uboot/drivers/timer/tsc_timer.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2012 The Chromium OS Authors.
   3 *
   4 * TSC calibration codes are adapted from Linux kernel
   5 * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
   6 *
   7 * SPDX-License-Identifier:     GPL-2.0+
   8 */
   9
  10#include <common.h>
  11#include <dm.h>
  12#include <malloc.h>
  13#include <timer.h>
  14#include <asm/cpu.h>
  15#include <asm/io.h>
  16#include <asm/i8254.h>
  17#include <asm/ibmpc.h>
  18#include <asm/msr.h>
  19#include <asm/u-boot-x86.h>
  20
  21#define MAX_NUM_FREQS   8
  22
  23DECLARE_GLOBAL_DATA_PTR;
  24
  25/*
  26 * According to Intel 64 and IA-32 System Programming Guide,
  27 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
  28 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
  29 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
  30 * so we need manually differentiate SoC families. This is what the
  31 * field msr_plat does.
  32 */
  33struct freq_desc {
  34        u8 x86_family;  /* CPU family */
  35        u8 x86_model;   /* model */
  36        /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
  37        u8 msr_plat;
  38        u32 freqs[MAX_NUM_FREQS];
  39};
  40
  41static struct freq_desc freq_desc_tables[] = {
  42        /* PNW */
  43        { 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200 } },
  44        /* CLV+ */
  45        { 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200 } },
  46        /* TNG - Intel Atom processor Z3400 series */
  47        { 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0 } },
  48        /* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
  49        { 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0 } },
  50        /* ANN - Intel Atom processor Z3500 series */
  51        { 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0 } },
  52        /* Ivybridge */
  53        { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } },
  54};
  55
  56static int match_cpu(u8 family, u8 model)
  57{
  58        int i;
  59
  60        for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
  61                if ((family == freq_desc_tables[i].x86_family) &&
  62                    (model == freq_desc_tables[i].x86_model))
  63                        return i;
  64        }
  65
  66        return -1;
  67}
  68
  69/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
  70#define id_to_freq(cpu_index, freq_id) \
  71        (freq_desc_tables[cpu_index].freqs[freq_id])
  72
  73/*
  74 * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
  75 * reliable and the frequency is known (provided by HW).
  76 *
  77 * On these platforms PIT/HPET is generally not available so calibration won't
  78 * work at all and there is no other clocksource to act as a watchdog for the
  79 * TSC, so we have no other choice than to trust it.
  80 *
  81 * Returns the TSC frequency in MHz or 0 if HW does not provide it.
  82 */
  83static unsigned long __maybe_unused cpu_mhz_from_msr(void)
  84{
  85        u32 lo, hi, ratio, freq_id, freq;
  86        unsigned long res;
  87        int cpu_index;
  88
  89        if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
  90                return 0;
  91
  92        cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
  93        if (cpu_index < 0)
  94                return 0;
  95
  96        if (freq_desc_tables[cpu_index].msr_plat) {
  97                rdmsr(MSR_PLATFORM_INFO, lo, hi);
  98                ratio = (lo >> 8) & 0xff;
  99        } else {
 100                rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 101                ratio = (hi >> 8) & 0x1f;
 102        }
 103        debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
 104
 105        if (freq_desc_tables[cpu_index].msr_plat == 2) {
 106                /* TODO: Figure out how best to deal with this */
 107                freq = 100000;
 108                debug("Using frequency: %u KHz\n", freq);
 109        } else {
 110                /* Get FSB FREQ ID */
 111                rdmsr(MSR_FSB_FREQ, lo, hi);
 112                freq_id = lo & 0x7;
 113                freq = id_to_freq(cpu_index, freq_id);
 114                debug("Resolved frequency ID: %u, frequency: %u KHz\n",
 115                      freq_id, freq);
 116        }
 117
 118        /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
 119        res = freq * ratio / 1000;
 120        debug("TSC runs at %lu MHz\n", res);
 121
 122        return res;
 123}
 124
 125/*
 126 * This reads the current MSB of the PIT counter, and
 127 * checks if we are running on sufficiently fast and
 128 * non-virtualized hardware.
 129 *
 130 * Our expectations are:
 131 *
 132 *  - the PIT is running at roughly 1.19MHz
 133 *
 134 *  - each IO is going to take about 1us on real hardware,
 135 *    but we allow it to be much faster (by a factor of 10) or
 136 *    _slightly_ slower (ie we allow up to a 2us read+counter
 137 *    update - anything else implies a unacceptably slow CPU
 138 *    or PIT for the fast calibration to work.
 139 *
 140 *  - with 256 PIT ticks to read the value, we have 214us to
 141 *    see the same MSB (and overhead like doing a single TSC
 142 *    read per MSB value etc).
 143 *
 144 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 145 *    them each to take about a microsecond on real hardware.
 146 *    So we expect a count value of around 100. But we'll be
 147 *    generous, and accept anything over 50.
 148 *
 149 *  - if the PIT is stuck, and we see *many* more reads, we
 150 *    return early (and the next caller of pit_expect_msb()
 151 *    then consider it a failure when they don't see the
 152 *    next expected value).
 153 *
 154 * These expectations mean that we know that we have seen the
 155 * transition from one expected value to another with a fairly
 156 * high accuracy, and we didn't miss any events. We can thus
 157 * use the TSC value at the transitions to calculate a pretty
 158 * good value for the TSC frequencty.
 159 */
 160static inline int pit_verify_msb(unsigned char val)
 161{
 162        /* Ignore LSB */
 163        inb(0x42);
 164        return inb(0x42) == val;
 165}
 166
 167static inline int pit_expect_msb(unsigned char val, u64 *tscp,
 168                                 unsigned long *deltap)
 169{
 170        int count;
 171        u64 tsc = 0, prev_tsc = 0;
 172
 173        for (count = 0; count < 50000; count++) {
 174                if (!pit_verify_msb(val))
 175                        break;
 176                prev_tsc = tsc;
 177                tsc = rdtsc();
 178        }
 179        *deltap = rdtsc() - prev_tsc;
 180        *tscp = tsc;
 181
 182        /*
 183         * We require _some_ success, but the quality control
 184         * will be based on the error terms on the TSC values.
 185         */
 186        return count > 5;
 187}
 188
 189/*
 190 * How many MSB values do we want to see? We aim for
 191 * a maximum error rate of 500ppm (in practice the
 192 * real error is much smaller), but refuse to spend
 193 * more than 50ms on it.
 194 */
 195#define MAX_QUICK_PIT_MS 50
 196#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 197
 198static unsigned long __maybe_unused quick_pit_calibrate(void)
 199{
 200        int i;
 201        u64 tsc, delta;
 202        unsigned long d1, d2;
 203
 204        /* Set the Gate high, disable speaker */
 205        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 206
 207        /*
 208         * Counter 2, mode 0 (one-shot), binary count
 209         *
 210         * NOTE! Mode 2 decrements by two (and then the
 211         * output is flipped each time, giving the same
 212         * final output frequency as a decrement-by-one),
 213         * so mode 0 is much better when looking at the
 214         * individual counts.
 215         */
 216        outb(0xb0, 0x43);
 217
 218        /* Start at 0xffff */
 219        outb(0xff, 0x42);
 220        outb(0xff, 0x42);
 221
 222        /*
 223         * The PIT starts counting at the next edge, so we
 224         * need to delay for a microsecond. The easiest way
 225         * to do that is to just read back the 16-bit counter
 226         * once from the PIT.
 227         */
 228        pit_verify_msb(0);
 229
 230        if (pit_expect_msb(0xff, &tsc, &d1)) {
 231                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 232                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 233                                break;
 234
 235                        /*
 236                         * Iterate until the error is less than 500 ppm
 237                         */
 238                        delta -= tsc;
 239                        if (d1+d2 >= delta >> 11)
 240                                continue;
 241
 242                        /*
 243                         * Check the PIT one more time to verify that
 244                         * all TSC reads were stable wrt the PIT.
 245                         *
 246                         * This also guarantees serialization of the
 247                         * last cycle read ('d2') in pit_expect_msb.
 248                         */
 249                        if (!pit_verify_msb(0xfe - i))
 250                                break;
 251                        goto success;
 252                }
 253        }
 254        debug("Fast TSC calibration failed\n");
 255        return 0;
 256
 257success:
 258        /*
 259         * Ok, if we get here, then we've seen the
 260         * MSB of the PIT decrement 'i' times, and the
 261         * error has shrunk to less than 500 ppm.
 262         *
 263         * As a result, we can depend on there not being
 264         * any odd delays anywhere, and the TSC reads are
 265         * reliable (within the error).
 266         *
 267         * kHz = ticks / time-in-seconds / 1000;
 268         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 269         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 270         */
 271        delta *= PIT_TICK_RATE;
 272        delta /= (i*256*1000);
 273        debug("Fast TSC calibration using PIT\n");
 274        return delta / 1000;
 275}
 276
 277/* Get the speed of the TSC timer in MHz */
 278unsigned notrace long get_tbclk_mhz(void)
 279{
 280        return get_tbclk() / 1000000;
 281}
 282
 283static ulong get_ms_timer(void)
 284{
 285        return (get_ticks() * 1000) / get_tbclk();
 286}
 287
 288ulong get_timer(ulong base)
 289{
 290        return get_ms_timer() - base;
 291}
 292
 293ulong notrace timer_get_us(void)
 294{
 295        return get_ticks() / get_tbclk_mhz();
 296}
 297
 298ulong timer_get_boot_us(void)
 299{
 300        return timer_get_us();
 301}
 302
 303void __udelay(unsigned long usec)
 304{
 305        u64 now = get_ticks();
 306        u64 stop;
 307
 308        stop = now + usec * get_tbclk_mhz();
 309
 310        while ((int64_t)(stop - get_ticks()) > 0)
 311#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
 312                /*
 313                 * Add a 'pause' instruction on qemu target,
 314                 * to give other VCPUs a chance to run.
 315                 */
 316                asm volatile("pause");
 317#else
 318                ;
 319#endif
 320}
 321
 322static int tsc_timer_get_count(struct udevice *dev, u64 *count)
 323{
 324        u64 now_tick = rdtsc();
 325
 326        *count = now_tick - gd->arch.tsc_base;
 327
 328        return 0;
 329}
 330
 331static int tsc_timer_probe(struct udevice *dev)
 332{
 333        struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
 334
 335        gd->arch.tsc_base = rdtsc();
 336
 337        /*
 338         * If there is no clock frequency specified in the device tree,
 339         * calibrate it by ourselves.
 340         */
 341        if (!uc_priv->clock_rate) {
 342                unsigned long fast_calibrate;
 343
 344                fast_calibrate = cpu_mhz_from_msr();
 345                if (!fast_calibrate) {
 346                        fast_calibrate = quick_pit_calibrate();
 347                        if (!fast_calibrate)
 348                                panic("TSC frequency is ZERO");
 349                }
 350
 351                uc_priv->clock_rate = fast_calibrate * 1000000;
 352        }
 353
 354        return 0;
 355}
 356
 357static const struct timer_ops tsc_timer_ops = {
 358        .get_count = tsc_timer_get_count,
 359};
 360
 361static const struct udevice_id tsc_timer_ids[] = {
 362        { .compatible = "x86,tsc-timer", },
 363        { }
 364};
 365
 366U_BOOT_DRIVER(tsc_timer) = {
 367        .name   = "tsc_timer",
 368        .id     = UCLASS_TIMER,
 369        .of_match = tsc_timer_ids,
 370        .probe = tsc_timer_probe,
 371        .ops    = &tsc_timer_ops,
 372        .flags = DM_FLAG_PRE_RELOC,
 373};
 374