uboot/lib/libfdt/libfdt.h
<<
>>
Prefs
   1#ifndef _LIBFDT_H
   2#define _LIBFDT_H
   3/*
   4 * libfdt - Flat Device Tree manipulation
   5 * Copyright (C) 2006 David Gibson, IBM Corporation.
   6 *
   7 * SPDX-License-Identifier:     GPL-2.0+ BSD-2-Clause
   8 */
   9
  10#include <libfdt_env.h>
  11#include <fdt.h>
  12
  13#define FDT_FIRST_SUPPORTED_VERSION     0x10
  14#define FDT_LAST_SUPPORTED_VERSION      0x11
  15
  16/* Error codes: informative error codes */
  17#define FDT_ERR_NOTFOUND        1
  18        /* FDT_ERR_NOTFOUND: The requested node or property does not exist */
  19#define FDT_ERR_EXISTS          2
  20        /* FDT_ERR_EXISTS: Attempted to create a node or property which
  21         * already exists */
  22#define FDT_ERR_NOSPACE         3
  23        /* FDT_ERR_NOSPACE: Operation needed to expand the device
  24         * tree, but its buffer did not have sufficient space to
  25         * contain the expanded tree. Use fdt_open_into() to move the
  26         * device tree to a buffer with more space. */
  27
  28/* Error codes: codes for bad parameters */
  29#define FDT_ERR_BADOFFSET       4
  30        /* FDT_ERR_BADOFFSET: Function was passed a structure block
  31         * offset which is out-of-bounds, or which points to an
  32         * unsuitable part of the structure for the operation. */
  33#define FDT_ERR_BADPATH         5
  34        /* FDT_ERR_BADPATH: Function was passed a badly formatted path
  35         * (e.g. missing a leading / for a function which requires an
  36         * absolute path) */
  37#define FDT_ERR_BADPHANDLE      6
  38        /* FDT_ERR_BADPHANDLE: Function was passed an invalid phandle.
  39         * This can be caused either by an invalid phandle property
  40         * length, or the phandle value was either 0 or -1, which are
  41         * not permitted. */
  42#define FDT_ERR_BADSTATE        7
  43        /* FDT_ERR_BADSTATE: Function was passed an incomplete device
  44         * tree created by the sequential-write functions, which is
  45         * not sufficiently complete for the requested operation. */
  46
  47/* Error codes: codes for bad device tree blobs */
  48#define FDT_ERR_TRUNCATED       8
  49        /* FDT_ERR_TRUNCATED: Structure block of the given device tree
  50         * ends without an FDT_END tag. */
  51#define FDT_ERR_BADMAGIC        9
  52        /* FDT_ERR_BADMAGIC: Given "device tree" appears not to be a
  53         * device tree at all - it is missing the flattened device
  54         * tree magic number. */
  55#define FDT_ERR_BADVERSION      10
  56        /* FDT_ERR_BADVERSION: Given device tree has a version which
  57         * can't be handled by the requested operation.  For
  58         * read-write functions, this may mean that fdt_open_into() is
  59         * required to convert the tree to the expected version. */
  60#define FDT_ERR_BADSTRUCTURE    11
  61        /* FDT_ERR_BADSTRUCTURE: Given device tree has a corrupt
  62         * structure block or other serious error (e.g. misnested
  63         * nodes, or subnodes preceding properties). */
  64#define FDT_ERR_BADLAYOUT       12
  65        /* FDT_ERR_BADLAYOUT: For read-write functions, the given
  66         * device tree has it's sub-blocks in an order that the
  67         * function can't handle (memory reserve map, then structure,
  68         * then strings).  Use fdt_open_into() to reorganize the tree
  69         * into a form suitable for the read-write operations. */
  70
  71/* "Can't happen" error indicating a bug in libfdt */
  72#define FDT_ERR_INTERNAL        13
  73        /* FDT_ERR_INTERNAL: libfdt has failed an internal assertion.
  74         * Should never be returned, if it is, it indicates a bug in
  75         * libfdt itself. */
  76
  77/* Errors in device tree content */
  78#define FDT_ERR_BADNCELLS       14
  79        /* FDT_ERR_BADNCELLS: Device tree has a #address-cells, #size-cells
  80         * or similar property with a bad format or value */
  81
  82#define FDT_ERR_BADVALUE        15
  83        /* FDT_ERR_BADVALUE: Device tree has a property with an unexpected
  84         * value. For example: a property expected to contain a string list
  85         * is not NUL-terminated within the length of its value. */
  86
  87#define FDT_ERR_BADOVERLAY      16
  88        /* FDT_ERR_BADOVERLAY: The device tree overlay, while
  89         * correctly structured, cannot be applied due to some
  90         * unexpected or missing value, property or node. */
  91
  92#define FDT_ERR_NOPHANDLES      17
  93        /* FDT_ERR_NOPHANDLES: The device tree doesn't have any
  94         * phandle available anymore without causing an overflow */
  95
  96#define FDT_ERR_MAX             17
  97
  98/**********************************************************************/
  99/* Low-level functions (you probably don't need these)                */
 100/**********************************************************************/
 101
 102#ifndef SWIG /* This function is not useful in Python */
 103const void *fdt_offset_ptr(const void *fdt, int offset, unsigned int checklen);
 104#endif
 105static inline void *fdt_offset_ptr_w(void *fdt, int offset, int checklen)
 106{
 107        return (void *)(uintptr_t)fdt_offset_ptr(fdt, offset, checklen);
 108}
 109
 110uint32_t fdt_next_tag(const void *fdt, int offset, int *nextoffset);
 111
 112/**********************************************************************/
 113/* Traversal functions                                                */
 114/**********************************************************************/
 115
 116int fdt_next_node(const void *fdt, int offset, int *depth);
 117
 118/**
 119 * fdt_first_subnode() - get offset of first direct subnode
 120 *
 121 * @fdt:        FDT blob
 122 * @offset:     Offset of node to check
 123 * @return offset of first subnode, or -FDT_ERR_NOTFOUND if there is none
 124 */
 125int fdt_first_subnode(const void *fdt, int offset);
 126
 127/**
 128 * fdt_next_subnode() - get offset of next direct subnode
 129 *
 130 * After first calling fdt_first_subnode(), call this function repeatedly to
 131 * get direct subnodes of a parent node.
 132 *
 133 * @fdt:        FDT blob
 134 * @offset:     Offset of previous subnode
 135 * @return offset of next subnode, or -FDT_ERR_NOTFOUND if there are no more
 136 * subnodes
 137 */
 138int fdt_next_subnode(const void *fdt, int offset);
 139
 140/**
 141 * fdt_for_each_subnode - iterate over all subnodes of a parent
 142 *
 143 * @node:       child node (int, lvalue)
 144 * @fdt:        FDT blob (const void *)
 145 * @parent:     parent node (int)
 146 *
 147 * This is actually a wrapper around a for loop and would be used like so:
 148 *
 149 *      fdt_for_each_subnode(node, fdt, parent) {
 150 *              Use node
 151 *              ...
 152 *      }
 153 *
 154 *      if ((node < 0) && (node != -FDT_ERR_NOT_FOUND)) {
 155 *              Error handling
 156 *      }
 157 *
 158 * Note that this is implemented as a macro and @node is used as
 159 * iterator in the loop. The parent variable be constant or even a
 160 * literal.
 161 *
 162 */
 163#define fdt_for_each_subnode(node, fdt, parent)         \
 164        for (node = fdt_first_subnode(fdt, parent);     \
 165             node >= 0;                                 \
 166             node = fdt_next_subnode(fdt, node))
 167
 168/**********************************************************************/
 169/* General functions                                                  */
 170/**********************************************************************/
 171#define fdt_get_header(fdt, field) \
 172        (fdt32_to_cpu(((const struct fdt_header *)(fdt))->field))
 173#define fdt_magic(fdt)                  (fdt_get_header(fdt, magic))
 174#define fdt_totalsize(fdt)              (fdt_get_header(fdt, totalsize))
 175#define fdt_off_dt_struct(fdt)          (fdt_get_header(fdt, off_dt_struct))
 176#define fdt_off_dt_strings(fdt)         (fdt_get_header(fdt, off_dt_strings))
 177#define fdt_off_mem_rsvmap(fdt)         (fdt_get_header(fdt, off_mem_rsvmap))
 178#define fdt_version(fdt)                (fdt_get_header(fdt, version))
 179#define fdt_last_comp_version(fdt)      (fdt_get_header(fdt, last_comp_version))
 180#define fdt_boot_cpuid_phys(fdt)        (fdt_get_header(fdt, boot_cpuid_phys))
 181#define fdt_size_dt_strings(fdt)        (fdt_get_header(fdt, size_dt_strings))
 182#define fdt_size_dt_struct(fdt)         (fdt_get_header(fdt, size_dt_struct))
 183
 184#define __fdt_set_hdr(name) \
 185        static inline void fdt_set_##name(void *fdt, uint32_t val) \
 186        { \
 187                struct fdt_header *fdth = (struct fdt_header *)fdt; \
 188                fdth->name = cpu_to_fdt32(val); \
 189        }
 190__fdt_set_hdr(magic);
 191__fdt_set_hdr(totalsize);
 192__fdt_set_hdr(off_dt_struct);
 193__fdt_set_hdr(off_dt_strings);
 194__fdt_set_hdr(off_mem_rsvmap);
 195__fdt_set_hdr(version);
 196__fdt_set_hdr(last_comp_version);
 197__fdt_set_hdr(boot_cpuid_phys);
 198__fdt_set_hdr(size_dt_strings);
 199__fdt_set_hdr(size_dt_struct);
 200#undef __fdt_set_hdr
 201
 202/**
 203 * fdt_check_header - sanity check a device tree or possible device tree
 204 * @fdt: pointer to data which might be a flattened device tree
 205 *
 206 * fdt_check_header() checks that the given buffer contains what
 207 * appears to be a flattened device tree with sane information in its
 208 * header.
 209 *
 210 * returns:
 211 *     0, if the buffer appears to contain a valid device tree
 212 *     -FDT_ERR_BADMAGIC,
 213 *     -FDT_ERR_BADVERSION,
 214 *     -FDT_ERR_BADSTATE, standard meanings, as above
 215 */
 216int fdt_check_header(const void *fdt);
 217
 218/**
 219 * fdt_move - move a device tree around in memory
 220 * @fdt: pointer to the device tree to move
 221 * @buf: pointer to memory where the device is to be moved
 222 * @bufsize: size of the memory space at buf
 223 *
 224 * fdt_move() relocates, if possible, the device tree blob located at
 225 * fdt to the buffer at buf of size bufsize.  The buffer may overlap
 226 * with the existing device tree blob at fdt.  Therefore,
 227 *     fdt_move(fdt, fdt, fdt_totalsize(fdt))
 228 * should always succeed.
 229 *
 230 * returns:
 231 *     0, on success
 232 *     -FDT_ERR_NOSPACE, bufsize is insufficient to contain the device tree
 233 *     -FDT_ERR_BADMAGIC,
 234 *     -FDT_ERR_BADVERSION,
 235 *     -FDT_ERR_BADSTATE, standard meanings
 236 */
 237int fdt_move(const void *fdt, void *buf, int bufsize);
 238
 239/**********************************************************************/
 240/* Read-only functions                                                */
 241/**********************************************************************/
 242
 243/**
 244 * fdt_string - retrieve a string from the strings block of a device tree
 245 * @fdt: pointer to the device tree blob
 246 * @stroffset: offset of the string within the strings block (native endian)
 247 *
 248 * fdt_string() retrieves a pointer to a single string from the
 249 * strings block of the device tree blob at fdt.
 250 *
 251 * returns:
 252 *     a pointer to the string, on success
 253 *     NULL, if stroffset is out of bounds
 254 */
 255const char *fdt_string(const void *fdt, int stroffset);
 256
 257/**
 258 * fdt_get_max_phandle - retrieves the highest phandle in a tree
 259 * @fdt: pointer to the device tree blob
 260 *
 261 * fdt_get_max_phandle retrieves the highest phandle in the given
 262 * device tree. This will ignore badly formatted phandles, or phandles
 263 * with a value of 0 or -1.
 264 *
 265 * returns:
 266 *      the highest phandle on success
 267 *      0, if no phandle was found in the device tree
 268 *      -1, if an error occurred
 269 */
 270uint32_t fdt_get_max_phandle(const void *fdt);
 271
 272/**
 273 * fdt_num_mem_rsv - retrieve the number of memory reserve map entries
 274 * @fdt: pointer to the device tree blob
 275 *
 276 * Returns the number of entries in the device tree blob's memory
 277 * reservation map.  This does not include the terminating 0,0 entry
 278 * or any other (0,0) entries reserved for expansion.
 279 *
 280 * returns:
 281 *     the number of entries
 282 */
 283int fdt_num_mem_rsv(const void *fdt);
 284
 285/**
 286 * fdt_get_mem_rsv - retrieve one memory reserve map entry
 287 * @fdt: pointer to the device tree blob
 288 * @address, @size: pointers to 64-bit variables
 289 *
 290 * On success, *address and *size will contain the address and size of
 291 * the n-th reserve map entry from the device tree blob, in
 292 * native-endian format.
 293 *
 294 * returns:
 295 *     0, on success
 296 *     -FDT_ERR_BADMAGIC,
 297 *     -FDT_ERR_BADVERSION,
 298 *     -FDT_ERR_BADSTATE, standard meanings
 299 */
 300int fdt_get_mem_rsv(const void *fdt, int n, uint64_t *address, uint64_t *size);
 301
 302/**
 303 * fdt_subnode_offset_namelen - find a subnode based on substring
 304 * @fdt: pointer to the device tree blob
 305 * @parentoffset: structure block offset of a node
 306 * @name: name of the subnode to locate
 307 * @namelen: number of characters of name to consider
 308 *
 309 * Identical to fdt_subnode_offset(), but only examine the first
 310 * namelen characters of name for matching the subnode name.  This is
 311 * useful for finding subnodes based on a portion of a larger string,
 312 * such as a full path.
 313 */
 314#ifndef SWIG /* Not available in Python */
 315int fdt_subnode_offset_namelen(const void *fdt, int parentoffset,
 316                               const char *name, int namelen);
 317#endif
 318/**
 319 * fdt_subnode_offset - find a subnode of a given node
 320 * @fdt: pointer to the device tree blob
 321 * @parentoffset: structure block offset of a node
 322 * @name: name of the subnode to locate
 323 *
 324 * fdt_subnode_offset() finds a subnode of the node at structure block
 325 * offset parentoffset with the given name.  name may include a unit
 326 * address, in which case fdt_subnode_offset() will find the subnode
 327 * with that unit address, or the unit address may be omitted, in
 328 * which case fdt_subnode_offset() will find an arbitrary subnode
 329 * whose name excluding unit address matches the given name.
 330 *
 331 * returns:
 332 *      structure block offset of the requested subnode (>=0), on success
 333 *      -FDT_ERR_NOTFOUND, if the requested subnode does not exist
 334 *      -FDT_ERR_BADOFFSET, if parentoffset did not point to an FDT_BEGIN_NODE
 335 *              tag
 336 *      -FDT_ERR_BADMAGIC,
 337 *      -FDT_ERR_BADVERSION,
 338 *      -FDT_ERR_BADSTATE,
 339 *      -FDT_ERR_BADSTRUCTURE,
 340 *      -FDT_ERR_TRUNCATED, standard meanings.
 341 */
 342int fdt_subnode_offset(const void *fdt, int parentoffset, const char *name);
 343
 344/**
 345 * fdt_path_offset_namelen - find a tree node by its full path
 346 * @fdt: pointer to the device tree blob
 347 * @path: full path of the node to locate
 348 * @namelen: number of characters of path to consider
 349 *
 350 * Identical to fdt_path_offset(), but only consider the first namelen
 351 * characters of path as the path name.
 352 */
 353#ifndef SWIG /* Not available in Python */
 354int fdt_path_offset_namelen(const void *fdt, const char *path, int namelen);
 355#endif
 356
 357/**
 358 * fdt_path_offset - find a tree node by its full path
 359 * @fdt: pointer to the device tree blob
 360 * @path: full path of the node to locate
 361 *
 362 * fdt_path_offset() finds a node of a given path in the device tree.
 363 * Each path component may omit the unit address portion, but the
 364 * results of this are undefined if any such path component is
 365 * ambiguous (that is if there are multiple nodes at the relevant
 366 * level matching the given component, differentiated only by unit
 367 * address).
 368 *
 369 * returns:
 370 *      structure block offset of the node with the requested path (>=0), on
 371 *              success
 372 *      -FDT_ERR_BADPATH, given path does not begin with '/' or is invalid
 373 *      -FDT_ERR_NOTFOUND, if the requested node does not exist
 374 *      -FDT_ERR_BADMAGIC,
 375 *      -FDT_ERR_BADVERSION,
 376 *      -FDT_ERR_BADSTATE,
 377 *      -FDT_ERR_BADSTRUCTURE,
 378 *      -FDT_ERR_TRUNCATED, standard meanings.
 379 */
 380int fdt_path_offset(const void *fdt, const char *path);
 381
 382/**
 383 * fdt_get_name - retrieve the name of a given node
 384 * @fdt: pointer to the device tree blob
 385 * @nodeoffset: structure block offset of the starting node
 386 * @lenp: pointer to an integer variable (will be overwritten) or NULL
 387 *
 388 * fdt_get_name() retrieves the name (including unit address) of the
 389 * device tree node at structure block offset nodeoffset.  If lenp is
 390 * non-NULL, the length of this name is also returned, in the integer
 391 * pointed to by lenp.
 392 *
 393 * returns:
 394 *      pointer to the node's name, on success
 395 *              If lenp is non-NULL, *lenp contains the length of that name
 396 *                      (>=0)
 397 *      NULL, on error
 398 *              if lenp is non-NULL *lenp contains an error code (<0):
 399 *              -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE
 400 *                      tag
 401 *              -FDT_ERR_BADMAGIC,
 402 *              -FDT_ERR_BADVERSION,
 403 *              -FDT_ERR_BADSTATE, standard meanings
 404 */
 405const char *fdt_get_name(const void *fdt, int nodeoffset, int *lenp);
 406
 407/**
 408 * fdt_first_property_offset - find the offset of a node's first property
 409 * @fdt: pointer to the device tree blob
 410 * @nodeoffset: structure block offset of a node
 411 *
 412 * fdt_first_property_offset() finds the first property of the node at
 413 * the given structure block offset.
 414 *
 415 * returns:
 416 *      structure block offset of the property (>=0), on success
 417 *      -FDT_ERR_NOTFOUND, if the requested node has no properties
 418 *      -FDT_ERR_BADOFFSET, if nodeoffset did not point to an FDT_BEGIN_NODE tag
 419 *      -FDT_ERR_BADMAGIC,
 420 *      -FDT_ERR_BADVERSION,
 421 *      -FDT_ERR_BADSTATE,
 422 *      -FDT_ERR_BADSTRUCTURE,
 423 *      -FDT_ERR_TRUNCATED, standard meanings.
 424 */
 425int fdt_first_property_offset(const void *fdt, int nodeoffset);
 426
 427/**
 428 * fdt_next_property_offset - step through a node's properties
 429 * @fdt: pointer to the device tree blob
 430 * @offset: structure block offset of a property
 431 *
 432 * fdt_next_property_offset() finds the property immediately after the
 433 * one at the given structure block offset.  This will be a property
 434 * of the same node as the given property.
 435 *
 436 * returns:
 437 *      structure block offset of the next property (>=0), on success
 438 *      -FDT_ERR_NOTFOUND, if the given property is the last in its node
 439 *      -FDT_ERR_BADOFFSET, if nodeoffset did not point to an FDT_PROP tag
 440 *      -FDT_ERR_BADMAGIC,
 441 *      -FDT_ERR_BADVERSION,
 442 *      -FDT_ERR_BADSTATE,
 443 *      -FDT_ERR_BADSTRUCTURE,
 444 *      -FDT_ERR_TRUNCATED, standard meanings.
 445 */
 446int fdt_next_property_offset(const void *fdt, int offset);
 447
 448/**
 449 * fdt_for_each_property_offset - iterate over all properties of a node
 450 *
 451 * @property_offset:    property offset (int, lvalue)
 452 * @fdt:                FDT blob (const void *)
 453 * @node:               node offset (int)
 454 *
 455 * This is actually a wrapper around a for loop and would be used like so:
 456 *
 457 *      fdt_for_each_property_offset(property, fdt, node) {
 458 *              Use property
 459 *              ...
 460 *      }
 461 *
 462 *      if ((property < 0) && (property != -FDT_ERR_NOT_FOUND)) {
 463 *              Error handling
 464 *      }
 465 *
 466 * Note that this is implemented as a macro and property is used as
 467 * iterator in the loop. The node variable can be constant or even a
 468 * literal.
 469 */
 470#define fdt_for_each_property_offset(property, fdt, node)       \
 471        for (property = fdt_first_property_offset(fdt, node);   \
 472             property >= 0;                                     \
 473             property = fdt_next_property_offset(fdt, property))
 474
 475/**
 476 * fdt_get_property_by_offset - retrieve the property at a given offset
 477 * @fdt: pointer to the device tree blob
 478 * @offset: offset of the property to retrieve
 479 * @lenp: pointer to an integer variable (will be overwritten) or NULL
 480 *
 481 * fdt_get_property_by_offset() retrieves a pointer to the
 482 * fdt_property structure within the device tree blob at the given
 483 * offset.  If lenp is non-NULL, the length of the property value is
 484 * also returned, in the integer pointed to by lenp.
 485 *
 486 * returns:
 487 *      pointer to the structure representing the property
 488 *              if lenp is non-NULL, *lenp contains the length of the property
 489 *              value (>=0)
 490 *      NULL, on error
 491 *              if lenp is non-NULL, *lenp contains an error code (<0):
 492 *              -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_PROP tag
 493 *              -FDT_ERR_BADMAGIC,
 494 *              -FDT_ERR_BADVERSION,
 495 *              -FDT_ERR_BADSTATE,
 496 *              -FDT_ERR_BADSTRUCTURE,
 497 *              -FDT_ERR_TRUNCATED, standard meanings
 498 */
 499const struct fdt_property *fdt_get_property_by_offset(const void *fdt,
 500                                                      int offset,
 501                                                      int *lenp);
 502
 503/**
 504 * fdt_get_property_namelen - find a property based on substring
 505 * @fdt: pointer to the device tree blob
 506 * @nodeoffset: offset of the node whose property to find
 507 * @name: name of the property to find
 508 * @namelen: number of characters of name to consider
 509 * @lenp: pointer to an integer variable (will be overwritten) or NULL
 510 *
 511 * Identical to fdt_get_property(), but only examine the first namelen
 512 * characters of name for matching the property name.
 513 */
 514#ifndef SWIG /* Not available in Python */
 515const struct fdt_property *fdt_get_property_namelen(const void *fdt,
 516                                                    int nodeoffset,
 517                                                    const char *name,
 518                                                    int namelen, int *lenp);
 519#endif
 520
 521/**
 522 * fdt_get_property - find a given property in a given node
 523 * @fdt: pointer to the device tree blob
 524 * @nodeoffset: offset of the node whose property to find
 525 * @name: name of the property to find
 526 * @lenp: pointer to an integer variable (will be overwritten) or NULL
 527 *
 528 * fdt_get_property() retrieves a pointer to the fdt_property
 529 * structure within the device tree blob corresponding to the property
 530 * named 'name' of the node at offset nodeoffset.  If lenp is
 531 * non-NULL, the length of the property value is also returned, in the
 532 * integer pointed to by lenp.
 533 *
 534 * returns:
 535 *      pointer to the structure representing the property
 536 *              if lenp is non-NULL, *lenp contains the length of the property
 537 *              value (>=0)
 538 *      NULL, on error
 539 *              if lenp is non-NULL, *lenp contains an error code (<0):
 540 *              -FDT_ERR_NOTFOUND, node does not have named property
 541 *              -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE
 542 *                      tag
 543 *              -FDT_ERR_BADMAGIC,
 544 *              -FDT_ERR_BADVERSION,
 545 *              -FDT_ERR_BADSTATE,
 546 *              -FDT_ERR_BADSTRUCTURE,
 547 *              -FDT_ERR_TRUNCATED, standard meanings
 548 */
 549const struct fdt_property *fdt_get_property(const void *fdt, int nodeoffset,
 550                                            const char *name, int *lenp);
 551static inline struct fdt_property *fdt_get_property_w(void *fdt, int nodeoffset,
 552                                                      const char *name,
 553                                                      int *lenp)
 554{
 555        return (struct fdt_property *)(uintptr_t)
 556                fdt_get_property(fdt, nodeoffset, name, lenp);
 557}
 558
 559/**
 560 * fdt_getprop_by_offset - retrieve the value of a property at a given offset
 561 * @fdt: pointer to the device tree blob
 562 * @ffset: offset of the property to read
 563 * @namep: pointer to a string variable (will be overwritten) or NULL
 564 * @lenp: pointer to an integer variable (will be overwritten) or NULL
 565 *
 566 * fdt_getprop_by_offset() retrieves a pointer to the value of the
 567 * property at structure block offset 'offset' (this will be a pointer
 568 * to within the device blob itself, not a copy of the value).  If
 569 * lenp is non-NULL, the length of the property value is also
 570 * returned, in the integer pointed to by lenp.  If namep is non-NULL,
 571 * the property's namne will also be returned in the char * pointed to
 572 * by namep (this will be a pointer to within the device tree's string
 573 * block, not a new copy of the name).
 574 *
 575 * returns:
 576 *      pointer to the property's value
 577 *              if lenp is non-NULL, *lenp contains the length of the property
 578 *              value (>=0)
 579 *              if namep is non-NULL *namep contiains a pointer to the property
 580 *              name.
 581 *      NULL, on error
 582 *              if lenp is non-NULL, *lenp contains an error code (<0):
 583 *              -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_PROP tag
 584 *              -FDT_ERR_BADMAGIC,
 585 *              -FDT_ERR_BADVERSION,
 586 *              -FDT_ERR_BADSTATE,
 587 *              -FDT_ERR_BADSTRUCTURE,
 588 *              -FDT_ERR_TRUNCATED, standard meanings
 589 */
 590#ifndef SWIG /* This function is not useful in Python */
 591const void *fdt_getprop_by_offset(const void *fdt, int offset,
 592                                  const char **namep, int *lenp);
 593#endif
 594
 595/**
 596 * fdt_getprop_namelen - get property value based on substring
 597 * @fdt: pointer to the device tree blob
 598 * @nodeoffset: offset of the node whose property to find
 599 * @name: name of the property to find
 600 * @namelen: number of characters of name to consider
 601 * @lenp: pointer to an integer variable (will be overwritten) or NULL
 602 *
 603 * Identical to fdt_getprop(), but only examine the first namelen
 604 * characters of name for matching the property name.
 605 */
 606#ifndef SWIG /* Not available in Python */
 607const void *fdt_getprop_namelen(const void *fdt, int nodeoffset,
 608                                const char *name, int namelen, int *lenp);
 609static inline void *fdt_getprop_namelen_w(void *fdt, int nodeoffset,
 610                                          const char *name, int namelen,
 611                                          int *lenp)
 612{
 613        return (void *)(uintptr_t)fdt_getprop_namelen(fdt, nodeoffset, name,
 614                                                      namelen, lenp);
 615}
 616#endif
 617
 618/**
 619 * fdt_getprop - retrieve the value of a given property
 620 * @fdt: pointer to the device tree blob
 621 * @nodeoffset: offset of the node whose property to find
 622 * @name: name of the property to find
 623 * @lenp: pointer to an integer variable (will be overwritten) or NULL
 624 *
 625 * fdt_getprop() retrieves a pointer to the value of the property
 626 * named 'name' of the node at offset nodeoffset (this will be a
 627 * pointer to within the device blob itself, not a copy of the value).
 628 * If lenp is non-NULL, the length of the property value is also
 629 * returned, in the integer pointed to by lenp.
 630 *
 631 * returns:
 632 *      pointer to the property's value
 633 *              if lenp is non-NULL, *lenp contains the length of the property
 634 *              value (>=0)
 635 *      NULL, on error
 636 *              if lenp is non-NULL, *lenp contains an error code (<0):
 637 *              -FDT_ERR_NOTFOUND, node does not have named property
 638 *              -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE
 639 *                      tag
 640 *              -FDT_ERR_BADMAGIC,
 641 *              -FDT_ERR_BADVERSION,
 642 *              -FDT_ERR_BADSTATE,
 643 *              -FDT_ERR_BADSTRUCTURE,
 644 *              -FDT_ERR_TRUNCATED, standard meanings
 645 */
 646const void *fdt_getprop(const void *fdt, int nodeoffset,
 647                        const char *name, int *lenp);
 648static inline void *fdt_getprop_w(void *fdt, int nodeoffset,
 649                                  const char *name, int *lenp)
 650{
 651        return (void *)(uintptr_t)fdt_getprop(fdt, nodeoffset, name, lenp);
 652}
 653
 654/**
 655 * fdt_get_phandle - retrieve the phandle of a given node
 656 * @fdt: pointer to the device tree blob
 657 * @nodeoffset: structure block offset of the node
 658 *
 659 * fdt_get_phandle() retrieves the phandle of the device tree node at
 660 * structure block offset nodeoffset.
 661 *
 662 * returns:
 663 *      the phandle of the node at nodeoffset, on success (!= 0, != -1)
 664 *      0, if the node has no phandle, or another error occurs
 665 */
 666uint32_t fdt_get_phandle(const void *fdt, int nodeoffset);
 667
 668/**
 669 * fdt_get_alias_namelen - get alias based on substring
 670 * @fdt: pointer to the device tree blob
 671 * @name: name of the alias th look up
 672 * @namelen: number of characters of name to consider
 673 *
 674 * Identical to fdt_get_alias(), but only examine the first namelen
 675 * characters of name for matching the alias name.
 676 */
 677#ifndef SWIG /* Not available in Python */
 678const char *fdt_get_alias_namelen(const void *fdt,
 679                                  const char *name, int namelen);
 680#endif
 681
 682/**
 683 * fdt_get_alias - retrieve the path referenced by a given alias
 684 * @fdt: pointer to the device tree blob
 685 * @name: name of the alias th look up
 686 *
 687 * fdt_get_alias() retrieves the value of a given alias.  That is, the
 688 * value of the property named 'name' in the node /aliases.
 689 *
 690 * returns:
 691 *      a pointer to the expansion of the alias named 'name', if it exists
 692 *      NULL, if the given alias or the /aliases node does not exist
 693 */
 694const char *fdt_get_alias(const void *fdt, const char *name);
 695
 696/**
 697 * fdt_get_path - determine the full path of a node
 698 * @fdt: pointer to the device tree blob
 699 * @nodeoffset: offset of the node whose path to find
 700 * @buf: character buffer to contain the returned path (will be overwritten)
 701 * @buflen: size of the character buffer at buf
 702 *
 703 * fdt_get_path() computes the full path of the node at offset
 704 * nodeoffset, and records that path in the buffer at buf.
 705 *
 706 * NOTE: This function is expensive, as it must scan the device tree
 707 * structure from the start to nodeoffset.
 708 *
 709 * returns:
 710 *      0, on success
 711 *              buf contains the absolute path of the node at
 712 *              nodeoffset, as a NUL-terminated string.
 713 *      -FDT_ERR_BADOFFSET, nodeoffset does not refer to a BEGIN_NODE tag
 714 *      -FDT_ERR_NOSPACE, the path of the given node is longer than (bufsize-1)
 715 *              characters and will not fit in the given buffer.
 716 *      -FDT_ERR_BADMAGIC,
 717 *      -FDT_ERR_BADVERSION,
 718 *      -FDT_ERR_BADSTATE,
 719 *      -FDT_ERR_BADSTRUCTURE, standard meanings
 720 */
 721int fdt_get_path(const void *fdt, int nodeoffset, char *buf, int buflen);
 722
 723/**
 724 * fdt_supernode_atdepth_offset - find a specific ancestor of a node
 725 * @fdt: pointer to the device tree blob
 726 * @nodeoffset: offset of the node whose parent to find
 727 * @supernodedepth: depth of the ancestor to find
 728 * @nodedepth: pointer to an integer variable (will be overwritten) or NULL
 729 *
 730 * fdt_supernode_atdepth_offset() finds an ancestor of the given node
 731 * at a specific depth from the root (where the root itself has depth
 732 * 0, its immediate subnodes depth 1 and so forth).  So
 733 *      fdt_supernode_atdepth_offset(fdt, nodeoffset, 0, NULL);
 734 * will always return 0, the offset of the root node.  If the node at
 735 * nodeoffset has depth D, then:
 736 *      fdt_supernode_atdepth_offset(fdt, nodeoffset, D, NULL);
 737 * will return nodeoffset itself.
 738 *
 739 * NOTE: This function is expensive, as it must scan the device tree
 740 * structure from the start to nodeoffset.
 741 *
 742 * returns:
 743 *      structure block offset of the node at node offset's ancestor
 744 *              of depth supernodedepth (>=0), on success
 745 *      -FDT_ERR_BADOFFSET, nodeoffset does not refer to a BEGIN_NODE tag
 746 *      -FDT_ERR_NOTFOUND, supernodedepth was greater than the depth of
 747 *              nodeoffset
 748 *      -FDT_ERR_BADMAGIC,
 749 *      -FDT_ERR_BADVERSION,
 750 *      -FDT_ERR_BADSTATE,
 751 *      -FDT_ERR_BADSTRUCTURE, standard meanings
 752 */
 753int fdt_supernode_atdepth_offset(const void *fdt, int nodeoffset,
 754                                 int supernodedepth, int *nodedepth);
 755
 756/**
 757 * fdt_node_depth - find the depth of a given node
 758 * @fdt: pointer to the device tree blob
 759 * @nodeoffset: offset of the node whose parent to find
 760 *
 761 * fdt_node_depth() finds the depth of a given node.  The root node
 762 * has depth 0, its immediate subnodes depth 1 and so forth.
 763 *
 764 * NOTE: This function is expensive, as it must scan the device tree
 765 * structure from the start to nodeoffset.
 766 *
 767 * returns:
 768 *      depth of the node at nodeoffset (>=0), on success
 769 *      -FDT_ERR_BADOFFSET, nodeoffset does not refer to a BEGIN_NODE tag
 770 *      -FDT_ERR_BADMAGIC,
 771 *      -FDT_ERR_BADVERSION,
 772 *      -FDT_ERR_BADSTATE,
 773 *      -FDT_ERR_BADSTRUCTURE, standard meanings
 774 */
 775int fdt_node_depth(const void *fdt, int nodeoffset);
 776
 777/**
 778 * fdt_parent_offset - find the parent of a given node
 779 * @fdt: pointer to the device tree blob
 780 * @nodeoffset: offset of the node whose parent to find
 781 *
 782 * fdt_parent_offset() locates the parent node of a given node (that
 783 * is, it finds the offset of the node which contains the node at
 784 * nodeoffset as a subnode).
 785 *
 786 * NOTE: This function is expensive, as it must scan the device tree
 787 * structure from the start to nodeoffset, *twice*.
 788 *
 789 * returns:
 790 *      structure block offset of the parent of the node at nodeoffset
 791 *              (>=0), on success
 792 *      -FDT_ERR_BADOFFSET, nodeoffset does not refer to a BEGIN_NODE tag
 793 *      -FDT_ERR_BADMAGIC,
 794 *      -FDT_ERR_BADVERSION,
 795 *      -FDT_ERR_BADSTATE,
 796 *      -FDT_ERR_BADSTRUCTURE, standard meanings
 797 */
 798int fdt_parent_offset(const void *fdt, int nodeoffset);
 799
 800/**
 801 * fdt_node_offset_by_prop_value - find nodes with a given property value
 802 * @fdt: pointer to the device tree blob
 803 * @startoffset: only find nodes after this offset
 804 * @propname: property name to check
 805 * @propval: property value to search for
 806 * @proplen: length of the value in propval
 807 *
 808 * fdt_node_offset_by_prop_value() returns the offset of the first
 809 * node after startoffset, which has a property named propname whose
 810 * value is of length proplen and has value equal to propval; or if
 811 * startoffset is -1, the very first such node in the tree.
 812 *
 813 * To iterate through all nodes matching the criterion, the following
 814 * idiom can be used:
 815 *      offset = fdt_node_offset_by_prop_value(fdt, -1, propname,
 816 *                                             propval, proplen);
 817 *      while (offset != -FDT_ERR_NOTFOUND) {
 818 *              // other code here
 819 *              offset = fdt_node_offset_by_prop_value(fdt, offset, propname,
 820 *                                                     propval, proplen);
 821 *      }
 822 *
 823 * Note the -1 in the first call to the function, if 0 is used here
 824 * instead, the function will never locate the root node, even if it
 825 * matches the criterion.
 826 *
 827 * returns:
 828 *      structure block offset of the located node (>= 0, >startoffset),
 829 *               on success
 830 *      -FDT_ERR_NOTFOUND, no node matching the criterion exists in the
 831 *              tree after startoffset
 832 *      -FDT_ERR_BADOFFSET, nodeoffset does not refer to a BEGIN_NODE tag
 833 *      -FDT_ERR_BADMAGIC,
 834 *      -FDT_ERR_BADVERSION,
 835 *      -FDT_ERR_BADSTATE,
 836 *      -FDT_ERR_BADSTRUCTURE, standard meanings
 837 */
 838int fdt_node_offset_by_prop_value(const void *fdt, int startoffset,
 839                                  const char *propname,
 840                                  const void *propval, int proplen);
 841
 842/**
 843 * fdt_node_offset_by_phandle - find the node with a given phandle
 844 * @fdt: pointer to the device tree blob
 845 * @phandle: phandle value
 846 *
 847 * fdt_node_offset_by_phandle() returns the offset of the node
 848 * which has the given phandle value.  If there is more than one node
 849 * in the tree with the given phandle (an invalid tree), results are
 850 * undefined.
 851 *
 852 * returns:
 853 *      structure block offset of the located node (>= 0), on success
 854 *      -FDT_ERR_NOTFOUND, no node with that phandle exists
 855 *      -FDT_ERR_BADPHANDLE, given phandle value was invalid (0 or -1)
 856 *      -FDT_ERR_BADMAGIC,
 857 *      -FDT_ERR_BADVERSION,
 858 *      -FDT_ERR_BADSTATE,
 859 *      -FDT_ERR_BADSTRUCTURE, standard meanings
 860 */
 861int fdt_node_offset_by_phandle(const void *fdt, uint32_t phandle);
 862
 863/**
 864 * fdt_node_check_compatible: check a node's compatible property
 865 * @fdt: pointer to the device tree blob
 866 * @nodeoffset: offset of a tree node
 867 * @compatible: string to match against
 868 *
 869 *
 870 * fdt_node_check_compatible() returns 0 if the given node contains a
 871 * 'compatible' property with the given string as one of its elements,
 872 * it returns non-zero otherwise, or on error.
 873 *
 874 * returns:
 875 *      0, if the node has a 'compatible' property listing the given string
 876 *      1, if the node has a 'compatible' property, but it does not list
 877 *              the given string
 878 *      -FDT_ERR_NOTFOUND, if the given node has no 'compatible' property
 879 *      -FDT_ERR_BADOFFSET, if nodeoffset does not refer to a BEGIN_NODE tag
 880 *      -FDT_ERR_BADMAGIC,
 881 *      -FDT_ERR_BADVERSION,
 882 *      -FDT_ERR_BADSTATE,
 883 *      -FDT_ERR_BADSTRUCTURE, standard meanings
 884 */
 885int fdt_node_check_compatible(const void *fdt, int nodeoffset,
 886                              const char *compatible);
 887
 888/**
 889 * fdt_node_offset_by_compatible - find nodes with a given 'compatible' value
 890 * @fdt: pointer to the device tree blob
 891 * @startoffset: only find nodes after this offset
 892 * @compatible: 'compatible' string to match against
 893 *
 894 * fdt_node_offset_by_compatible() returns the offset of the first
 895 * node after startoffset, which has a 'compatible' property which
 896 * lists the given compatible string; or if startoffset is -1, the
 897 * very first such node in the tree.
 898 *
 899 * To iterate through all nodes matching the criterion, the following
 900 * idiom can be used:
 901 *      offset = fdt_node_offset_by_compatible(fdt, -1, compatible);
 902 *      while (offset != -FDT_ERR_NOTFOUND) {
 903 *              // other code here
 904 *              offset = fdt_node_offset_by_compatible(fdt, offset, compatible);
 905 *      }
 906 *
 907 * Note the -1 in the first call to the function, if 0 is used here
 908 * instead, the function will never locate the root node, even if it
 909 * matches the criterion.
 910 *
 911 * returns:
 912 *      structure block offset of the located node (>= 0, >startoffset),
 913 *               on success
 914 *      -FDT_ERR_NOTFOUND, no node matching the criterion exists in the
 915 *              tree after startoffset
 916 *      -FDT_ERR_BADOFFSET, nodeoffset does not refer to a BEGIN_NODE tag
 917 *      -FDT_ERR_BADMAGIC,
 918 *      -FDT_ERR_BADVERSION,
 919 *      -FDT_ERR_BADSTATE,
 920 *      -FDT_ERR_BADSTRUCTURE, standard meanings
 921 */
 922int fdt_node_offset_by_compatible(const void *fdt, int startoffset,
 923                                  const char *compatible);
 924
 925/**
 926 * fdt_stringlist_contains - check a string list property for a string
 927 * @strlist: Property containing a list of strings to check
 928 * @listlen: Length of property
 929 * @str: String to search for
 930 *
 931 * This is a utility function provided for convenience. The list contains
 932 * one or more strings, each terminated by \0, as is found in a device tree
 933 * "compatible" property.
 934 *
 935 * @return: 1 if the string is found in the list, 0 not found, or invalid list
 936 */
 937int fdt_stringlist_contains(const char *strlist, int listlen, const char *str);
 938
 939/**
 940 * fdt_stringlist_count - count the number of strings in a string list
 941 * @fdt: pointer to the device tree blob
 942 * @nodeoffset: offset of a tree node
 943 * @property: name of the property containing the string list
 944 * @return:
 945 *   the number of strings in the given property
 946 *   -FDT_ERR_BADVALUE if the property value is not NUL-terminated
 947 *   -FDT_ERR_NOTFOUND if the property does not exist
 948 */
 949int fdt_stringlist_count(const void *fdt, int nodeoffset, const char *property);
 950
 951/**
 952 * fdt_stringlist_search - find a string in a string list and return its index
 953 * @fdt: pointer to the device tree blob
 954 * @nodeoffset: offset of a tree node
 955 * @property: name of the property containing the string list
 956 * @string: string to look up in the string list
 957 *
 958 * Note that it is possible for this function to succeed on property values
 959 * that are not NUL-terminated. That's because the function will stop after
 960 * finding the first occurrence of @string. This can for example happen with
 961 * small-valued cell properties, such as #address-cells, when searching for
 962 * the empty string.
 963 *
 964 * @return:
 965 *   the index of the string in the list of strings
 966 *   -FDT_ERR_BADVALUE if the property value is not NUL-terminated
 967 *   -FDT_ERR_NOTFOUND if the property does not exist or does not contain
 968 *                     the given string
 969 */
 970int fdt_stringlist_search(const void *fdt, int nodeoffset, const char *property,
 971                          const char *string);
 972
 973/**
 974 * fdt_stringlist_get() - obtain the string at a given index in a string list
 975 * @fdt: pointer to the device tree blob
 976 * @nodeoffset: offset of a tree node
 977 * @property: name of the property containing the string list
 978 * @index: index of the string to return
 979 * @lenp: return location for the string length or an error code on failure
 980 *
 981 * Note that this will successfully extract strings from properties with
 982 * non-NUL-terminated values. For example on small-valued cell properties
 983 * this function will return the empty string.
 984 *
 985 * If non-NULL, the length of the string (on success) or a negative error-code
 986 * (on failure) will be stored in the integer pointer to by lenp.
 987 *
 988 * @return:
 989 *   A pointer to the string at the given index in the string list or NULL on
 990 *   failure. On success the length of the string will be stored in the memory
 991 *   location pointed to by the lenp parameter, if non-NULL. On failure one of
 992 *   the following negative error codes will be returned in the lenp parameter
 993 *   (if non-NULL):
 994 *     -FDT_ERR_BADVALUE if the property value is not NUL-terminated
 995 *     -FDT_ERR_NOTFOUND if the property does not exist
 996 */
 997const char *fdt_stringlist_get(const void *fdt, int nodeoffset,
 998                               const char *property, int index,
 999                               int *lenp);
1000
1001/**********************************************************************/
1002/* Read-only functions (addressing related)                           */
1003/**********************************************************************/
1004
1005/**
1006 * FDT_MAX_NCELLS - maximum value for #address-cells and #size-cells
1007 *
1008 * This is the maximum value for #address-cells, #size-cells and
1009 * similar properties that will be processed by libfdt.  IEE1275
1010 * requires that OF implementations handle values up to 4.
1011 * Implementations may support larger values, but in practice higher
1012 * values aren't used.
1013 */
1014#define FDT_MAX_NCELLS          4
1015
1016/**
1017 * fdt_address_cells - retrieve address size for a bus represented in the tree
1018 * @fdt: pointer to the device tree blob
1019 * @nodeoffset: offset of the node to find the address size for
1020 *
1021 * When the node has a valid #address-cells property, returns its value.
1022 *
1023 * returns:
1024 *      0 <= n < FDT_MAX_NCELLS, on success
1025 *      2, if the node has no #address-cells property
1026 *      -FDT_ERR_BADNCELLS, if the node has a badly formatted or invalid
1027 *              #address-cells property
1028 *      -FDT_ERR_BADMAGIC,
1029 *      -FDT_ERR_BADVERSION,
1030 *      -FDT_ERR_BADSTATE,
1031 *      -FDT_ERR_BADSTRUCTURE,
1032 *      -FDT_ERR_TRUNCATED, standard meanings
1033 */
1034int fdt_address_cells(const void *fdt, int nodeoffset);
1035
1036/**
1037 * fdt_size_cells - retrieve address range size for a bus represented in the
1038 *                  tree
1039 * @fdt: pointer to the device tree blob
1040 * @nodeoffset: offset of the node to find the address range size for
1041 *
1042 * When the node has a valid #size-cells property, returns its value.
1043 *
1044 * returns:
1045 *      0 <= n < FDT_MAX_NCELLS, on success
1046 *      2, if the node has no #address-cells property
1047 *      -FDT_ERR_BADNCELLS, if the node has a badly formatted or invalid
1048 *              #size-cells property
1049 *      -FDT_ERR_BADMAGIC,
1050 *      -FDT_ERR_BADVERSION,
1051 *      -FDT_ERR_BADSTATE,
1052 *      -FDT_ERR_BADSTRUCTURE,
1053 *      -FDT_ERR_TRUNCATED, standard meanings
1054 */
1055int fdt_size_cells(const void *fdt, int nodeoffset);
1056
1057
1058/**********************************************************************/
1059/* Write-in-place functions                                           */
1060/**********************************************************************/
1061
1062/**
1063 * fdt_setprop_inplace_namelen_partial - change a property's value,
1064 *                                       but not its size
1065 * @fdt: pointer to the device tree blob
1066 * @nodeoffset: offset of the node whose property to change
1067 * @name: name of the property to change
1068 * @namelen: number of characters of name to consider
1069 * @idx: index of the property to change in the array
1070 * @val: pointer to data to replace the property value with
1071 * @len: length of the property value
1072 *
1073 * Identical to fdt_setprop_inplace(), but modifies the given property
1074 * starting from the given index, and using only the first characters
1075 * of the name. It is useful when you want to manipulate only one value of
1076 * an array and you have a string that doesn't end with \0.
1077 */
1078#ifndef SWIG /* Not available in Python */
1079int fdt_setprop_inplace_namelen_partial(void *fdt, int nodeoffset,
1080                                        const char *name, int namelen,
1081                                        uint32_t idx, const void *val,
1082                                        int len);
1083#endif
1084
1085/**
1086 * fdt_setprop_inplace - change a property's value, but not its size
1087 * @fdt: pointer to the device tree blob
1088 * @nodeoffset: offset of the node whose property to change
1089 * @name: name of the property to change
1090 * @val: pointer to data to replace the property value with
1091 * @len: length of the property value
1092 *
1093 * fdt_setprop_inplace() replaces the value of a given property with
1094 * the data in val, of length len.  This function cannot change the
1095 * size of a property, and so will only work if len is equal to the
1096 * current length of the property.
1097 *
1098 * This function will alter only the bytes in the blob which contain
1099 * the given property value, and will not alter or move any other part
1100 * of the tree.
1101 *
1102 * returns:
1103 *      0, on success
1104 *      -FDT_ERR_NOSPACE, if len is not equal to the property's current length
1105 *      -FDT_ERR_NOTFOUND, node does not have the named property
1106 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1107 *      -FDT_ERR_BADMAGIC,
1108 *      -FDT_ERR_BADVERSION,
1109 *      -FDT_ERR_BADSTATE,
1110 *      -FDT_ERR_BADSTRUCTURE,
1111 *      -FDT_ERR_TRUNCATED, standard meanings
1112 */
1113#ifndef SWIG /* Not available in Python */
1114int fdt_setprop_inplace(void *fdt, int nodeoffset, const char *name,
1115                        const void *val, int len);
1116#endif
1117
1118/**
1119 * fdt_setprop_inplace_u32 - change the value of a 32-bit integer property
1120 * @fdt: pointer to the device tree blob
1121 * @nodeoffset: offset of the node whose property to change
1122 * @name: name of the property to change
1123 * @val: 32-bit integer value to replace the property with
1124 *
1125 * fdt_setprop_inplace_u32() replaces the value of a given property
1126 * with the 32-bit integer value in val, converting val to big-endian
1127 * if necessary.  This function cannot change the size of a property,
1128 * and so will only work if the property already exists and has length
1129 * 4.
1130 *
1131 * This function will alter only the bytes in the blob which contain
1132 * the given property value, and will not alter or move any other part
1133 * of the tree.
1134 *
1135 * returns:
1136 *      0, on success
1137 *      -FDT_ERR_NOSPACE, if the property's length is not equal to 4
1138 *      -FDT_ERR_NOTFOUND, node does not have the named property
1139 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1140 *      -FDT_ERR_BADMAGIC,
1141 *      -FDT_ERR_BADVERSION,
1142 *      -FDT_ERR_BADSTATE,
1143 *      -FDT_ERR_BADSTRUCTURE,
1144 *      -FDT_ERR_TRUNCATED, standard meanings
1145 */
1146static inline int fdt_setprop_inplace_u32(void *fdt, int nodeoffset,
1147                                          const char *name, uint32_t val)
1148{
1149        fdt32_t tmp = cpu_to_fdt32(val);
1150        return fdt_setprop_inplace(fdt, nodeoffset, name, &tmp, sizeof(tmp));
1151}
1152
1153/**
1154 * fdt_setprop_inplace_u64 - change the value of a 64-bit integer property
1155 * @fdt: pointer to the device tree blob
1156 * @nodeoffset: offset of the node whose property to change
1157 * @name: name of the property to change
1158 * @val: 64-bit integer value to replace the property with
1159 *
1160 * fdt_setprop_inplace_u64() replaces the value of a given property
1161 * with the 64-bit integer value in val, converting val to big-endian
1162 * if necessary.  This function cannot change the size of a property,
1163 * and so will only work if the property already exists and has length
1164 * 8.
1165 *
1166 * This function will alter only the bytes in the blob which contain
1167 * the given property value, and will not alter or move any other part
1168 * of the tree.
1169 *
1170 * returns:
1171 *      0, on success
1172 *      -FDT_ERR_NOSPACE, if the property's length is not equal to 8
1173 *      -FDT_ERR_NOTFOUND, node does not have the named property
1174 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1175 *      -FDT_ERR_BADMAGIC,
1176 *      -FDT_ERR_BADVERSION,
1177 *      -FDT_ERR_BADSTATE,
1178 *      -FDT_ERR_BADSTRUCTURE,
1179 *      -FDT_ERR_TRUNCATED, standard meanings
1180 */
1181static inline int fdt_setprop_inplace_u64(void *fdt, int nodeoffset,
1182                                          const char *name, uint64_t val)
1183{
1184        fdt64_t tmp = cpu_to_fdt64(val);
1185        return fdt_setprop_inplace(fdt, nodeoffset, name, &tmp, sizeof(tmp));
1186}
1187
1188/**
1189 * fdt_setprop_inplace_cell - change the value of a single-cell property
1190 *
1191 * This is an alternative name for fdt_setprop_inplace_u32()
1192 */
1193static inline int fdt_setprop_inplace_cell(void *fdt, int nodeoffset,
1194                                           const char *name, uint32_t val)
1195{
1196        return fdt_setprop_inplace_u32(fdt, nodeoffset, name, val);
1197}
1198
1199/**
1200 * fdt_nop_property - replace a property with nop tags
1201 * @fdt: pointer to the device tree blob
1202 * @nodeoffset: offset of the node whose property to nop
1203 * @name: name of the property to nop
1204 *
1205 * fdt_nop_property() will replace a given property's representation
1206 * in the blob with FDT_NOP tags, effectively removing it from the
1207 * tree.
1208 *
1209 * This function will alter only the bytes in the blob which contain
1210 * the property, and will not alter or move any other part of the
1211 * tree.
1212 *
1213 * returns:
1214 *      0, on success
1215 *      -FDT_ERR_NOTFOUND, node does not have the named property
1216 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1217 *      -FDT_ERR_BADMAGIC,
1218 *      -FDT_ERR_BADVERSION,
1219 *      -FDT_ERR_BADSTATE,
1220 *      -FDT_ERR_BADSTRUCTURE,
1221 *      -FDT_ERR_TRUNCATED, standard meanings
1222 */
1223int fdt_nop_property(void *fdt, int nodeoffset, const char *name);
1224
1225/**
1226 * fdt_nop_node - replace a node (subtree) with nop tags
1227 * @fdt: pointer to the device tree blob
1228 * @nodeoffset: offset of the node to nop
1229 *
1230 * fdt_nop_node() will replace a given node's representation in the
1231 * blob, including all its subnodes, if any, with FDT_NOP tags,
1232 * effectively removing it from the tree.
1233 *
1234 * This function will alter only the bytes in the blob which contain
1235 * the node and its properties and subnodes, and will not alter or
1236 * move any other part of the tree.
1237 *
1238 * returns:
1239 *      0, on success
1240 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1241 *      -FDT_ERR_BADMAGIC,
1242 *      -FDT_ERR_BADVERSION,
1243 *      -FDT_ERR_BADSTATE,
1244 *      -FDT_ERR_BADSTRUCTURE,
1245 *      -FDT_ERR_TRUNCATED, standard meanings
1246 */
1247int fdt_nop_node(void *fdt, int nodeoffset);
1248
1249/**********************************************************************/
1250/* Sequential write functions                                         */
1251/**********************************************************************/
1252
1253int fdt_create(void *buf, int bufsize);
1254int fdt_resize(void *fdt, void *buf, int bufsize);
1255int fdt_add_reservemap_entry(void *fdt, uint64_t addr, uint64_t size);
1256int fdt_finish_reservemap(void *fdt);
1257int fdt_begin_node(void *fdt, const char *name);
1258int fdt_property(void *fdt, const char *name, const void *val, int len);
1259static inline int fdt_property_u32(void *fdt, const char *name, uint32_t val)
1260{
1261        fdt32_t tmp = cpu_to_fdt32(val);
1262        return fdt_property(fdt, name, &tmp, sizeof(tmp));
1263}
1264static inline int fdt_property_u64(void *fdt, const char *name, uint64_t val)
1265{
1266        fdt64_t tmp = cpu_to_fdt64(val);
1267        return fdt_property(fdt, name, &tmp, sizeof(tmp));
1268}
1269static inline int fdt_property_cell(void *fdt, const char *name, uint32_t val)
1270{
1271        return fdt_property_u32(fdt, name, val);
1272}
1273
1274/**
1275 * fdt_property_placeholder - add a new property and return a ptr to its value
1276 *
1277 * @fdt: pointer to the device tree blob
1278 * @name: name of property to add
1279 * @len: length of property value in bytes
1280 * @valp: returns a pointer to where where the value should be placed
1281 *
1282 * returns:
1283 *      0, on success
1284 *      -FDT_ERR_BADMAGIC,
1285 *      -FDT_ERR_NOSPACE, standard meanings
1286 */
1287int fdt_property_placeholder(void *fdt, const char *name, int len, void **valp);
1288
1289#define fdt_property_string(fdt, name, str) \
1290        fdt_property(fdt, name, str, strlen(str)+1)
1291int fdt_end_node(void *fdt);
1292int fdt_finish(void *fdt);
1293
1294/**********************************************************************/
1295/* Read-write functions                                               */
1296/**********************************************************************/
1297
1298int fdt_create_empty_tree(void *buf, int bufsize);
1299int fdt_open_into(const void *fdt, void *buf, int bufsize);
1300int fdt_pack(void *fdt);
1301
1302/**
1303 * fdt_add_mem_rsv - add one memory reserve map entry
1304 * @fdt: pointer to the device tree blob
1305 * @address, @size: 64-bit values (native endian)
1306 *
1307 * Adds a reserve map entry to the given blob reserving a region at
1308 * address address of length size.
1309 *
1310 * This function will insert data into the reserve map and will
1311 * therefore change the indexes of some entries in the table.
1312 *
1313 * returns:
1314 *      0, on success
1315 *      -FDT_ERR_NOSPACE, there is insufficient free space in the blob to
1316 *              contain the new reservation entry
1317 *      -FDT_ERR_BADMAGIC,
1318 *      -FDT_ERR_BADVERSION,
1319 *      -FDT_ERR_BADSTATE,
1320 *      -FDT_ERR_BADSTRUCTURE,
1321 *      -FDT_ERR_BADLAYOUT,
1322 *      -FDT_ERR_TRUNCATED, standard meanings
1323 */
1324int fdt_add_mem_rsv(void *fdt, uint64_t address, uint64_t size);
1325
1326/**
1327 * fdt_del_mem_rsv - remove a memory reserve map entry
1328 * @fdt: pointer to the device tree blob
1329 * @n: entry to remove
1330 *
1331 * fdt_del_mem_rsv() removes the n-th memory reserve map entry from
1332 * the blob.
1333 *
1334 * This function will delete data from the reservation table and will
1335 * therefore change the indexes of some entries in the table.
1336 *
1337 * returns:
1338 *      0, on success
1339 *      -FDT_ERR_NOTFOUND, there is no entry of the given index (i.e. there
1340 *              are less than n+1 reserve map entries)
1341 *      -FDT_ERR_BADMAGIC,
1342 *      -FDT_ERR_BADVERSION,
1343 *      -FDT_ERR_BADSTATE,
1344 *      -FDT_ERR_BADSTRUCTURE,
1345 *      -FDT_ERR_BADLAYOUT,
1346 *      -FDT_ERR_TRUNCATED, standard meanings
1347 */
1348int fdt_del_mem_rsv(void *fdt, int n);
1349
1350/**
1351 * fdt_set_name - change the name of a given node
1352 * @fdt: pointer to the device tree blob
1353 * @nodeoffset: structure block offset of a node
1354 * @name: name to give the node
1355 *
1356 * fdt_set_name() replaces the name (including unit address, if any)
1357 * of the given node with the given string.  NOTE: this function can't
1358 * efficiently check if the new name is unique amongst the given
1359 * node's siblings; results are undefined if this function is invoked
1360 * with a name equal to one of the given node's siblings.
1361 *
1362 * This function may insert or delete data from the blob, and will
1363 * therefore change the offsets of some existing nodes.
1364 *
1365 * returns:
1366 *      0, on success
1367 *      -FDT_ERR_NOSPACE, there is insufficient free space in the blob
1368 *              to contain the new name
1369 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1370 *      -FDT_ERR_BADMAGIC,
1371 *      -FDT_ERR_BADVERSION,
1372 *      -FDT_ERR_BADSTATE, standard meanings
1373 */
1374int fdt_set_name(void *fdt, int nodeoffset, const char *name);
1375
1376/**
1377 * fdt_setprop - create or change a property
1378 * @fdt: pointer to the device tree blob
1379 * @nodeoffset: offset of the node whose property to change
1380 * @name: name of the property to change
1381 * @val: pointer to data to set the property value to
1382 * @len: length of the property value
1383 *
1384 * fdt_setprop() sets the value of the named property in the given
1385 * node to the given value and length, creating the property if it
1386 * does not already exist.
1387 *
1388 * This function may insert or delete data from the blob, and will
1389 * therefore change the offsets of some existing nodes.
1390 *
1391 * returns:
1392 *      0, on success
1393 *      -FDT_ERR_NOSPACE, there is insufficient free space in the blob to
1394 *              contain the new property value
1395 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1396 *      -FDT_ERR_BADLAYOUT,
1397 *      -FDT_ERR_BADMAGIC,
1398 *      -FDT_ERR_BADVERSION,
1399 *      -FDT_ERR_BADSTATE,
1400 *      -FDT_ERR_BADSTRUCTURE,
1401 *      -FDT_ERR_BADLAYOUT,
1402 *      -FDT_ERR_TRUNCATED, standard meanings
1403 */
1404int fdt_setprop(void *fdt, int nodeoffset, const char *name,
1405                const void *val, int len);
1406
1407/**
1408 * fdt_setprop_u32 - set a property to a 32-bit integer
1409 * @fdt: pointer to the device tree blob
1410 * @nodeoffset: offset of the node whose property to change
1411 * @name: name of the property to change
1412 * @val: 32-bit integer value for the property (native endian)
1413 *
1414 * fdt_setprop_u32() sets the value of the named property in the given
1415 * node to the given 32-bit integer value (converting to big-endian if
1416 * necessary), or creates a new property with that value if it does
1417 * not already exist.
1418 *
1419 * This function may insert or delete data from the blob, and will
1420 * therefore change the offsets of some existing nodes.
1421 *
1422 * returns:
1423 *      0, on success
1424 *      -FDT_ERR_NOSPACE, there is insufficient free space in the blob to
1425 *              contain the new property value
1426 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1427 *      -FDT_ERR_BADLAYOUT,
1428 *      -FDT_ERR_BADMAGIC,
1429 *      -FDT_ERR_BADVERSION,
1430 *      -FDT_ERR_BADSTATE,
1431 *      -FDT_ERR_BADSTRUCTURE,
1432 *      -FDT_ERR_BADLAYOUT,
1433 *      -FDT_ERR_TRUNCATED, standard meanings
1434 */
1435static inline int fdt_setprop_u32(void *fdt, int nodeoffset, const char *name,
1436                                  uint32_t val)
1437{
1438        fdt32_t tmp = cpu_to_fdt32(val);
1439        return fdt_setprop(fdt, nodeoffset, name, &tmp, sizeof(tmp));
1440}
1441
1442/**
1443 * fdt_setprop_u64 - set a property to a 64-bit integer
1444 * @fdt: pointer to the device tree blob
1445 * @nodeoffset: offset of the node whose property to change
1446 * @name: name of the property to change
1447 * @val: 64-bit integer value for the property (native endian)
1448 *
1449 * fdt_setprop_u64() sets the value of the named property in the given
1450 * node to the given 64-bit integer value (converting to big-endian if
1451 * necessary), or creates a new property with that value if it does
1452 * not already exist.
1453 *
1454 * This function may insert or delete data from the blob, and will
1455 * therefore change the offsets of some existing nodes.
1456 *
1457 * returns:
1458 *      0, on success
1459 *      -FDT_ERR_NOSPACE, there is insufficient free space in the blob to
1460 *              contain the new property value
1461 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1462 *      -FDT_ERR_BADLAYOUT,
1463 *      -FDT_ERR_BADMAGIC,
1464 *      -FDT_ERR_BADVERSION,
1465 *      -FDT_ERR_BADSTATE,
1466 *      -FDT_ERR_BADSTRUCTURE,
1467 *      -FDT_ERR_BADLAYOUT,
1468 *      -FDT_ERR_TRUNCATED, standard meanings
1469 */
1470static inline int fdt_setprop_u64(void *fdt, int nodeoffset, const char *name,
1471                                  uint64_t val)
1472{
1473        fdt64_t tmp = cpu_to_fdt64(val);
1474        return fdt_setprop(fdt, nodeoffset, name, &tmp, sizeof(tmp));
1475}
1476
1477/**
1478 * fdt_setprop_cell - set a property to a single cell value
1479 *
1480 * This is an alternative name for fdt_setprop_u32()
1481 */
1482static inline int fdt_setprop_cell(void *fdt, int nodeoffset, const char *name,
1483                                   uint32_t val)
1484{
1485        return fdt_setprop_u32(fdt, nodeoffset, name, val);
1486}
1487
1488/**
1489 * fdt_setprop_string - set a property to a string value
1490 * @fdt: pointer to the device tree blob
1491 * @nodeoffset: offset of the node whose property to change
1492 * @name: name of the property to change
1493 * @str: string value for the property
1494 *
1495 * fdt_setprop_string() sets the value of the named property in the
1496 * given node to the given string value (using the length of the
1497 * string to determine the new length of the property), or creates a
1498 * new property with that value if it does not already exist.
1499 *
1500 * This function may insert or delete data from the blob, and will
1501 * therefore change the offsets of some existing nodes.
1502 *
1503 * returns:
1504 *      0, on success
1505 *      -FDT_ERR_NOSPACE, there is insufficient free space in the blob to
1506 *              contain the new property value
1507 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1508 *      -FDT_ERR_BADLAYOUT,
1509 *      -FDT_ERR_BADMAGIC,
1510 *      -FDT_ERR_BADVERSION,
1511 *      -FDT_ERR_BADSTATE,
1512 *      -FDT_ERR_BADSTRUCTURE,
1513 *      -FDT_ERR_BADLAYOUT,
1514 *      -FDT_ERR_TRUNCATED, standard meanings
1515 */
1516#define fdt_setprop_string(fdt, nodeoffset, name, str) \
1517        fdt_setprop((fdt), (nodeoffset), (name), (str), strlen(str)+1)
1518
1519
1520/**
1521 * fdt_setprop_empty - set a property to an empty value
1522 * @fdt: pointer to the device tree blob
1523 * @nodeoffset: offset of the node whose property to change
1524 * @name: name of the property to change
1525 *
1526 * fdt_setprop_empty() sets the value of the named property in the
1527 * given node to an empty (zero length) value, or creates a new empty
1528 * property if it does not already exist.
1529 *
1530 * This function may insert or delete data from the blob, and will
1531 * therefore change the offsets of some existing nodes.
1532 *
1533 * returns:
1534 *      0, on success
1535 *      -FDT_ERR_NOSPACE, there is insufficient free space in the blob to
1536 *              contain the new property value
1537 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1538 *      -FDT_ERR_BADLAYOUT,
1539 *      -FDT_ERR_BADMAGIC,
1540 *      -FDT_ERR_BADVERSION,
1541 *      -FDT_ERR_BADSTATE,
1542 *      -FDT_ERR_BADSTRUCTURE,
1543 *      -FDT_ERR_BADLAYOUT,
1544 *      -FDT_ERR_TRUNCATED, standard meanings
1545 */
1546#define fdt_setprop_empty(fdt, nodeoffset, name) \
1547        fdt_setprop((fdt), (nodeoffset), (name), NULL, 0)
1548
1549/**
1550 * fdt_appendprop - append to or create a property
1551 * @fdt: pointer to the device tree blob
1552 * @nodeoffset: offset of the node whose property to change
1553 * @name: name of the property to append to
1554 * @val: pointer to data to append to the property value
1555 * @len: length of the data to append to the property value
1556 *
1557 * fdt_appendprop() appends the value to the named property in the
1558 * given node, creating the property if it does not already exist.
1559 *
1560 * This function may insert data into the blob, and will therefore
1561 * change the offsets of some existing nodes.
1562 *
1563 * returns:
1564 *      0, on success
1565 *      -FDT_ERR_NOSPACE, there is insufficient free space in the blob to
1566 *              contain the new property value
1567 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1568 *      -FDT_ERR_BADLAYOUT,
1569 *      -FDT_ERR_BADMAGIC,
1570 *      -FDT_ERR_BADVERSION,
1571 *      -FDT_ERR_BADSTATE,
1572 *      -FDT_ERR_BADSTRUCTURE,
1573 *      -FDT_ERR_BADLAYOUT,
1574 *      -FDT_ERR_TRUNCATED, standard meanings
1575 */
1576int fdt_appendprop(void *fdt, int nodeoffset, const char *name,
1577                   const void *val, int len);
1578
1579/**
1580 * fdt_appendprop_u32 - append a 32-bit integer value to a property
1581 * @fdt: pointer to the device tree blob
1582 * @nodeoffset: offset of the node whose property to change
1583 * @name: name of the property to change
1584 * @val: 32-bit integer value to append to the property (native endian)
1585 *
1586 * fdt_appendprop_u32() appends the given 32-bit integer value
1587 * (converting to big-endian if necessary) to the value of the named
1588 * property in the given node, or creates a new property with that
1589 * value if it does not already exist.
1590 *
1591 * This function may insert data into the blob, and will therefore
1592 * change the offsets of some existing nodes.
1593 *
1594 * returns:
1595 *      0, on success
1596 *      -FDT_ERR_NOSPACE, there is insufficient free space in the blob to
1597 *              contain the new property value
1598 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1599 *      -FDT_ERR_BADLAYOUT,
1600 *      -FDT_ERR_BADMAGIC,
1601 *      -FDT_ERR_BADVERSION,
1602 *      -FDT_ERR_BADSTATE,
1603 *      -FDT_ERR_BADSTRUCTURE,
1604 *      -FDT_ERR_BADLAYOUT,
1605 *      -FDT_ERR_TRUNCATED, standard meanings
1606 */
1607static inline int fdt_appendprop_u32(void *fdt, int nodeoffset,
1608                                     const char *name, uint32_t val)
1609{
1610        fdt32_t tmp = cpu_to_fdt32(val);
1611        return fdt_appendprop(fdt, nodeoffset, name, &tmp, sizeof(tmp));
1612}
1613
1614/**
1615 * fdt_appendprop_u64 - append a 64-bit integer value to a property
1616 * @fdt: pointer to the device tree blob
1617 * @nodeoffset: offset of the node whose property to change
1618 * @name: name of the property to change
1619 * @val: 64-bit integer value to append to the property (native endian)
1620 *
1621 * fdt_appendprop_u64() appends the given 64-bit integer value
1622 * (converting to big-endian if necessary) to the value of the named
1623 * property in the given node, or creates a new property with that
1624 * value if it does not already exist.
1625 *
1626 * This function may insert data into the blob, and will therefore
1627 * change the offsets of some existing nodes.
1628 *
1629 * returns:
1630 *      0, on success
1631 *      -FDT_ERR_NOSPACE, there is insufficient free space in the blob to
1632 *              contain the new property value
1633 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1634 *      -FDT_ERR_BADLAYOUT,
1635 *      -FDT_ERR_BADMAGIC,
1636 *      -FDT_ERR_BADVERSION,
1637 *      -FDT_ERR_BADSTATE,
1638 *      -FDT_ERR_BADSTRUCTURE,
1639 *      -FDT_ERR_BADLAYOUT,
1640 *      -FDT_ERR_TRUNCATED, standard meanings
1641 */
1642static inline int fdt_appendprop_u64(void *fdt, int nodeoffset,
1643                                     const char *name, uint64_t val)
1644{
1645        fdt64_t tmp = cpu_to_fdt64(val);
1646        return fdt_appendprop(fdt, nodeoffset, name, &tmp, sizeof(tmp));
1647}
1648
1649/**
1650 * fdt_appendprop_cell - append a single cell value to a property
1651 *
1652 * This is an alternative name for fdt_appendprop_u32()
1653 */
1654static inline int fdt_appendprop_cell(void *fdt, int nodeoffset,
1655                                      const char *name, uint32_t val)
1656{
1657        return fdt_appendprop_u32(fdt, nodeoffset, name, val);
1658}
1659
1660/**
1661 * fdt_appendprop_string - append a string to a property
1662 * @fdt: pointer to the device tree blob
1663 * @nodeoffset: offset of the node whose property to change
1664 * @name: name of the property to change
1665 * @str: string value to append to the property
1666 *
1667 * fdt_appendprop_string() appends the given string to the value of
1668 * the named property in the given node, or creates a new property
1669 * with that value if it does not already exist.
1670 *
1671 * This function may insert data into the blob, and will therefore
1672 * change the offsets of some existing nodes.
1673 *
1674 * returns:
1675 *      0, on success
1676 *      -FDT_ERR_NOSPACE, there is insufficient free space in the blob to
1677 *              contain the new property value
1678 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1679 *      -FDT_ERR_BADLAYOUT,
1680 *      -FDT_ERR_BADMAGIC,
1681 *      -FDT_ERR_BADVERSION,
1682 *      -FDT_ERR_BADSTATE,
1683 *      -FDT_ERR_BADSTRUCTURE,
1684 *      -FDT_ERR_BADLAYOUT,
1685 *      -FDT_ERR_TRUNCATED, standard meanings
1686 */
1687#define fdt_appendprop_string(fdt, nodeoffset, name, str) \
1688        fdt_appendprop((fdt), (nodeoffset), (name), (str), strlen(str)+1)
1689
1690/**
1691 * fdt_delprop - delete a property
1692 * @fdt: pointer to the device tree blob
1693 * @nodeoffset: offset of the node whose property to nop
1694 * @name: name of the property to nop
1695 *
1696 * fdt_del_property() will delete the given property.
1697 *
1698 * This function will delete data from the blob, and will therefore
1699 * change the offsets of some existing nodes.
1700 *
1701 * returns:
1702 *      0, on success
1703 *      -FDT_ERR_NOTFOUND, node does not have the named property
1704 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1705 *      -FDT_ERR_BADLAYOUT,
1706 *      -FDT_ERR_BADMAGIC,
1707 *      -FDT_ERR_BADVERSION,
1708 *      -FDT_ERR_BADSTATE,
1709 *      -FDT_ERR_BADSTRUCTURE,
1710 *      -FDT_ERR_TRUNCATED, standard meanings
1711 */
1712int fdt_delprop(void *fdt, int nodeoffset, const char *name);
1713
1714/**
1715 * fdt_add_subnode_namelen - creates a new node based on substring
1716 * @fdt: pointer to the device tree blob
1717 * @parentoffset: structure block offset of a node
1718 * @name: name of the subnode to locate
1719 * @namelen: number of characters of name to consider
1720 *
1721 * Identical to fdt_add_subnode(), but use only the first namelen
1722 * characters of name as the name of the new node.  This is useful for
1723 * creating subnodes based on a portion of a larger string, such as a
1724 * full path.
1725 */
1726#ifndef SWIG /* Not available in Python */
1727int fdt_add_subnode_namelen(void *fdt, int parentoffset,
1728                            const char *name, int namelen);
1729#endif
1730
1731/**
1732 * fdt_add_subnode - creates a new node
1733 * @fdt: pointer to the device tree blob
1734 * @parentoffset: structure block offset of a node
1735 * @name: name of the subnode to locate
1736 *
1737 * fdt_add_subnode() creates a new node as a subnode of the node at
1738 * structure block offset parentoffset, with the given name (which
1739 * should include the unit address, if any).
1740 *
1741 * This function will insert data into the blob, and will therefore
1742 * change the offsets of some existing nodes.
1743
1744 * returns:
1745 *      structure block offset of the created nodeequested subnode (>=0), on
1746 *              success
1747 *      -FDT_ERR_NOTFOUND, if the requested subnode does not exist
1748 *      -FDT_ERR_BADOFFSET, if parentoffset did not point to an FDT_BEGIN_NODE
1749 *              tag
1750 *      -FDT_ERR_EXISTS, if the node at parentoffset already has a subnode of
1751 *              the given name
1752 *      -FDT_ERR_NOSPACE, if there is insufficient free space in the
1753 *              blob to contain the new node
1754 *      -FDT_ERR_NOSPACE
1755 *      -FDT_ERR_BADLAYOUT
1756 *      -FDT_ERR_BADMAGIC,
1757 *      -FDT_ERR_BADVERSION,
1758 *      -FDT_ERR_BADSTATE,
1759 *      -FDT_ERR_BADSTRUCTURE,
1760 *      -FDT_ERR_TRUNCATED, standard meanings.
1761 */
1762int fdt_add_subnode(void *fdt, int parentoffset, const char *name);
1763
1764/**
1765 * fdt_del_node - delete a node (subtree)
1766 * @fdt: pointer to the device tree blob
1767 * @nodeoffset: offset of the node to nop
1768 *
1769 * fdt_del_node() will remove the given node, including all its
1770 * subnodes if any, from the blob.
1771 *
1772 * This function will delete data from the blob, and will therefore
1773 * change the offsets of some existing nodes.
1774 *
1775 * returns:
1776 *      0, on success
1777 *      -FDT_ERR_BADOFFSET, nodeoffset did not point to FDT_BEGIN_NODE tag
1778 *      -FDT_ERR_BADLAYOUT,
1779 *      -FDT_ERR_BADMAGIC,
1780 *      -FDT_ERR_BADVERSION,
1781 *      -FDT_ERR_BADSTATE,
1782 *      -FDT_ERR_BADSTRUCTURE,
1783 *      -FDT_ERR_TRUNCATED, standard meanings
1784 */
1785int fdt_del_node(void *fdt, int nodeoffset);
1786
1787/**
1788 * fdt_overlay_apply - Applies a DT overlay on a base DT
1789 * @fdt: pointer to the base device tree blob
1790 * @fdto: pointer to the device tree overlay blob
1791 *
1792 * fdt_overlay_apply() will apply the given device tree overlay on the
1793 * given base device tree.
1794 *
1795 * Expect the base device tree to be modified, even if the function
1796 * returns an error.
1797 *
1798 * returns:
1799 *      0, on success
1800 *      -FDT_ERR_NOSPACE, there's not enough space in the base device tree
1801 *      -FDT_ERR_NOTFOUND, the overlay points to some inexistant nodes or
1802 *              properties in the base DT
1803 *      -FDT_ERR_BADPHANDLE,
1804 *      -FDT_ERR_BADOVERLAY,
1805 *      -FDT_ERR_NOPHANDLES,
1806 *      -FDT_ERR_INTERNAL,
1807 *      -FDT_ERR_BADLAYOUT,
1808 *      -FDT_ERR_BADMAGIC,
1809 *      -FDT_ERR_BADOFFSET,
1810 *      -FDT_ERR_BADPATH,
1811 *      -FDT_ERR_BADVERSION,
1812 *      -FDT_ERR_BADSTRUCTURE,
1813 *      -FDT_ERR_BADSTATE,
1814 *      -FDT_ERR_TRUNCATED, standard meanings
1815 */
1816int fdt_overlay_apply(void *fdt, void *fdto);
1817
1818/**********************************************************************/
1819/* Debugging / informational functions                                */
1820/**********************************************************************/
1821
1822#ifndef SWIG /* Not available in Python */
1823const char *fdt_strerror(int errval);
1824
1825/**
1826 * fdt_remove_unused_strings() - Remove any unused strings from an FDT
1827 *
1828 * This creates a new device tree in @new with unused strings removed. The
1829 * called can then use fdt_pack() to minimise the space consumed.
1830 *
1831 * @old:        Old device tree blog
1832 * @new:        Place to put new device tree blob, which must be as large as
1833 *              @old
1834 * @return
1835 *      0, on success
1836 *      -FDT_ERR_BADOFFSET, corrupt device tree
1837 *      -FDT_ERR_NOSPACE, out of space, which should not happen unless there
1838 *              is something very wrong with the device tree input
1839 */
1840int fdt_remove_unused_strings(const void *old, void *new);
1841
1842struct fdt_region {
1843        int offset;
1844        int size;
1845};
1846
1847/*
1848 * Flags for fdt_find_regions()
1849 *
1850 * Add a region for the string table (always the last region)
1851 */
1852#define FDT_REG_ADD_STRING_TAB          (1 << 0)
1853
1854/*
1855 * Add all supernodes of a matching node/property, useful for creating a
1856 * valid subset tree
1857 */
1858#define FDT_REG_SUPERNODES              (1 << 1)
1859
1860/* Add the FDT_BEGIN_NODE tags of subnodes, including their names */
1861#define FDT_REG_DIRECT_SUBNODES (1 << 2)
1862
1863/* Add all subnodes of a matching node */
1864#define FDT_REG_ALL_SUBNODES            (1 << 3)
1865
1866/* Add a region for the mem_rsvmap table (always the first region) */
1867#define FDT_REG_ADD_MEM_RSVMAP          (1 << 4)
1868
1869/* Indicates what an fdt part is (node, property, value) */
1870#define FDT_IS_NODE                     (1 << 0)
1871#define FDT_IS_PROP                     (1 << 1)
1872#define FDT_IS_VALUE                    (1 << 2)        /* not supported */
1873#define FDT_IS_COMPAT                   (1 << 3)        /* used internally */
1874#define FDT_NODE_HAS_PROP               (1 << 4)        /* node contains prop */
1875
1876#define FDT_ANY_GLOBAL          (FDT_IS_NODE | FDT_IS_PROP | FDT_IS_VALUE | \
1877                                        FDT_IS_COMPAT)
1878#define FDT_IS_ANY                      0x1f            /* all the above */
1879
1880/* We set a reasonable limit on the number of nested nodes */
1881#define FDT_MAX_DEPTH                   32
1882
1883/* Decribes what we want to include from the current tag */
1884enum want_t {
1885        WANT_NOTHING,
1886        WANT_NODES_ONLY,                /* No properties */
1887        WANT_NODES_AND_PROPS,           /* Everything for one level */
1888        WANT_ALL_NODES_AND_PROPS        /* Everything for all levels */
1889};
1890
1891/* Keeps track of the state at parent nodes */
1892struct fdt_subnode_stack {
1893        int offset;             /* Offset of node */
1894        enum want_t want;       /* The 'want' value here */
1895        int included;           /* 1 if we included this node, 0 if not */
1896};
1897
1898struct fdt_region_ptrs {
1899        int depth;                      /* Current tree depth */
1900        int done;                       /* What we have completed scanning */
1901        enum want_t want;               /* What we are currently including */
1902        char *end;                      /* Pointer to end of full node path */
1903        int nextoffset;                 /* Next node offset to check */
1904};
1905
1906/* The state of our finding algortihm */
1907struct fdt_region_state {
1908        struct fdt_subnode_stack stack[FDT_MAX_DEPTH];  /* node stack */
1909        struct fdt_region *region;      /* Contains list of regions found */
1910        int count;                      /* Numnber of regions found */
1911        const void *fdt;                /* FDT blob */
1912        int max_regions;                /* Maximum regions to find */
1913        int can_merge;          /* 1 if we can merge with previous region */
1914        int start;                      /* Start position of current region */
1915        struct fdt_region_ptrs ptrs;    /* Pointers for what we are up to */
1916};
1917
1918/**
1919 * fdt_find_regions() - find regions in device tree
1920 *
1921 * Given a list of nodes to include and properties to exclude, find
1922 * the regions of the device tree which describe those included parts.
1923 *
1924 * The intent is to get a list of regions which will be invariant provided
1925 * those parts are invariant. For example, if you request a list of regions
1926 * for all nodes but exclude the property "data", then you will get the
1927 * same region contents regardless of any change to "data" properties.
1928 *
1929 * This function can be used to produce a byte-stream to send to a hashing
1930 * function to verify that critical parts of the FDT have not changed.
1931 *
1932 * Nodes which are given in 'inc' are included in the region list, as
1933 * are the names of the immediate subnodes nodes (but not the properties
1934 * or subnodes of those subnodes).
1935 *
1936 * For eaxample "/" means to include the root node, all root properties
1937 * and the FDT_BEGIN_NODE and FDT_END_NODE of all subnodes of /. The latter
1938 * ensures that we capture the names of the subnodes. In a hashing situation
1939 * it prevents the root node from changing at all Any change to non-excluded
1940 * properties, names of subnodes or number of subnodes would be detected.
1941 *
1942 * When used with FITs this provides the ability to hash and sign parts of
1943 * the FIT based on different configurations in the FIT. Then it is
1944 * impossible to change anything about that configuration (include images
1945 * attached to the configuration), but it may be possible to add new
1946 * configurations, new images or new signatures within the existing
1947 * framework.
1948 *
1949 * Adding new properties to a device tree may result in the string table
1950 * being extended (if the new property names are different from those
1951 * already added). This function can optionally include a region for
1952 * the string table so that this can be part of the hash too.
1953 *
1954 * The device tree header is not included in the list.
1955 *
1956 * @fdt:        Device tree to check
1957 * @inc:        List of node paths to included
1958 * @inc_count:  Number of node paths in list
1959 * @exc_prop:   List of properties names to exclude
1960 * @exc_prop_count:     Number of properties in exclude list
1961 * @region:     Returns list of regions
1962 * @max_region: Maximum length of region list
1963 * @path:       Pointer to a temporary string for the function to use for
1964 *              building path names
1965 * @path_len:   Length of path, must be large enough to hold the longest
1966 *              path in the tree
1967 * @add_string_tab:     1 to add a region for the string table
1968 * @return number of regions in list. If this is >max_regions then the
1969 * region array was exhausted. You should increase max_regions and try
1970 * the call again.
1971 */
1972int fdt_find_regions(const void *fdt, char * const inc[], int inc_count,
1973                     char * const exc_prop[], int exc_prop_count,
1974                     struct fdt_region region[], int max_regions,
1975                     char *path, int path_len, int add_string_tab);
1976
1977/**
1978 * fdt_first_region() - find regions in device tree
1979 *
1980 * Given a nodes and properties to include and properties to exclude, find
1981 * the regions of the device tree which describe those included parts.
1982 *
1983 * The use for this function is twofold. Firstly it provides a convenient
1984 * way of performing a structure-aware grep of the tree. For example it is
1985 * possible to grep for a node and get all the properties associated with
1986 * that node. Trees can be subsetted easily, by specifying the nodes that
1987 * are required, and then writing out the regions returned by this function.
1988 * This is useful for small resource-constrained systems, such as boot
1989 * loaders, which want to use an FDT but do not need to know about all of
1990 * it.
1991 *
1992 * Secondly it makes it easy to hash parts of the tree and detect changes.
1993 * The intent is to get a list of regions which will be invariant provided
1994 * those parts are invariant. For example, if you request a list of regions
1995 * for all nodes but exclude the property "data", then you will get the
1996 * same region contents regardless of any change to "data" properties.
1997 *
1998 * This function can be used to produce a byte-stream to send to a hashing
1999 * function to verify that critical parts of the FDT have not changed.
2000 * Note that semantically null changes in order could still cause false
2001 * hash misses. Such reordering might happen if the tree is regenerated
2002 * from source, and nodes are reordered (the bytes-stream will be emitted
2003 * in a different order and mnay hash functions will detect this). However
2004 * if an existing tree is modified using libfdt functions, such as
2005 * fdt_add_subnode() and fdt_setprop(), then this problem is avoided.
2006 *
2007 * The nodes/properties to include/exclude are defined by a function
2008 * provided by the caller. This function is called for each node and
2009 * property, and must return:
2010 *
2011 *    0 - to exclude this part
2012 *    1 - to include this part
2013 *   -1 - for FDT_IS_PROP only: no information is available, so include
2014 *              if its containing node is included
2015 *
2016 * The last case is only used to deal with properties. Often a property is
2017 * included if its containing node is included - this is the case where
2018 * -1 is returned.. However if the property is specifically required to be
2019 * included/excluded, then 0 or 1 can be returned. Note that including a
2020 * property when the FDT_REG_SUPERNODES flag is given will force its
2021 * containing node to be included since it is not valid to have a property
2022 * that is not in a node.
2023 *
2024 * Using the information provided, the inclusion of a node can be controlled
2025 * either by a node name or its compatible string, or any other property
2026 * that the function can determine.
2027 *
2028 * As an example, including node "/" means to include the root node and all
2029 * root properties. A flag provides a way of also including supernodes (of
2030 * which there is none for the root node), and another flag includes
2031 * immediate subnodes, so in this case we would get the FDT_BEGIN_NODE and
2032 * FDT_END_NODE of all subnodes of /.
2033 *
2034 * The subnode feature helps in a hashing situation since it prevents the
2035 * root node from changing at all. Any change to non-excluded properties,
2036 * names of subnodes or number of subnodes would be detected.
2037 *
2038 * When used with FITs this provides the ability to hash and sign parts of
2039 * the FIT based on different configurations in the FIT. Then it is
2040 * impossible to change anything about that configuration (include images
2041 * attached to the configuration), but it may be possible to add new
2042 * configurations, new images or new signatures within the existing
2043 * framework.
2044 *
2045 * Adding new properties to a device tree may result in the string table
2046 * being extended (if the new property names are different from those
2047 * already added). This function can optionally include a region for
2048 * the string table so that this can be part of the hash too. This is always
2049 * the last region.
2050 *
2051 * The FDT also has a mem_rsvmap table which can also be included, and is
2052 * always the first region if so.
2053 *
2054 * The device tree header is not included in the region list. Since the
2055 * contents of the FDT are changing (shrinking, often), the caller will need
2056 * to regenerate the header anyway.
2057 *
2058 * @fdt:        Device tree to check
2059 * @h_include:  Function to call to determine whether to include a part or
2060 *              not:
2061 *
2062 *              @priv: Private pointer as passed to fdt_find_regions()
2063 *              @fdt: Pointer to FDT blob
2064 *              @offset: Offset of this node / property
2065 *              @type: Type of this part, FDT_IS_...
2066 *              @data: Pointer to data (node name, property name, compatible
2067 *                      string, value (not yet supported)
2068 *              @size: Size of data, or 0 if none
2069 *              @return 0 to exclude, 1 to include, -1 if no information is
2070 *              available
2071 * @priv:       Private pointer passed to h_include
2072 * @region:     Returns list of regions, sorted by offset
2073 * @max_regions: Maximum length of region list
2074 * @path:       Pointer to a temporary string for the function to use for
2075 *              building path names
2076 * @path_len:   Length of path, must be large enough to hold the longest
2077 *              path in the tree
2078 * @flags:      Various flags that control the region algortihm, see
2079 *              FDT_REG_...
2080 * @return number of regions in list. If this is >max_regions then the
2081 * region array was exhausted. You should increase max_regions and try
2082 * the call again. Only the first max_regions elements are available in the
2083 * array.
2084 *
2085 * On error a -ve value is return, which can be:
2086 *
2087 *      -FDT_ERR_BADSTRUCTURE (too deep or more END tags than BEGIN tags
2088 *      -FDT_ERR_BADLAYOUT
2089 *      -FDT_ERR_NOSPACE (path area is too small)
2090 */
2091int fdt_first_region(const void *fdt,
2092                int (*h_include)(void *priv, const void *fdt, int offset,
2093                                 int type, const char *data, int size),
2094                void *priv, struct fdt_region *region,
2095                char *path, int path_len, int flags,
2096                struct fdt_region_state *info);
2097
2098/** fdt_next_region() - find next region
2099 *
2100 * See fdt_first_region() for full description. This function finds the
2101 * next region according to the provided parameters, which must be the same
2102 * as passed to fdt_first_region().
2103 *
2104 * This function can additionally return -FDT_ERR_NOTFOUND when there are no
2105 * more regions
2106 */
2107int fdt_next_region(const void *fdt,
2108                int (*h_include)(void *priv, const void *fdt, int offset,
2109                                 int type, const char *data, int size),
2110                void *priv, struct fdt_region *region,
2111                char *path, int path_len, int flags,
2112                struct fdt_region_state *info);
2113
2114/**
2115 * fdt_add_alias_regions() - find aliases that point to existing regions
2116 *
2117 * Once a device tree grep is complete some of the nodes will be present
2118 * and some will have been dropped. This function checks all the alias nodes
2119 * to figure out which points point to nodes which are still present. These
2120 * aliases need to be kept, along with the nodes they reference.
2121 *
2122 * Given a list of regions function finds the aliases that still apply and
2123 * adds more regions to the list for these. This function is called after
2124 * fdt_next_region() has finished returning regions and requires the same
2125 * state.
2126 *
2127 * @fdt:        Device tree file to reference
2128 * @region:     List of regions that will be kept
2129 * @count:      Number of regions
2130 * @max_regions: Number of entries that can fit in @region
2131 * @info:       Region state as returned from fdt_next_region()
2132 * @return new number of regions in @region (i.e. count + the number added)
2133 * or -FDT_ERR_NOSPACE if there was not enough space.
2134 */
2135int fdt_add_alias_regions(const void *fdt, struct fdt_region *region, int count,
2136                          int max_regions, struct fdt_region_state *info);
2137#endif /* SWIG */
2138
2139#endif /* _LIBFDT_H */
2140