight away, we try to garbage collect some
 744                         * more.
 745                         */
 746                        dbg_gc("indexing LEB %d freed, continue", lp.lnum);
 747                        continue;
 748                }
 749
 750                ubifs_assert(ret == LEB_RETAINED);
 751                space_after = c->leb_size - wbuf->offs - wbuf->used;
 752                dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
 753                       space_after - space_before);
 754
 755                if (space_after > space_before) {
 756                        /* GC makes progress, keep working */
 757                        min_space >>= 1;
 758                        if (min_space < c->dead_wm)
 759                                min_space = c->dead_wm;
 760                        continue;
 761                }
 762
 763                dbg_gc("did not make progress");
 764
 765                /*
 766                 * GC moved an LEB bud have not done any progress. This means
 767                 * that the previous GC head LEB contained too few free space
 768                 * and the LEB which was GC'ed contained only large nodes which
 769                 * did not fit that space.
 770                 *
 771                 * We can do 2 things:
 772                 * 1. pick another LEB in a hope it'll contain a small node
 773                 *    which will fit the space we have at the end of current GC
 774                 *    head LEB, but there is no guarantee, so we try this out
 775                 *    unless we have already been working for too long;
 776                 * 2. request an LEB with more dirty space, which will force
 777                 *    'ubifs_find_dirty_leb()' to start scanning the lprops
 778                 *    table, instead of just picking one from the heap
 779                 *    (previously it already picked the dirtiest LEB).
 780                 */
 781                if (i < SOFT_LEBS_LIMIT) {
 782                        dbg_gc("try again");
 783                        continue;
 784                }
 785
 786                min_space <<= 1;
 787                if (min_space > c->dark_wm)
 788                        min_space = c->dark_wm;
 789                dbg_gc("set min. space to %d", min_space);
 790        }
 791
 792        if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
 793                dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
 794                ubifs_commit_required(c);
 795                ret = -EAGAIN;
 796        }
 797
 798        err = ubifs_wbuf_sync_nolock(wbuf);
 799        if (!err)
 800                err = ubifs_leb_unmap(c, c->gc_lnum);
 801        if (err) {
 802                ret = err;
 803                goto out;
 804        }
 805out_unlock:
 806        mutex_unlock(&wbuf->io_mutex);
 807        return ret;
 808
 809out:
 810        ubifs_assert(ret < 0);
 811        ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
 812        ubifs_wbuf_sync_nolock(wbuf);
 813        ubifs_ro_mode(c, ret);
 814        mutex_unlock(&wbuf->io_mutex);
 815        ubifs_return_leb(c, lp.lnum);
 816        return ret;
 817}
 818
 819/**
 820 * ubifs_gc_start_commit - garbage collection at start of commit.
 821 * @c: UBIFS file-system description object
 822 *
 823 * If a LEB has only dirty and free space, then we may safely unmap it and make
 824 * it free.  Note, we cannot do this with indexing LEBs because dirty space may
 825 * correspond index nodes that are required for recovery.  In that case, the
 826 * LEB cannot be unmapped until after the next commit.
 827 *
 828 * This function returns %0 upon success and a negative error code upon failure.
 829 */
 830int ubifs_gc_start_commit(struct ubifs_info *c)
 831{
 832        struct ubifs_gced_idx_leb *idx_gc;
 833        const struct ubifs_lprops *lp;
 834        int err = 0, flags;
 835
 836        ubifs_get_lprops(c);
 837
 838        /*
 839         * Unmap (non-index) freeable LEBs. Note that recovery requires that all
 840         * wbufs are sync'd before this, which is done in 'do_commit()'.
 841         */
 842        while (1) {
 843                lp = ubifs_fast_find_freeable(c);
 844                if (IS_ERR(lp)) {
 845                        err = PTR_ERR(lp);
 846                        goto out;
 847                }
 848                if (!lp)
 849                        break;
 850                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 851                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 852                err = ubifs_leb_unmap(c, lp->lnum);
 853                if (err)
 854                        goto out;
 855                lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
 856                if (IS_ERR(lp)) {
 857                        err = PTR_ERR(lp);
 858                        goto out;
 859                }
 860                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 861                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 862        }
 863
 864        /* Mark GC'd index LEBs OK to unmap after this commit finishes */
 865        list_for_each_entry(idx_gc, &c->idx_gc, list)
 866                idx_gc->unmap = 1;
 867
 868        /* Record index freeable LEBs for unmapping after commit */
 869        while (1) {
 870                lp = ubifs_fast_find_frdi_idx(c);
 871                if (IS_ERR(lp)) {
 872                        err = PTR_ERR(lp);
 873                        goto out;
 874                }
 875                if (!lp)
 876                        break;
 877                idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 878                if (!idx_gc) {
 879                        err = -ENOMEM;
 880                        goto out;
 881                }
 882                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 883                ubifs_assert(lp->flags & LPROPS_INDEX);
 884                /* Don't release the LEB until after the next commit */
 885                flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
 886                lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
 887                if (IS_ERR(lp)) {
 888                        err = PTR_ERR(lp);
 889                        kfree(idx_gc);
 890                        goto out;
 891                }
 892                ubifs_assert(lp->flags & LPROPS_TAKEN);
 893                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 894                idx_gc->lnum = lp->lnum;
 895                idx_gc->unmap = 1;
 896                list_add(&idx_gc->list, &c->idx_gc);
 897        }
 898out:
 899        ubifs_release_lprops(c);
 900        return err;
 901}
 902
 903/**
 904 * ubifs_gc_end_commit - garbage collection at end of commit.
 905 * @c: UBIFS file-system description object
 906 *
 907 * This function completes out-of-place garbage collection of index LEBs.
 908 */
 909int ubifs_gc_end_commit(struct ubifs_info *c)
 910{
 911        struct ubifs_gced_idx_leb *idx_gc, *tmp;
 912        struct ubifs_wbuf *wbuf;
 913        int err = 0;
 914
 915        wbuf = &c->jheads[GCHD].wbuf;
 916        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 917        list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
 918                if (idx_gc->unmap) {
 919                        dbg_gc("LEB %d", idx_gc->lnum);
 920                        err = ubifs_leb_unmap(c, idx_gc->lnum);
 921                        if (err)
 922                                goto out;
 923                        err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
 924                                          LPROPS_NC, 0, LPROPS_TAKEN, -1);
 925                        if (err)
 926                                goto out;
 927                        list_del(&idx_gc->list);
 928                        kfree(idx_gc);
 929                }
 930out:
 931        mutex_unlock(&wbuf->io_mutex);
 932        return err;
 933}
 934#endif
 935/**
 936 * ubifs_destroy_idx_gc - destroy idx_gc list.
 937 * @c: UBIFS file-system description object
 938 *
 939 * This function destroys the @c->idx_gc list. It is called when unmounting
 940 * so locks are not needed. Returns zero in case of success and a negative
 941 * error code in case of failure.
 942 */
 943void ubifs_destroy_idx_gc(struct ubifs_info *c)
 944{
 945        while (!list_empty(&c->idx_gc)) {
 946                struct ubifs_gced_idx_leb *idx_gc;
 947
 948                idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
 949                                    list);
 950                c->idx_gc_cnt -= 1;
 951                list_del(&idx_gc->list);
 952                kfree(idx_gc);
 953        }
 954}
 955#ifndef __UBOOT__
 956/**
 957 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
 958 * @c: UBIFS file-system description object
 959 *
 960 * Called during start commit so locks are not needed.
 961 */
 962int ubifs_get_idx_gc_leb(struct ubifs_info *c)
 963{
 964        struct ubifs_gced_idx_leb *idx_gc;
 965        int lnum;
 966
 967        if (list_empty(&c->idx_gc))
 968                return -ENOSPC;
 969        idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
 970        lnum = idx_gc->lnum;
 971        /* c->idx_gc_cnt is updated by the caller when lprops are updated */
 972        list_del(&idx_gc->list);
 973        kfree(idx_gc);
 974        return lnum;
 975}
 976#endif
 977