uboot/drivers/mtd/ubi/build.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2007
   4 *
   5 * SPDX-License-Identifier:     GPL-2.0+
   6 *
   7 * Author: Artem Bityutskiy (Битюцкий Артём),
   8 *         Frank Haverkamp
   9 */
  10
  11/*
  12 * This file includes UBI initialization and building of UBI devices.
  13 *
  14 * When UBI is initialized, it attaches all the MTD devices specified as the
  15 * module load parameters or the kernel boot parameters. If MTD devices were
  16 * specified, UBI does not attach any MTD device, but it is possible to do
  17 * later using the "UBI control device".
  18 */
  19
  20#ifndef __UBOOT__
  21#include <linux/module.h>
  22#include <linux/moduleparam.h>
  23#include <linux/stringify.h>
  24#include <linux/namei.h>
  25#include <linux/stat.h>
  26#include <linux/miscdevice.h>
  27#include <linux/log2.h>
  28#include <linux/kthread.h>
  29#include <linux/kernel.h>
  30#include <linux/slab.h>
  31#include <linux/major.h>
  32#else
  33#include <linux/bug.h>
  34#include <linux/log2.h>
  35#endif
  36#include <linux/err.h>
  37#include <ubi_uboot.h>
  38#include <linux/mtd/partitions.h>
  39
  40#include "ubi.h"
  41
  42/* Maximum length of the 'mtd=' parameter */
  43#define MTD_PARAM_LEN_MAX 64
  44
  45/* Maximum number of comma-separated items in the 'mtd=' parameter */
  46#define MTD_PARAM_MAX_COUNT 4
  47
  48/* Maximum value for the number of bad PEBs per 1024 PEBs */
  49#define MAX_MTD_UBI_BEB_LIMIT 768
  50
  51#ifdef CONFIG_MTD_UBI_MODULE
  52#define ubi_is_module() 1
  53#else
  54#define ubi_is_module() 0
  55#endif
  56
  57#if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
  58#error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
  59#endif
  60
  61/**
  62 * struct mtd_dev_param - MTD device parameter description data structure.
  63 * @name: MTD character device node path, MTD device name, or MTD device number
  64 *        string
  65 * @vid_hdr_offs: VID header offset
  66 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
  67 */
  68struct mtd_dev_param {
  69        char name[MTD_PARAM_LEN_MAX];
  70        int ubi_num;
  71        int vid_hdr_offs;
  72        int max_beb_per1024;
  73};
  74
  75/* Numbers of elements set in the @mtd_dev_param array */
  76static int __initdata mtd_devs;
  77
  78/* MTD devices specification parameters */
  79static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
  80#ifndef __UBOOT__
  81#ifdef CONFIG_MTD_UBI_FASTMAP
  82/* UBI module parameter to enable fastmap automatically on non-fastmap images */
  83static bool fm_autoconvert;
  84static bool fm_debug;
  85#endif
  86#else
  87#ifdef CONFIG_MTD_UBI_FASTMAP
  88#if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT)
  89#define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0
  90#endif
  91static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT;
  92#if !defined(CONFIG_MTD_UBI_FM_DEBUG)
  93#define CONFIG_MTD_UBI_FM_DEBUG 0
  94#endif
  95static bool fm_debug = CONFIG_MTD_UBI_FM_DEBUG;
  96#endif
  97#endif
  98
  99/* Slab cache for wear-leveling entries */
 100struct kmem_cache *ubi_wl_entry_slab;
 101
 102#ifndef __UBOOT__
 103/* UBI control character device */
 104static struct miscdevice ubi_ctrl_cdev = {
 105        .minor = MISC_DYNAMIC_MINOR,
 106        .name = "ubi_ctrl",
 107        .fops = &ubi_ctrl_cdev_operations,
 108};
 109#endif
 110
 111/* All UBI devices in system */
 112#ifndef __UBOOT__
 113static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
 114#else
 115struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
 116#endif
 117 
 118#ifndef __UBOOT__
 119/* Serializes UBI devices creations and removals */
 120DEFINE_MUTEX(ubi_devices_mutex);
 121
 122/* Protects @ubi_devices and @ubi->ref_count */
 123static DEFINE_SPINLOCK(ubi_devices_lock);
 124
 125/* "Show" method for files in '/<sysfs>/class/ubi/' */
 126static ssize_t ubi_version_show(struct class *class,
 127                                struct class_attribute *attr, char *buf)
 128{
 129        return sprintf(buf, "%d\n", UBI_VERSION);
 130}
 131
 132/* UBI version attribute ('/<sysfs>/class/ubi/version') */
 133static struct class_attribute ubi_class_attrs[] = {
 134        __ATTR(version, S_IRUGO, ubi_version_show, NULL),
 135        __ATTR_NULL
 136};
 137
 138/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
 139struct class ubi_class = {
 140        .name           = UBI_NAME_STR,
 141        .owner          = THIS_MODULE,
 142        .class_attrs    = ubi_class_attrs,
 143};
 144
 145static ssize_t dev_attribute_show(struct device *dev,
 146                                  struct device_attribute *attr, char *buf);
 147
 148/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
 149static struct device_attribute dev_eraseblock_size =
 150        __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
 151static struct device_attribute dev_avail_eraseblocks =
 152        __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 153static struct device_attribute dev_total_eraseblocks =
 154        __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 155static struct device_attribute dev_volumes_count =
 156        __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
 157static struct device_attribute dev_max_ec =
 158        __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
 159static struct device_attribute dev_reserved_for_bad =
 160        __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
 161static struct device_attribute dev_bad_peb_count =
 162        __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
 163static struct device_attribute dev_max_vol_count =
 164        __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
 165static struct device_attribute dev_min_io_size =
 166        __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
 167static struct device_attribute dev_bgt_enabled =
 168        __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
 169static struct device_attribute dev_mtd_num =
 170        __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
 171#endif
 172
 173/**
 174 * ubi_volume_notify - send a volume change notification.
 175 * @ubi: UBI device description object
 176 * @vol: volume description object of the changed volume
 177 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 178 *
 179 * This is a helper function which notifies all subscribers about a volume
 180 * change event (creation, removal, re-sizing, re-naming, updating). Returns
 181 * zero in case of success and a negative error code in case of failure.
 182 */
 183int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
 184{
 185        int ret;
 186        struct ubi_notification nt;
 187
 188        ubi_do_get_device_info(ubi, &nt.di);
 189        ubi_do_get_volume_info(ubi, vol, &nt.vi);
 190
 191        switch (ntype) {
 192        case UBI_VOLUME_ADDED:
 193        case UBI_VOLUME_REMOVED:
 194        case UBI_VOLUME_RESIZED:
 195        case UBI_VOLUME_RENAMED:
 196                ret = ubi_update_fastmap(ubi);
 197                if (ret)
 198                        ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
 199        }
 200
 201        return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
 202}
 203
 204/**
 205 * ubi_notify_all - send a notification to all volumes.
 206 * @ubi: UBI device description object
 207 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 208 * @nb: the notifier to call
 209 *
 210 * This function walks all volumes of UBI device @ubi and sends the @ntype
 211 * notification for each volume. If @nb is %NULL, then all registered notifiers
 212 * are called, otherwise only the @nb notifier is called. Returns the number of
 213 * sent notifications.
 214 */
 215int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
 216{
 217        struct ubi_notification nt;
 218        int i, count = 0;
 219#ifndef __UBOOT__
 220        int ret;
 221#endif
 222
 223        ubi_do_get_device_info(ubi, &nt.di);
 224
 225        mutex_lock(&ubi->device_mutex);
 226        for (i = 0; i < ubi->vtbl_slots; i++) {
 227                /*
 228                 * Since the @ubi->device is locked, and we are not going to
 229                 * change @ubi->volumes, we do not have to lock
 230                 * @ubi->volumes_lock.
 231                 */
 232                if (!ubi->volumes[i])
 233                        continue;
 234
 235                ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
 236#ifndef __UBOOT__
 237                if (nb)
 238                        nb->notifier_call(nb, ntype, &nt);
 239                else
 240                        ret = blocking_notifier_call_chain(&ubi_notifiers, ntype,
 241                                                     &nt);
 242#endif
 243                count += 1;
 244        }
 245        mutex_unlock(&ubi->device_mutex);
 246
 247        return count;
 248}
 249
 250/**
 251 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
 252 * @nb: the notifier to call
 253 *
 254 * This function walks all UBI devices and volumes and sends the
 255 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
 256 * registered notifiers are called, otherwise only the @nb notifier is called.
 257 * Returns the number of sent notifications.
 258 */
 259int ubi_enumerate_volumes(struct notifier_block *nb)
 260{
 261        int i, count = 0;
 262
 263        /*
 264         * Since the @ubi_devices_mutex is locked, and we are not going to
 265         * change @ubi_devices, we do not have to lock @ubi_devices_lock.
 266         */
 267        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 268                struct ubi_device *ubi = ubi_devices[i];
 269
 270                if (!ubi)
 271                        continue;
 272                count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
 273        }
 274
 275        return count;
 276}
 277
 278/**
 279 * ubi_get_device - get UBI device.
 280 * @ubi_num: UBI device number
 281 *
 282 * This function returns UBI device description object for UBI device number
 283 * @ubi_num, or %NULL if the device does not exist. This function increases the
 284 * device reference count to prevent removal of the device. In other words, the
 285 * device cannot be removed if its reference count is not zero.
 286 */
 287struct ubi_device *ubi_get_device(int ubi_num)
 288{
 289        struct ubi_device *ubi;
 290
 291        spin_lock(&ubi_devices_lock);
 292        ubi = ubi_devices[ubi_num];
 293        if (ubi) {
 294                ubi_assert(ubi->ref_count >= 0);
 295                ubi->ref_count += 1;
 296                get_device(&ubi->dev);
 297        }
 298        spin_unlock(&ubi_devices_lock);
 299
 300        return ubi;
 301}
 302
 303/**
 304 * ubi_put_device - drop an UBI device reference.
 305 * @ubi: UBI device description object
 306 */
 307void ubi_put_device(struct ubi_device *ubi)
 308{
 309        spin_lock(&ubi_devices_lock);
 310        ubi->ref_count -= 1;
 311        put_device(&ubi->dev);
 312        spin_unlock(&ubi_devices_lock);
 313}
 314
 315/**
 316 * ubi_get_by_major - get UBI device by character device major number.
 317 * @major: major number
 318 *
 319 * This function is similar to 'ubi_get_device()', but it searches the device
 320 * by its major number.
 321 */
 322struct ubi_device *ubi_get_by_major(int major)
 323{
 324        int i;
 325        struct ubi_device *ubi;
 326
 327        spin_lock(&ubi_devices_lock);
 328        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 329                ubi = ubi_devices[i];
 330                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 331                        ubi_assert(ubi->ref_count >= 0);
 332                        ubi->ref_count += 1;
 333                        get_device(&ubi->dev);
 334                        spin_unlock(&ubi_devices_lock);
 335                        return ubi;
 336                }
 337        }
 338        spin_unlock(&ubi_devices_lock);
 339
 340        return NULL;
 341}
 342
 343/**
 344 * ubi_major2num - get UBI device number by character device major number.
 345 * @major: major number
 346 *
 347 * This function searches UBI device number object by its major number. If UBI
 348 * device was not found, this function returns -ENODEV, otherwise the UBI device
 349 * number is returned.
 350 */
 351int ubi_major2num(int major)
 352{
 353        int i, ubi_num = -ENODEV;
 354
 355        spin_lock(&ubi_devices_lock);
 356        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 357                struct ubi_device *ubi = ubi_devices[i];
 358
 359                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 360                        ubi_num = ubi->ubi_num;
 361                        break;
 362                }
 363        }
 364        spin_unlock(&ubi_devices_lock);
 365
 366        return ubi_num;
 367}
 368
 369#ifndef __UBOOT__
 370/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
 371static ssize_t dev_attribute_show(struct device *dev,
 372                                  struct device_attribute *attr, char *buf)
 373{
 374        ssize_t ret;
 375        struct ubi_device *ubi;
 376
 377        /*
 378         * The below code looks weird, but it actually makes sense. We get the
 379         * UBI device reference from the contained 'struct ubi_device'. But it
 380         * is unclear if the device was removed or not yet. Indeed, if the
 381         * device was removed before we increased its reference count,
 382         * 'ubi_get_device()' will return -ENODEV and we fail.
 383         *
 384         * Remember, 'struct ubi_device' is freed in the release function, so
 385         * we still can use 'ubi->ubi_num'.
 386         */
 387        ubi = container_of(dev, struct ubi_device, dev);
 388        ubi = ubi_get_device(ubi->ubi_num);
 389        if (!ubi)
 390                return -ENODEV;
 391
 392        if (attr == &dev_eraseblock_size)
 393                ret = sprintf(buf, "%d\n", ubi->leb_size);
 394        else if (attr == &dev_avail_eraseblocks)
 395                ret = sprintf(buf, "%d\n", ubi->avail_pebs);
 396        else if (attr == &dev_total_eraseblocks)
 397                ret = sprintf(buf, "%d\n", ubi->good_peb_count);
 398        else if (attr == &dev_volumes_count)
 399                ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
 400        else if (attr == &dev_max_ec)
 401                ret = sprintf(buf, "%d\n", ubi->max_ec);
 402        else if (attr == &dev_reserved_for_bad)
 403                ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
 404        else if (attr == &dev_bad_peb_count)
 405                ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
 406        else if (attr == &dev_max_vol_count)
 407                ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
 408        else if (attr == &dev_min_io_size)
 409                ret = sprintf(buf, "%d\n", ubi->min_io_size);
 410        else if (attr == &dev_bgt_enabled)
 411                ret = sprintf(buf, "%d\n", ubi->thread_enabled);
 412        else if (attr == &dev_mtd_num)
 413                ret = sprintf(buf, "%d\n", ubi->mtd->index);
 414        else
 415                ret = -EINVAL;
 416
 417        ubi_put_device(ubi);
 418        return ret;
 419}
 420
 421static struct attribute *ubi_dev_attrs[] = {
 422        &dev_eraseblock_size.attr,
 423        &dev_avail_eraseblocks.attr,
 424        &dev_total_eraseblocks.attr,
 425        &dev_volumes_count.attr,
 426        &dev_max_ec.attr,
 427        &dev_reserved_for_bad.attr,
 428        &dev_bad_peb_count.attr,
 429        &dev_max_vol_count.attr,
 430        &dev_min_io_size.attr,
 431        &dev_bgt_enabled.attr,
 432        &dev_mtd_num.attr,
 433        NULL
 434};
 435ATTRIBUTE_GROUPS(ubi_dev);
 436
 437static void dev_release(struct device *dev)
 438{
 439        struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
 440
 441        kfree(ubi);
 442}
 443
 444/**
 445 * ubi_sysfs_init - initialize sysfs for an UBI device.
 446 * @ubi: UBI device description object
 447 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
 448 *       taken
 449 *
 450 * This function returns zero in case of success and a negative error code in
 451 * case of failure.
 452 */
 453static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
 454{
 455        int err;
 456
 457        ubi->dev.release = dev_release;
 458        ubi->dev.devt = ubi->cdev.dev;
 459        ubi->dev.class = &ubi_class;
 460        ubi->dev.groups = ubi_dev_groups;
 461        dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
 462        err = device_register(&ubi->dev);
 463        if (err)
 464                return err;
 465
 466        *ref = 1;
 467        return 0;
 468}
 469
 470/**
 471 * ubi_sysfs_close - close sysfs for an UBI device.
 472 * @ubi: UBI device description object
 473 */
 474static void ubi_sysfs_close(struct ubi_device *ubi)
 475{
 476        device_unregister(&ubi->dev);
 477}
 478#endif
 479
 480/**
 481 * kill_volumes - destroy all user volumes.
 482 * @ubi: UBI device description object
 483 */
 484static void kill_volumes(struct ubi_device *ubi)
 485{
 486        int i;
 487
 488        for (i = 0; i < ubi->vtbl_slots; i++)
 489                if (ubi->volumes[i])
 490                        ubi_free_volume(ubi, ubi->volumes[i]);
 491}
 492
 493/**
 494 * uif_init - initialize user interfaces for an UBI device.
 495 * @ubi: UBI device description object
 496 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
 497 *       taken, otherwise set to %0
 498 *
 499 * This function initializes various user interfaces for an UBI device. If the
 500 * initialization fails at an early stage, this function frees all the
 501 * resources it allocated, returns an error, and @ref is set to %0. However,
 502 * if the initialization fails after the UBI device was registered in the
 503 * driver core subsystem, this function takes a reference to @ubi->dev, because
 504 * otherwise the release function ('dev_release()') would free whole @ubi
 505 * object. The @ref argument is set to %1 in this case. The caller has to put
 506 * this reference.
 507 *
 508 * This function returns zero in case of success and a negative error code in
 509 * case of failure.
 510 */
 511static int uif_init(struct ubi_device *ubi, int *ref)
 512{
 513        int i, err;
 514#ifndef __UBOOT__
 515        dev_t dev;
 516#endif
 517
 518        *ref = 0;
 519        sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
 520
 521        /*
 522         * Major numbers for the UBI character devices are allocated
 523         * dynamically. Major numbers of volume character devices are
 524         * equivalent to ones of the corresponding UBI character device. Minor
 525         * numbers of UBI character devices are 0, while minor numbers of
 526         * volume character devices start from 1. Thus, we allocate one major
 527         * number and ubi->vtbl_slots + 1 minor numbers.
 528         */
 529        err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
 530        if (err) {
 531                ubi_err(ubi, "cannot register UBI character devices");
 532                return err;
 533        }
 534
 535        ubi_assert(MINOR(dev) == 0);
 536        cdev_init(&ubi->cdev, &ubi_cdev_operations);
 537        dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
 538        ubi->cdev.owner = THIS_MODULE;
 539
 540        err = cdev_add(&ubi->cdev, dev, 1);
 541        if (err) {
 542                ubi_err(ubi, "cannot add character device");
 543                goto out_unreg;
 544        }
 545
 546        err = ubi_sysfs_init(ubi, ref);
 547        if (err)
 548                goto out_sysfs;
 549
 550        for (i = 0; i < ubi->vtbl_slots; i++)
 551                if (ubi->volumes[i]) {
 552                        err = ubi_add_volume(ubi, ubi->volumes[i]);
 553                        if (err) {
 554                                ubi_err(ubi, "cannot add volume %d", i);
 555                                goto out_volumes;
 556                        }
 557                }
 558
 559        return 0;
 560
 561out_volumes:
 562        kill_volumes(ubi);
 563out_sysfs:
 564        if (*ref)
 565                get_device(&ubi->dev);
 566        ubi_sysfs_close(ubi);
 567        cdev_del(&ubi->cdev);
 568out_unreg:
 569        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 570        ubi_err(ubi, "cannot initialize UBI %s, error %d",
 571                ubi->ubi_name, err);
 572        return err;
 573}
 574
 575/**
 576 * uif_close - close user interfaces for an UBI device.
 577 * @ubi: UBI device description object
 578 *
 579 * Note, since this function un-registers UBI volume device objects (@vol->dev),
 580 * the memory allocated voe the volumes is freed as well (in the release
 581 * function).
 582 */
 583static void uif_close(struct ubi_device *ubi)
 584{
 585        kill_volumes(ubi);
 586        ubi_sysfs_close(ubi);
 587        cdev_del(&ubi->cdev);
 588        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 589}
 590
 591/**
 592 * ubi_free_internal_volumes - free internal volumes.
 593 * @ubi: UBI device description object
 594 */
 595void ubi_free_internal_volumes(struct ubi_device *ubi)
 596{
 597        int i;
 598
 599        for (i = ubi->vtbl_slots;
 600             i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 601                kfree(ubi->volumes[i]->eba_tbl);
 602                kfree(ubi->volumes[i]);
 603        }
 604}
 605
 606static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
 607{
 608        int limit, device_pebs;
 609        uint64_t device_size;
 610
 611        if (!max_beb_per1024)
 612                return 0;
 613
 614        /*
 615         * Here we are using size of the entire flash chip and
 616         * not just the MTD partition size because the maximum
 617         * number of bad eraseblocks is a percentage of the
 618         * whole device and bad eraseblocks are not fairly
 619         * distributed over the flash chip. So the worst case
 620         * is that all the bad eraseblocks of the chip are in
 621         * the MTD partition we are attaching (ubi->mtd).
 622         */
 623        device_size = mtd_get_device_size(ubi->mtd);
 624        device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
 625        limit = mult_frac(device_pebs, max_beb_per1024, 1024);
 626
 627        /* Round it up */
 628        if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
 629                limit += 1;
 630
 631        return limit;
 632}
 633
 634/**
 635 * io_init - initialize I/O sub-system for a given UBI device.
 636 * @ubi: UBI device description object
 637 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 638 *
 639 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
 640 * assumed:
 641 *   o EC header is always at offset zero - this cannot be changed;
 642 *   o VID header starts just after the EC header at the closest address
 643 *     aligned to @io->hdrs_min_io_size;
 644 *   o data starts just after the VID header at the closest address aligned to
 645 *     @io->min_io_size
 646 *
 647 * This function returns zero in case of success and a negative error code in
 648 * case of failure.
 649 */
 650static int io_init(struct ubi_device *ubi, int max_beb_per1024)
 651{
 652        dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
 653        dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
 654
 655        if (ubi->mtd->numeraseregions != 0) {
 656                /*
 657                 * Some flashes have several erase regions. Different regions
 658                 * may have different eraseblock size and other
 659                 * characteristics. It looks like mostly multi-region flashes
 660                 * have one "main" region and one or more small regions to
 661                 * store boot loader code or boot parameters or whatever. I
 662                 * guess we should just pick the largest region. But this is
 663                 * not implemented.
 664                 */
 665                ubi_err(ubi, "multiple regions, not implemented");
 666                return -EINVAL;
 667        }
 668
 669        if (ubi->vid_hdr_offset < 0)
 670                return -EINVAL;
 671
 672        /*
 673         * Note, in this implementation we support MTD devices with 0x7FFFFFFF
 674         * physical eraseblocks maximum.
 675         */
 676
 677        ubi->peb_size   = ubi->mtd->erasesize;
 678        ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
 679        ubi->flash_size = ubi->mtd->size;
 680
 681        if (mtd_can_have_bb(ubi->mtd)) {
 682                ubi->bad_allowed = 1;
 683                ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
 684        }
 685
 686        if (ubi->mtd->type == MTD_NORFLASH) {
 687                ubi_assert(ubi->mtd->writesize == 1);
 688                ubi->nor_flash = 1;
 689        }
 690
 691        ubi->min_io_size = ubi->mtd->writesize;
 692        ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
 693
 694        /*
 695         * Make sure minimal I/O unit is power of 2. Note, there is no
 696         * fundamental reason for this assumption. It is just an optimization
 697         * which allows us to avoid costly division operations.
 698         */
 699        if (!is_power_of_2(ubi->min_io_size)) {
 700                ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
 701                        ubi->min_io_size);
 702                return -EINVAL;
 703        }
 704
 705        ubi_assert(ubi->hdrs_min_io_size > 0);
 706        ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
 707        ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
 708
 709        ubi->max_write_size = ubi->mtd->writebufsize;
 710        /*
 711         * Maximum write size has to be greater or equivalent to min. I/O
 712         * size, and be multiple of min. I/O size.
 713         */
 714        if (ubi->max_write_size < ubi->min_io_size ||
 715            ubi->max_write_size % ubi->min_io_size ||
 716            !is_power_of_2(ubi->max_write_size)) {
 717                ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
 718                        ubi->max_write_size, ubi->min_io_size);
 719                return -EINVAL;
 720        }
 721
 722        /* Calculate default aligned sizes of EC and VID headers */
 723        ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
 724        ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
 725
 726        dbg_gen("min_io_size      %d", ubi->min_io_size);
 727        dbg_gen("max_write_size   %d", ubi->max_write_size);
 728        dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
 729        dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
 730        dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
 731
 732        if (ubi->vid_hdr_offset == 0)
 733                /* Default offset */
 734                ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
 735                                      ubi->ec_hdr_alsize;
 736        else {
 737                ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
 738                                                ~(ubi->hdrs_min_io_size - 1);
 739                ubi->vid_hdr_shift = ubi->vid_hdr_offset -
 740                                                ubi->vid_hdr_aloffset;
 741        }
 742
 743        /* Similar for the data offset */
 744        ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
 745        ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
 746
 747        dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
 748        dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
 749        dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
 750        dbg_gen("leb_start        %d", ubi->leb_start);
 751
 752        /* The shift must be aligned to 32-bit boundary */
 753        if (ubi->vid_hdr_shift % 4) {
 754                ubi_err(ubi, "unaligned VID header shift %d",
 755                        ubi->vid_hdr_shift);
 756                return -EINVAL;
 757        }
 758
 759        /* Check sanity */
 760        if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
 761            ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
 762            ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
 763            ubi->leb_start & (ubi->min_io_size - 1)) {
 764                ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
 765                        ubi->vid_hdr_offset, ubi->leb_start);
 766                return -EINVAL;
 767        }
 768
 769        /*
 770         * Set maximum amount of physical erroneous eraseblocks to be 10%.
 771         * Erroneous PEB are those which have read errors.
 772         */
 773        ubi->max_erroneous = ubi->peb_count / 10;
 774        if (ubi->max_erroneous < 16)
 775                ubi->max_erroneous = 16;
 776        dbg_gen("max_erroneous    %d", ubi->max_erroneous);
 777
 778        /*
 779         * It may happen that EC and VID headers are situated in one minimal
 780         * I/O unit. In this case we can only accept this UBI image in
 781         * read-only mode.
 782         */
 783        if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
 784                ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
 785                ubi->ro_mode = 1;
 786        }
 787
 788        ubi->leb_size = ubi->peb_size - ubi->leb_start;
 789
 790        if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
 791                ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
 792                        ubi->mtd->index);
 793                ubi->ro_mode = 1;
 794        }
 795
 796        /*
 797         * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
 798         * unfortunately, MTD does not provide this information. We should loop
 799         * over all physical eraseblocks and invoke mtd->block_is_bad() for
 800         * each physical eraseblock. So, we leave @ubi->bad_peb_count
 801         * uninitialized so far.
 802         */
 803
 804        return 0;
 805}
 806
 807/**
 808 * autoresize - re-size the volume which has the "auto-resize" flag set.
 809 * @ubi: UBI device description object
 810 * @vol_id: ID of the volume to re-size
 811 *
 812 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
 813 * the volume table to the largest possible size. See comments in ubi-header.h
 814 * for more description of the flag. Returns zero in case of success and a
 815 * negative error code in case of failure.
 816 */
 817static int autoresize(struct ubi_device *ubi, int vol_id)
 818{
 819        struct ubi_volume_desc desc;
 820        struct ubi_volume *vol = ubi->volumes[vol_id];
 821        int err, old_reserved_pebs = vol->reserved_pebs;
 822
 823        if (ubi->ro_mode) {
 824                ubi_warn(ubi, "skip auto-resize because of R/O mode");
 825                return 0;
 826        }
 827
 828        /*
 829         * Clear the auto-resize flag in the volume in-memory copy of the
 830         * volume table, and 'ubi_resize_volume()' will propagate this change
 831         * to the flash.
 832         */
 833        ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
 834
 835        if (ubi->avail_pebs == 0) {
 836                struct ubi_vtbl_record vtbl_rec;
 837
 838                /*
 839                 * No available PEBs to re-size the volume, clear the flag on
 840                 * flash and exit.
 841                 */
 842                vtbl_rec = ubi->vtbl[vol_id];
 843                err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
 844                if (err)
 845                        ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
 846                                vol_id);
 847        } else {
 848                desc.vol = vol;
 849                err = ubi_resize_volume(&desc,
 850                                        old_reserved_pebs + ubi->avail_pebs);
 851                if (err)
 852                        ubi_err(ubi, "cannot auto-resize volume %d",
 853                                vol_id);
 854        }
 855
 856        if (err)
 857                return err;
 858
 859        ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
 860                vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
 861        return 0;
 862}
 863
 864/**
 865 * ubi_attach_mtd_dev - attach an MTD device.
 866 * @mtd: MTD device description object
 867 * @ubi_num: number to assign to the new UBI device
 868 * @vid_hdr_offset: VID header offset
 869 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 870 *
 871 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
 872 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
 873 * which case this function finds a vacant device number and assigns it
 874 * automatically. Returns the new UBI device number in case of success and a
 875 * negative error code in case of failure.
 876 *
 877 * Note, the invocations of this function has to be serialized by the
 878 * @ubi_devices_mutex.
 879 */
 880int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
 881                       int vid_hdr_offset, int max_beb_per1024)
 882{
 883        struct ubi_device *ubi;
 884        int i, err, ref = 0;
 885
 886        if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
 887                return -EINVAL;
 888
 889        if (!max_beb_per1024)
 890                max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
 891
 892        /*
 893         * Check if we already have the same MTD device attached.
 894         *
 895         * Note, this function assumes that UBI devices creations and deletions
 896         * are serialized, so it does not take the &ubi_devices_lock.
 897         */
 898        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 899                ubi = ubi_devices[i];
 900                if (ubi && mtd->index == ubi->mtd->index) {
 901                        ubi_err(ubi, "mtd%d is already attached to ubi%d",
 902                                mtd->index, i);
 903                        return -EEXIST;
 904                }
 905        }
 906
 907        /*
 908         * Make sure this MTD device is not emulated on top of an UBI volume
 909         * already. Well, generally this recursion works fine, but there are
 910         * different problems like the UBI module takes a reference to itself
 911         * by attaching (and thus, opening) the emulated MTD device. This
 912         * results in inability to unload the module. And in general it makes
 913         * no sense to attach emulated MTD devices, so we prohibit this.
 914         */
 915        if (mtd->type == MTD_UBIVOLUME) {
 916                ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
 917                        mtd->index);
 918                return -EINVAL;
 919        }
 920
 921        if (ubi_num == UBI_DEV_NUM_AUTO) {
 922                /* Search for an empty slot in the @ubi_devices array */
 923                for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
 924                        if (!ubi_devices[ubi_num])
 925                                break;
 926                if (ubi_num == UBI_MAX_DEVICES) {
 927                        ubi_err(ubi, "only %d UBI devices may be created",
 928                                UBI_MAX_DEVICES);
 929                        return -ENFILE;
 930                }
 931        } else {
 932                if (ubi_num >= UBI_MAX_DEVICES)
 933                        return -EINVAL;
 934
 935                /* Make sure ubi_num is not busy */
 936                if (ubi_devices[ubi_num]) {
 937                        ubi_err(ubi, "already exists");
 938                        return -EEXIST;
 939                }
 940        }
 941
 942        ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
 943        if (!ubi)
 944                return -ENOMEM;
 945
 946        ubi->mtd = mtd;
 947        ubi->ubi_num = ubi_num;
 948        ubi->vid_hdr_offset = vid_hdr_offset;
 949        ubi->autoresize_vol_id = -1;
 950
 951#ifdef CONFIG_MTD_UBI_FASTMAP
 952        ubi->fm_pool.used = ubi->fm_pool.size = 0;
 953        ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
 954
 955        /*
 956         * fm_pool.max_size is 5% of the total number of PEBs but it's also
 957         * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
 958         */
 959        ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
 960                ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
 961        ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
 962                UBI_FM_MIN_POOL_SIZE);
 963
 964        ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
 965        ubi->fm_disabled = !fm_autoconvert;
 966        if (fm_debug)
 967                ubi_enable_dbg_chk_fastmap(ubi);
 968
 969        if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
 970            <= UBI_FM_MAX_START) {
 971                ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
 972                        UBI_FM_MAX_START);
 973                ubi->fm_disabled = 1;
 974        }
 975
 976        ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
 977        ubi_msg(ubi, "default fastmap WL pool size: %d",
 978                ubi->fm_wl_pool.max_size);
 979#else
 980        ubi->fm_disabled = 1;
 981#endif
 982        mutex_init(&ubi->buf_mutex);
 983        mutex_init(&ubi->ckvol_mutex);
 984        mutex_init(&ubi->device_mutex);
 985        spin_lock_init(&ubi->volumes_lock);
 986        init_rwsem(&ubi->fm_protect);
 987        init_rwsem(&ubi->fm_eba_sem);
 988
 989        ubi_msg(ubi, "attaching mtd%d", mtd->index);
 990
 991        err = io_init(ubi, max_beb_per1024);
 992        if (err)
 993                goto out_free;
 994
 995        err = -ENOMEM;
 996        ubi->peb_buf = vmalloc(ubi->peb_size);
 997        if (!ubi->peb_buf)
 998                goto out_free;
 999
1000#ifdef CONFIG_MTD_UBI_FASTMAP
1001        ubi->fm_size = ubi_calc_fm_size(ubi);
1002        ubi->fm_buf = vzalloc(ubi->fm_size);
1003        if (!ubi->fm_buf)
1004                goto out_free;
1005#endif
1006        err = ubi_attach(ubi, 0);
1007        if (err) {
1008                ubi_err(ubi, "failed to attach mtd%d, error %d",
1009                        mtd->index, err);
1010                goto out_free;
1011        }
1012
1013        if (ubi->autoresize_vol_id != -1) {
1014                err = autoresize(ubi, ubi->autoresize_vol_id);
1015                if (err)
1016                        goto out_detach;
1017        }
1018
1019        err = uif_init(ubi, &ref);
1020        if (err)
1021                goto out_detach;
1022
1023        err = ubi_debugfs_init_dev(ubi);
1024        if (err)
1025                goto out_uif;
1026
1027        ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1028        if (IS_ERR(ubi->bgt_thread)) {
1029                err = PTR_ERR(ubi->bgt_thread);
1030                ubi_err(ubi, "cannot spawn \"%s\", error %d",
1031                        ubi->bgt_name, err);
1032                goto out_debugfs;
1033        }
1034
1035        ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1036                mtd->index, mtd->name, ubi->flash_size >> 20);
1037        ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1038                ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1039        ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1040                ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1041        ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1042                ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1043        ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1044                ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1045        ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1046                ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1047                ubi->vtbl_slots);
1048        ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1049                ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1050                ubi->image_seq);
1051        ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1052                ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1053
1054        /*
1055         * The below lock makes sure we do not race with 'ubi_thread()' which
1056         * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1057         */
1058        spin_lock(&ubi->wl_lock);
1059        ubi->thread_enabled = 1;
1060#ifndef __UBOOT__
1061        wake_up_process(ubi->bgt_thread);
1062#else
1063        /*
1064         * U-Boot special: We have no bgt_thread in U-Boot!
1065         * So just call do_work() here directly.
1066         */
1067        err = do_work(ubi);
1068        if (err) {
1069                ubi_err(ubi, "%s: work failed with error code %d",
1070                        ubi->bgt_name, err);
1071        }
1072#endif
1073
1074        spin_unlock(&ubi->wl_lock);
1075
1076        ubi_devices[ubi_num] = ubi;
1077        ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1078        return ubi_num;
1079
1080out_debugfs:
1081        ubi_debugfs_exit_dev(ubi);
1082out_uif:
1083        get_device(&ubi->dev);
1084        ubi_assert(ref);
1085        uif_close(ubi);
1086out_detach:
1087        ubi_wl_close(ubi);
1088        ubi_free_internal_volumes(ubi);
1089        vfree(ubi->vtbl);
1090out_free:
1091        vfree(ubi->peb_buf);
1092        vfree(ubi->fm_buf);
1093        if (ref)
1094                put_device(&ubi->dev);
1095        else
1096                kfree(ubi);
1097        return err;
1098}
1099
1100/**
1101 * ubi_detach_mtd_dev - detach an MTD device.
1102 * @ubi_num: UBI device number to detach from
1103 * @anyway: detach MTD even if device reference count is not zero
1104 *
1105 * This function destroys an UBI device number @ubi_num and detaches the
1106 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1107 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1108 * exist.
1109 *
1110 * Note, the invocations of this function has to be serialized by the
1111 * @ubi_devices_mutex.
1112 */
1113int ubi_detach_mtd_dev(int ubi_num, int anyway)
1114{
1115        struct ubi_device *ubi;
1116
1117        if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1118                return -EINVAL;
1119
1120        ubi = ubi_get_device(ubi_num);
1121        if (!ubi)
1122                return -EINVAL;
1123
1124        spin_lock(&ubi_devices_lock);
1125        put_device(&ubi->dev);
1126        ubi->ref_count -= 1;
1127        if (ubi->ref_count) {
1128                if (!anyway) {
1129                        spin_unlock(&ubi_devices_lock);
1130                        return -EBUSY;
1131                }
1132                /* This may only happen if there is a bug */
1133                ubi_err(ubi, "%s reference count %d, destroy anyway",
1134                        ubi->ubi_name, ubi->ref_count);
1135        }
1136        ubi_devices[ubi_num] = NULL;
1137        spin_unlock(&ubi_devices_lock);
1138
1139        ubi_assert(ubi_num == ubi->ubi_num);
1140        ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1141        ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1142#ifdef CONFIG_MTD_UBI_FASTMAP
1143        /* If we don't write a new fastmap at detach time we lose all
1144         * EC updates that have been made since the last written fastmap.
1145         * In case of fastmap debugging we omit the update to simulate an
1146         * unclean shutdown. */
1147        if (!ubi_dbg_chk_fastmap(ubi))
1148                ubi_update_fastmap(ubi);
1149#endif
1150        /*
1151         * Before freeing anything, we have to stop the background thread to
1152         * prevent it from doing anything on this device while we are freeing.
1153         */
1154        if (ubi->bgt_thread)
1155                kthread_stop(ubi->bgt_thread);
1156
1157        /*
1158         * Get a reference to the device in order to prevent 'dev_release()'
1159         * from freeing the @ubi object.
1160         */
1161        get_device(&ubi->dev);
1162
1163        ubi_debugfs_exit_dev(ubi);
1164        uif_close(ubi);
1165
1166        ubi_wl_close(ubi);
1167        ubi_free_internal_volumes(ubi);
1168        vfree(ubi->vtbl);
1169        put_mtd_device(ubi->mtd);
1170        vfree(ubi->peb_buf);
1171        vfree(ubi->fm_buf);
1172        ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1173        put_device(&ubi->dev);
1174        return 0;
1175}
1176
1177#ifndef __UBOOT__
1178/**
1179 * open_mtd_by_chdev - open an MTD device by its character device node path.
1180 * @mtd_dev: MTD character device node path
1181 *
1182 * This helper function opens an MTD device by its character node device path.
1183 * Returns MTD device description object in case of success and a negative
1184 * error code in case of failure.
1185 */
1186static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1187{
1188        int err, major, minor, mode;
1189        struct path path;
1190
1191        /* Probably this is an MTD character device node path */
1192        err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1193        if (err)
1194                return ERR_PTR(err);
1195
1196        /* MTD device number is defined by the major / minor numbers */
1197        major = imajor(d_backing_inode(path.dentry));
1198        minor = iminor(d_backing_inode(path.dentry));
1199        mode = d_backing_inode(path.dentry)->i_mode;
1200        path_put(&path);
1201        if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1202                return ERR_PTR(-EINVAL);
1203
1204        if (minor & 1)
1205                /*
1206                 * Just do not think the "/dev/mtdrX" devices support is need,
1207                 * so do not support them to avoid doing extra work.
1208                 */
1209                return ERR_PTR(-EINVAL);
1210
1211        return get_mtd_device(NULL, minor / 2);
1212}
1213#endif
1214
1215/**
1216 * open_mtd_device - open MTD device by name, character device path, or number.
1217 * @mtd_dev: name, character device node path, or MTD device device number
1218 *
1219 * This function tries to open and MTD device described by @mtd_dev string,
1220 * which is first treated as ASCII MTD device number, and if it is not true, it
1221 * is treated as MTD device name, and if that is also not true, it is treated
1222 * as MTD character device node path. Returns MTD device description object in
1223 * case of success and a negative error code in case of failure.
1224 */
1225static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1226{
1227        struct mtd_info *mtd;
1228        int mtd_num;
1229        char *endp;
1230
1231        mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1232        if (*endp != '\0' || mtd_dev == endp) {
1233                /*
1234                 * This does not look like an ASCII integer, probably this is
1235                 * MTD device name.
1236                 */
1237                mtd = get_mtd_device_nm(mtd_dev);
1238#ifndef __UBOOT__
1239                if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1240                        /* Probably this is an MTD character device node path */
1241                        mtd = open_mtd_by_chdev(mtd_dev);
1242#endif
1243        } else
1244                mtd = get_mtd_device(NULL, mtd_num);
1245
1246        return mtd;
1247}
1248
1249#ifndef __UBOOT__
1250static int __init ubi_init(void)
1251#else
1252int ubi_init(void)
1253#endif
1254{
1255        int err, i, k;
1256
1257        /* Ensure that EC and VID headers have correct size */
1258        BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1259        BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1260
1261        if (mtd_devs > UBI_MAX_DEVICES) {
1262                pr_err("UBI error: too many MTD devices, maximum is %d",
1263                       UBI_MAX_DEVICES);
1264                return -EINVAL;
1265        }
1266
1267        /* Create base sysfs directory and sysfs files */
1268        err = class_register(&ubi_class);
1269        if (err < 0)
1270                return err;
1271
1272        err = misc_register(&ubi_ctrl_cdev);
1273        if (err) {
1274                pr_err("UBI error: cannot register device");
1275                goto out;
1276        }
1277
1278        ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1279                                              sizeof(struct ubi_wl_entry),
1280                                              0, 0, NULL);
1281        if (!ubi_wl_entry_slab) {
1282                err = -ENOMEM;
1283                goto out_dev_unreg;
1284        }
1285
1286        err = ubi_debugfs_init();
1287        if (err)
1288                goto out_slab;
1289
1290
1291        /* Attach MTD devices */
1292        for (i = 0; i < mtd_devs; i++) {
1293                struct mtd_dev_param *p = &mtd_dev_param[i];
1294                struct mtd_info *mtd;
1295
1296                cond_resched();
1297
1298                mtd = open_mtd_device(p->name);
1299                if (IS_ERR(mtd)) {
1300                        err = PTR_ERR(mtd);
1301                        pr_err("UBI error: cannot open mtd %s, error %d",
1302                               p->name, err);
1303                        /* See comment below re-ubi_is_module(). */
1304                        if (ubi_is_module())
1305                                goto out_detach;
1306                        continue;
1307                }
1308
1309                mutex_lock(&ubi_devices_mutex);
1310                err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1311                                         p->vid_hdr_offs, p->max_beb_per1024);
1312                mutex_unlock(&ubi_devices_mutex);
1313                if (err < 0) {
1314                        pr_err("UBI error: cannot attach mtd%d",
1315                               mtd->index);
1316                        put_mtd_device(mtd);
1317
1318                        /*
1319                         * Originally UBI stopped initializing on any error.
1320                         * However, later on it was found out that this
1321                         * behavior is not very good when UBI is compiled into
1322                         * the kernel and the MTD devices to attach are passed
1323                         * through the command line. Indeed, UBI failure
1324                         * stopped whole boot sequence.
1325                         *
1326                         * To fix this, we changed the behavior for the
1327                         * non-module case, but preserved the old behavior for
1328                         * the module case, just for compatibility. This is a
1329                         * little inconsistent, though.
1330                         */
1331                        if (ubi_is_module())
1332                                goto out_detach;
1333                }
1334        }
1335
1336        err = ubiblock_init();
1337        if (err) {
1338                pr_err("UBI error: block: cannot initialize, error %d", err);
1339
1340                /* See comment above re-ubi_is_module(). */
1341                if (ubi_is_module())
1342                        goto out_detach;
1343        }
1344
1345        return 0;
1346
1347out_detach:
1348        for (k = 0; k < i; k++)
1349                if (ubi_devices[k]) {
1350                        mutex_lock(&ubi_devices_mutex);
1351                        ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1352                        mutex_unlock(&ubi_devices_mutex);
1353                }
1354        ubi_debugfs_exit();
1355out_slab:
1356        kmem_cache_destroy(ubi_wl_entry_slab);
1357out_dev_unreg:
1358        misc_deregister(&ubi_ctrl_cdev);
1359out:
1360#ifdef __UBOOT__
1361        /* Reset any globals that the driver depends on being zeroed */
1362        mtd_devs = 0;
1363#endif
1364        class_unregister(&ubi_class);
1365        pr_err("UBI error: cannot initialize UBI, error %d", err);
1366        return err;
1367}
1368late_initcall(ubi_init);
1369
1370#ifndef __UBOOT__
1371static void __exit ubi_exit(void)
1372#else
1373void ubi_exit(void)
1374#endif
1375{
1376        int i;
1377
1378        ubiblock_exit();
1379
1380        for (i = 0; i < UBI_MAX_DEVICES; i++)
1381                if (ubi_devices[i]) {
1382                        mutex_lock(&ubi_devices_mutex);
1383                        ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1384                        mutex_unlock(&ubi_devices_mutex);
1385                }
1386        ubi_debugfs_exit();
1387        kmem_cache_destroy(ubi_wl_entry_slab);
1388        misc_deregister(&ubi_ctrl_cdev);
1389        class_unregister(&ubi_class);
1390#ifdef __UBOOT__
1391        /* Reset any globals that the driver depends on being zeroed */
1392        mtd_devs = 0;
1393#endif
1394}
1395module_exit(ubi_exit);
1396
1397/**
1398 * bytes_str_to_int - convert a number of bytes string into an integer.
1399 * @str: the string to convert
1400 *
1401 * This function returns positive resulting integer in case of success and a
1402 * negative error code in case of failure.
1403 */
1404static int __init bytes_str_to_int(const char *str)
1405{
1406        char *endp;
1407        unsigned long result;
1408
1409        result = simple_strtoul(str, &endp, 0);
1410        if (str == endp || result >= INT_MAX) {
1411                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1412                return -EINVAL;
1413        }
1414
1415        switch (*endp) {
1416        case 'G':
1417                result *= 1024;
1418        case 'M':
1419                result *= 1024;
1420        case 'K':
1421                result *= 1024;
1422                if (endp[1] == 'i' && endp[2] == 'B')
1423                        endp += 2;
1424        case '\0':
1425                break;
1426        default:
1427                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1428                return -EINVAL;
1429        }
1430
1431        return result;
1432}
1433
1434int kstrtoint(const char *s, unsigned int base, int *res)
1435{
1436        unsigned long long tmp;
1437
1438        tmp = simple_strtoull(s, NULL, base);
1439        if (tmp != (unsigned long long)(int)tmp)
1440                return -ERANGE;
1441
1442        return (int)tmp;
1443}
1444
1445/**
1446 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1447 * @val: the parameter value to parse
1448 * @kp: not used
1449 *
1450 * This function returns zero in case of success and a negative error code in
1451 * case of error.
1452 */
1453#ifndef __UBOOT__
1454static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1455#else
1456int ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1457#endif
1458{
1459        int i, len;
1460        struct mtd_dev_param *p;
1461        char buf[MTD_PARAM_LEN_MAX];
1462        char *pbuf = &buf[0];
1463        char *tokens[MTD_PARAM_MAX_COUNT], *token;
1464
1465        if (!val)
1466                return -EINVAL;
1467
1468        if (mtd_devs == UBI_MAX_DEVICES) {
1469                pr_err("UBI error: too many parameters, max. is %d\n",
1470                       UBI_MAX_DEVICES);
1471                return -EINVAL;
1472        }
1473
1474        len = strnlen(val, MTD_PARAM_LEN_MAX);
1475        if (len == MTD_PARAM_LEN_MAX) {
1476                pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1477                       val, MTD_PARAM_LEN_MAX);
1478                return -EINVAL;
1479        }
1480
1481        if (len == 0) {
1482                pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1483                return 0;
1484        }
1485
1486        strcpy(buf, val);
1487
1488        /* Get rid of the final newline */
1489        if (buf[len - 1] == '\n')
1490                buf[len - 1] = '\0';
1491
1492        for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1493                tokens[i] = strsep(&pbuf, ",");
1494
1495        if (pbuf) {
1496                pr_err("UBI error: too many arguments at \"%s\"\n", val);
1497                return -EINVAL;
1498        }
1499
1500        p = &mtd_dev_param[mtd_devs];
1501        strcpy(&p->name[0], tokens[0]);
1502
1503        token = tokens[1];
1504        if (token) {
1505                p->vid_hdr_offs = bytes_str_to_int(token);
1506
1507                if (p->vid_hdr_offs < 0)
1508                        return p->vid_hdr_offs;
1509        }
1510
1511        token = tokens[2];
1512        if (token) {
1513                int err = kstrtoint(token, 10, &p->max_beb_per1024);
1514
1515                if (err) {
1516                        pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1517                               token);
1518                        return -EINVAL;
1519                }
1520        }
1521
1522        token = tokens[3];
1523        if (token) {
1524                int err = kstrtoint(token, 10, &p->ubi_num);
1525
1526                if (err) {
1527                        pr_err("UBI error: bad value for ubi_num parameter: %s",
1528                               token);
1529                        return -EINVAL;
1530                }
1531        } else
1532                p->ubi_num = UBI_DEV_NUM_AUTO;
1533
1534        mtd_devs += 1;
1535        return 0;
1536}
1537
1538module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1539MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1540                      "Multiple \"mtd\" parameters may be specified.\n"
1541                      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1542                      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1543                      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1544                      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1545                      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1546                      "\n"
1547                      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1548                      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1549                      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1550                      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1551                      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1552#ifdef CONFIG_MTD_UBI_FASTMAP
1553module_param(fm_autoconvert, bool, 0644);
1554MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1555module_param(fm_debug, bool, 0);
1556MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1557#endif
1558MODULE_VERSION(__stringify(UBI_VERSION));
1559MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1560MODULE_AUTHOR("Artem Bityutskiy");
1561MODULE_LICENSE("GPL");
1562