uboot/drivers/mtd/nand/atmel_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright 2007-2008
   4 * Stelian Pop <stelian@popies.net>
   5 * Lead Tech Design <www.leadtechdesign.com>
   6 *
   7 * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
   8 *
   9 * Add Programmable Multibit ECC support for various AT91 SoC
  10 *     (C) Copyright 2012 ATMEL, Hong Xu
  11 */
  12
  13#include <common.h>
  14#include <asm/gpio.h>
  15#include <asm/arch/gpio.h>
  16
  17#include <malloc.h>
  18#include <nand.h>
  19#include <watchdog.h>
  20#include <linux/mtd/nand_ecc.h>
  21
  22#ifdef CONFIG_ATMEL_NAND_HWECC
  23
  24/* Register access macros */
  25#define ecc_readl(add, reg)                             \
  26        readl(add + ATMEL_ECC_##reg)
  27#define ecc_writel(add, reg, value)                     \
  28        writel((value), add + ATMEL_ECC_##reg)
  29
  30#include "atmel_nand_ecc.h"     /* Hardware ECC registers */
  31
  32#ifdef CONFIG_ATMEL_NAND_HW_PMECC
  33
  34#ifdef CONFIG_SPL_BUILD
  35#undef CONFIG_SYS_NAND_ONFI_DETECTION
  36#endif
  37
  38struct atmel_nand_host {
  39        struct pmecc_regs __iomem *pmecc;
  40        struct pmecc_errloc_regs __iomem *pmerrloc;
  41        void __iomem            *pmecc_rom_base;
  42
  43        u8              pmecc_corr_cap;
  44        u16             pmecc_sector_size;
  45        u32             pmecc_index_table_offset;
  46        u32             pmecc_version;
  47
  48        int             pmecc_bytes_per_sector;
  49        int             pmecc_sector_number;
  50        int             pmecc_degree;   /* Degree of remainders */
  51        int             pmecc_cw_len;   /* Length of codeword */
  52
  53        /* lookup table for alpha_to and index_of */
  54        void __iomem    *pmecc_alpha_to;
  55        void __iomem    *pmecc_index_of;
  56
  57        /* data for pmecc computation */
  58        int16_t *pmecc_smu;
  59        int16_t *pmecc_partial_syn;
  60        int16_t *pmecc_si;
  61        int16_t *pmecc_lmu; /* polynomal order */
  62        int     *pmecc_mu;
  63        int     *pmecc_dmu;
  64        int     *pmecc_delta;
  65};
  66
  67static struct atmel_nand_host pmecc_host;
  68static struct nand_ecclayout atmel_pmecc_oobinfo;
  69
  70/*
  71 * Return number of ecc bytes per sector according to sector size and
  72 * correction capability
  73 *
  74 * Following table shows what at91 PMECC supported:
  75 * Correction Capability        Sector_512_bytes        Sector_1024_bytes
  76 * =====================        ================        =================
  77 *                2-bits                 4-bytes                  4-bytes
  78 *                4-bits                 7-bytes                  7-bytes
  79 *                8-bits                13-bytes                 14-bytes
  80 *               12-bits                20-bytes                 21-bytes
  81 *               24-bits                39-bytes                 42-bytes
  82 *               32-bits                52-bytes                 56-bytes
  83 */
  84static int pmecc_get_ecc_bytes(int cap, int sector_size)
  85{
  86        int m = 12 + sector_size / 512;
  87        return (m * cap + 7) / 8;
  88}
  89
  90static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
  91        int oobsize, int ecc_len)
  92{
  93        int i;
  94
  95        layout->eccbytes = ecc_len;
  96
  97        /* ECC will occupy the last ecc_len bytes continuously */
  98        for (i = 0; i < ecc_len; i++)
  99                layout->eccpos[i] = oobsize - ecc_len + i;
 100
 101        layout->oobfree[0].offset = 2;
 102        layout->oobfree[0].length =
 103                oobsize - ecc_len - layout->oobfree[0].offset;
 104}
 105
 106static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
 107{
 108        int table_size;
 109
 110        table_size = host->pmecc_sector_size == 512 ?
 111                PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
 112
 113        /* the ALPHA lookup table is right behind the INDEX lookup table. */
 114        return host->pmecc_rom_base + host->pmecc_index_table_offset +
 115                        table_size * sizeof(int16_t);
 116}
 117
 118static void pmecc_data_free(struct atmel_nand_host *host)
 119{
 120        free(host->pmecc_partial_syn);
 121        free(host->pmecc_si);
 122        free(host->pmecc_lmu);
 123        free(host->pmecc_smu);
 124        free(host->pmecc_mu);
 125        free(host->pmecc_dmu);
 126        free(host->pmecc_delta);
 127}
 128
 129static int pmecc_data_alloc(struct atmel_nand_host *host)
 130{
 131        const int cap = host->pmecc_corr_cap;
 132        int size;
 133
 134        size = (2 * cap + 1) * sizeof(int16_t);
 135        host->pmecc_partial_syn = malloc(size);
 136        host->pmecc_si = malloc(size);
 137        host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
 138        host->pmecc_smu = malloc((cap + 2) * size);
 139
 140        size = (cap + 1) * sizeof(int);
 141        host->pmecc_mu = malloc(size);
 142        host->pmecc_dmu = malloc(size);
 143        host->pmecc_delta = malloc(size);
 144
 145        if (host->pmecc_partial_syn &&
 146                        host->pmecc_si &&
 147                        host->pmecc_lmu &&
 148                        host->pmecc_smu &&
 149                        host->pmecc_mu &&
 150                        host->pmecc_dmu &&
 151                        host->pmecc_delta)
 152                return 0;
 153
 154        /* error happened */
 155        pmecc_data_free(host);
 156        return -ENOMEM;
 157
 158}
 159
 160static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
 161{
 162        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 163        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 164        int i;
 165        uint32_t value;
 166
 167        /* Fill odd syndromes */
 168        for (i = 0; i < host->pmecc_corr_cap; i++) {
 169                value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
 170                if (i & 1)
 171                        value >>= 16;
 172                value &= 0xffff;
 173                host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
 174        }
 175}
 176
 177static void pmecc_substitute(struct mtd_info *mtd)
 178{
 179        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 180        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 181        int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 182        int16_t __iomem *index_of = host->pmecc_index_of;
 183        int16_t *partial_syn = host->pmecc_partial_syn;
 184        const int cap = host->pmecc_corr_cap;
 185        int16_t *si;
 186        int i, j;
 187
 188        /* si[] is a table that holds the current syndrome value,
 189         * an element of that table belongs to the field
 190         */
 191        si = host->pmecc_si;
 192
 193        memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
 194
 195        /* Computation 2t syndromes based on S(x) */
 196        /* Odd syndromes */
 197        for (i = 1; i < 2 * cap; i += 2) {
 198                for (j = 0; j < host->pmecc_degree; j++) {
 199                        if (partial_syn[i] & (0x1 << j))
 200                                si[i] = readw(alpha_to + i * j) ^ si[i];
 201                }
 202        }
 203        /* Even syndrome = (Odd syndrome) ** 2 */
 204        for (i = 2, j = 1; j <= cap; i = ++j << 1) {
 205                if (si[j] == 0) {
 206                        si[i] = 0;
 207                } else {
 208                        int16_t tmp;
 209
 210                        tmp = readw(index_of + si[j]);
 211                        tmp = (tmp * 2) % host->pmecc_cw_len;
 212                        si[i] = readw(alpha_to + tmp);
 213                }
 214        }
 215}
 216
 217/*
 218 * This function defines a Berlekamp iterative procedure for
 219 * finding the value of the error location polynomial.
 220 * The input is si[], initialize by pmecc_substitute().
 221 * The output is smu[][].
 222 *
 223 * This function is written according to chip datasheet Chapter:
 224 * Find the Error Location Polynomial Sigma(x) of Section:
 225 * Programmable Multibit ECC Control (PMECC).
 226 */
 227static void pmecc_get_sigma(struct mtd_info *mtd)
 228{
 229        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 230        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 231
 232        int16_t *lmu = host->pmecc_lmu;
 233        int16_t *si = host->pmecc_si;
 234        int *mu = host->pmecc_mu;
 235        int *dmu = host->pmecc_dmu;     /* Discrepancy */
 236        int *delta = host->pmecc_delta; /* Delta order */
 237        int cw_len = host->pmecc_cw_len;
 238        const int16_t cap = host->pmecc_corr_cap;
 239        const int num = 2 * cap + 1;
 240        int16_t __iomem *index_of = host->pmecc_index_of;
 241        int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 242        int i, j, k;
 243        uint32_t dmu_0_count, tmp;
 244        int16_t *smu = host->pmecc_smu;
 245
 246        /* index of largest delta */
 247        int ro;
 248        int largest;
 249        int diff;
 250
 251        /* Init the Sigma(x) */
 252        memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
 253
 254        dmu_0_count = 0;
 255
 256        /* First Row */
 257
 258        /* Mu */
 259        mu[0] = -1;
 260
 261        smu[0] = 1;
 262
 263        /* discrepancy set to 1 */
 264        dmu[0] = 1;
 265        /* polynom order set to 0 */
 266        lmu[0] = 0;
 267        /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
 268        delta[0] = -1;
 269
 270        /* Second Row */
 271
 272        /* Mu */
 273        mu[1] = 0;
 274        /* Sigma(x) set to 1 */
 275        smu[num] = 1;
 276
 277        /* discrepancy set to S1 */
 278        dmu[1] = si[1];
 279
 280        /* polynom order set to 0 */
 281        lmu[1] = 0;
 282
 283        /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
 284        delta[1] = 0;
 285
 286        for (i = 1; i <= cap; i++) {
 287                mu[i + 1] = i << 1;
 288                /* Begin Computing Sigma (Mu+1) and L(mu) */
 289                /* check if discrepancy is set to 0 */
 290                if (dmu[i] == 0) {
 291                        dmu_0_count++;
 292
 293                        tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
 294                        if ((cap - (lmu[i] >> 1) - 1) & 0x1)
 295                                tmp += 2;
 296                        else
 297                                tmp += 1;
 298
 299                        if (dmu_0_count == tmp) {
 300                                for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
 301                                        smu[(cap + 1) * num + j] =
 302                                                        smu[i * num + j];
 303
 304                                lmu[cap + 1] = lmu[i];
 305                                return;
 306                        }
 307
 308                        /* copy polynom */
 309                        for (j = 0; j <= lmu[i] >> 1; j++)
 310                                smu[(i + 1) * num + j] = smu[i * num + j];
 311
 312                        /* copy previous polynom order to the next */
 313                        lmu[i + 1] = lmu[i];
 314                } else {
 315                        ro = 0;
 316                        largest = -1;
 317                        /* find largest delta with dmu != 0 */
 318                        for (j = 0; j < i; j++) {
 319                                if ((dmu[j]) && (delta[j] > largest)) {
 320                                        largest = delta[j];
 321                                        ro = j;
 322                                }
 323                        }
 324
 325                        /* compute difference */
 326                        diff = (mu[i] - mu[ro]);
 327
 328                        /* Compute degree of the new smu polynomial */
 329                        if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
 330                                lmu[i + 1] = lmu[i];
 331                        else
 332                                lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
 333
 334                        /* Init smu[i+1] with 0 */
 335                        for (k = 0; k < num; k++)
 336                                smu[(i + 1) * num + k] = 0;
 337
 338                        /* Compute smu[i+1] */
 339                        for (k = 0; k <= lmu[ro] >> 1; k++) {
 340                                int16_t a, b, c;
 341
 342                                if (!(smu[ro * num + k] && dmu[i]))
 343                                        continue;
 344                                a = readw(index_of + dmu[i]);
 345                                b = readw(index_of + dmu[ro]);
 346                                c = readw(index_of + smu[ro * num + k]);
 347                                tmp = a + (cw_len - b) + c;
 348                                a = readw(alpha_to + tmp % cw_len);
 349                                smu[(i + 1) * num + (k + diff)] = a;
 350                        }
 351
 352                        for (k = 0; k <= lmu[i] >> 1; k++)
 353                                smu[(i + 1) * num + k] ^= smu[i * num + k];
 354                }
 355
 356                /* End Computing Sigma (Mu+1) and L(mu) */
 357                /* In either case compute delta */
 358                delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
 359
 360                /* Do not compute discrepancy for the last iteration */
 361                if (i >= cap)
 362                        continue;
 363
 364                for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
 365                        tmp = 2 * (i - 1);
 366                        if (k == 0) {
 367                                dmu[i + 1] = si[tmp + 3];
 368                        } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
 369                                int16_t a, b, c;
 370                                a = readw(index_of +
 371                                                smu[(i + 1) * num + k]);
 372                                b = si[2 * (i - 1) + 3 - k];
 373                                c = readw(index_of + b);
 374                                tmp = a + c;
 375                                tmp %= cw_len;
 376                                dmu[i + 1] = readw(alpha_to + tmp) ^
 377                                        dmu[i + 1];
 378                        }
 379                }
 380        }
 381}
 382
 383static int pmecc_err_location(struct mtd_info *mtd)
 384{
 385        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 386        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 387        const int cap = host->pmecc_corr_cap;
 388        const int num = 2 * cap + 1;
 389        int sector_size = host->pmecc_sector_size;
 390        int err_nbr = 0;        /* number of error */
 391        int roots_nbr;          /* number of roots */
 392        int i;
 393        uint32_t val;
 394        int16_t *smu = host->pmecc_smu;
 395        int timeout = PMECC_MAX_TIMEOUT_US;
 396
 397        pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
 398
 399        for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
 400                pmecc_writel(host->pmerrloc, sigma[i],
 401                             smu[(cap + 1) * num + i]);
 402                err_nbr++;
 403        }
 404
 405        val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
 406        if (sector_size == 1024)
 407                val |= PMERRLOC_ELCFG_SECTOR_1024;
 408
 409        pmecc_writel(host->pmerrloc, elcfg, val);
 410        pmecc_writel(host->pmerrloc, elen,
 411                     sector_size * 8 + host->pmecc_degree * cap);
 412
 413        while (--timeout) {
 414                if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
 415                        break;
 416                WATCHDOG_RESET();
 417                udelay(1);
 418        }
 419
 420        if (!timeout) {
 421                dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
 422                return -1;
 423        }
 424
 425        roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
 426                        >> 8;
 427        /* Number of roots == degree of smu hence <= cap */
 428        if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
 429                return err_nbr - 1;
 430
 431        /* Number of roots does not match the degree of smu
 432         * unable to correct error */
 433        return -1;
 434}
 435
 436static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
 437                int sector_num, int extra_bytes, int err_nbr)
 438{
 439        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 440        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 441        int i = 0;
 442        int byte_pos, bit_pos, sector_size, pos;
 443        uint32_t tmp;
 444        uint8_t err_byte;
 445
 446        sector_size = host->pmecc_sector_size;
 447
 448        while (err_nbr) {
 449                tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
 450                byte_pos = tmp / 8;
 451                bit_pos  = tmp % 8;
 452
 453                if (byte_pos >= (sector_size + extra_bytes))
 454                        BUG();  /* should never happen */
 455
 456                if (byte_pos < sector_size) {
 457                        err_byte = *(buf + byte_pos);
 458                        *(buf + byte_pos) ^= (1 << bit_pos);
 459
 460                        pos = sector_num * host->pmecc_sector_size + byte_pos;
 461                        dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 462                                pos, bit_pos, err_byte, *(buf + byte_pos));
 463                } else {
 464                        /* Bit flip in OOB area */
 465                        tmp = sector_num * host->pmecc_bytes_per_sector
 466                                        + (byte_pos - sector_size);
 467                        err_byte = ecc[tmp];
 468                        ecc[tmp] ^= (1 << bit_pos);
 469
 470                        pos = tmp + nand_chip->ecc.layout->eccpos[0];
 471                        dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 472                                pos, bit_pos, err_byte, ecc[tmp]);
 473                }
 474
 475                i++;
 476                err_nbr--;
 477        }
 478
 479        return;
 480}
 481
 482static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
 483        u8 *ecc)
 484{
 485        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 486        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 487        int i, err_nbr, eccbytes;
 488        uint8_t *buf_pos;
 489
 490        /* SAMA5D4 PMECC IP can correct errors for all 0xff page */
 491        if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
 492                goto normal_check;
 493
 494        eccbytes = nand_chip->ecc.bytes;
 495        for (i = 0; i < eccbytes; i++)
 496                if (ecc[i] != 0xff)
 497                        goto normal_check;
 498        /* Erased page, return OK */
 499        return 0;
 500
 501normal_check:
 502        for (i = 0; i < host->pmecc_sector_number; i++) {
 503                err_nbr = 0;
 504                if (pmecc_stat & 0x1) {
 505                        buf_pos = buf + i * host->pmecc_sector_size;
 506
 507                        pmecc_gen_syndrome(mtd, i);
 508                        pmecc_substitute(mtd);
 509                        pmecc_get_sigma(mtd);
 510
 511                        err_nbr = pmecc_err_location(mtd);
 512                        if (err_nbr == -1) {
 513                                dev_err(host->dev, "PMECC: Too many errors\n");
 514                                mtd->ecc_stats.failed++;
 515                                return -EBADMSG;
 516                        } else {
 517                                pmecc_correct_data(mtd, buf_pos, ecc, i,
 518                                        host->pmecc_bytes_per_sector, err_nbr);
 519                                mtd->ecc_stats.corrected += err_nbr;
 520                        }
 521                }
 522                pmecc_stat >>= 1;
 523        }
 524
 525        return 0;
 526}
 527
 528static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
 529        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
 530{
 531        struct atmel_nand_host *host = nand_get_controller_data(chip);
 532        int eccsize = chip->ecc.size;
 533        uint8_t *oob = chip->oob_poi;
 534        uint32_t *eccpos = chip->ecc.layout->eccpos;
 535        uint32_t stat;
 536        int timeout = PMECC_MAX_TIMEOUT_US;
 537
 538        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 539        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 540        pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
 541                & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
 542
 543        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 544        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
 545
 546        chip->read_buf(mtd, buf, eccsize);
 547        chip->read_buf(mtd, oob, mtd->oobsize);
 548
 549        while (--timeout) {
 550                if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
 551                        break;
 552                WATCHDOG_RESET();
 553                udelay(1);
 554        }
 555
 556        if (!timeout) {
 557                dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
 558                return -1;
 559        }
 560
 561        stat = pmecc_readl(host->pmecc, isr);
 562        if (stat != 0)
 563                if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
 564                        return -EBADMSG;
 565
 566        return 0;
 567}
 568
 569static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
 570                struct nand_chip *chip, const uint8_t *buf,
 571                int oob_required, int page)
 572{
 573        struct atmel_nand_host *host = nand_get_controller_data(chip);
 574        uint32_t *eccpos = chip->ecc.layout->eccpos;
 575        int i, j;
 576        int timeout = PMECC_MAX_TIMEOUT_US;
 577
 578        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 579        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 580
 581        pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
 582                PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
 583
 584        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 585        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
 586
 587        chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
 588
 589        while (--timeout) {
 590                if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
 591                        break;
 592                WATCHDOG_RESET();
 593                udelay(1);
 594        }
 595
 596        if (!timeout) {
 597                dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
 598                goto out;
 599        }
 600
 601        for (i = 0; i < host->pmecc_sector_number; i++) {
 602                for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
 603                        int pos;
 604
 605                        pos = i * host->pmecc_bytes_per_sector + j;
 606                        chip->oob_poi[eccpos[pos]] =
 607                                pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
 608                }
 609        }
 610        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 611out:
 612        return 0;
 613}
 614
 615static void atmel_pmecc_core_init(struct mtd_info *mtd)
 616{
 617        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 618        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 619        uint32_t val = 0;
 620        struct nand_ecclayout *ecc_layout;
 621
 622        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 623        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 624
 625        switch (host->pmecc_corr_cap) {
 626        case 2:
 627                val = PMECC_CFG_BCH_ERR2;
 628                break;
 629        case 4:
 630                val = PMECC_CFG_BCH_ERR4;
 631                break;
 632        case 8:
 633                val = PMECC_CFG_BCH_ERR8;
 634                break;
 635        case 12:
 636                val = PMECC_CFG_BCH_ERR12;
 637                break;
 638        case 24:
 639                val = PMECC_CFG_BCH_ERR24;
 640                break;
 641        case 32:
 642                val = PMECC_CFG_BCH_ERR32;
 643                break;
 644        }
 645
 646        if (host->pmecc_sector_size == 512)
 647                val |= PMECC_CFG_SECTOR512;
 648        else if (host->pmecc_sector_size == 1024)
 649                val |= PMECC_CFG_SECTOR1024;
 650
 651        switch (host->pmecc_sector_number) {
 652        case 1:
 653                val |= PMECC_CFG_PAGE_1SECTOR;
 654                break;
 655        case 2:
 656                val |= PMECC_CFG_PAGE_2SECTORS;
 657                break;
 658        case 4:
 659                val |= PMECC_CFG_PAGE_4SECTORS;
 660                break;
 661        case 8:
 662                val |= PMECC_CFG_PAGE_8SECTORS;
 663                break;
 664        }
 665
 666        val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
 667                | PMECC_CFG_AUTO_DISABLE);
 668        pmecc_writel(host->pmecc, cfg, val);
 669
 670        ecc_layout = nand_chip->ecc.layout;
 671        pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
 672        pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
 673        pmecc_writel(host->pmecc, eaddr,
 674                        ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
 675        /* See datasheet about PMECC Clock Control Register */
 676        pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
 677        pmecc_writel(host->pmecc, idr, 0xff);
 678        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 679}
 680
 681#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
 682/*
 683 * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
 684 *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
 685 *                    ONFI ECC parameters.
 686 * @host: point to an atmel_nand_host structure.
 687 *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
 688 *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
 689 * @chip: point to an nand_chip structure.
 690 * @cap: store the ONFI ECC correct bits capbility
 691 * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
 692 *
 693 * Return 0 if success. otherwise return the error code.
 694 */
 695static int pmecc_choose_ecc(struct atmel_nand_host *host,
 696                struct nand_chip *chip,
 697                int *cap, int *sector_size)
 698{
 699        /* Get ECC requirement from ONFI parameters */
 700        *cap = *sector_size = 0;
 701        if (chip->onfi_version) {
 702                *cap = chip->ecc_strength_ds;
 703                *sector_size = chip->ecc_step_ds;
 704                pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",
 705                         *cap, *sector_size);
 706        }
 707
 708        if (*cap == 0 && *sector_size == 0) {
 709                /* Non-ONFI compliant */
 710                dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
 711                *cap = 2;
 712                *sector_size = 512;
 713        }
 714
 715        /* If head file doesn't specify then use the one in ONFI parameters */
 716        if (host->pmecc_corr_cap == 0) {
 717                /* use the most fitable ecc bits (the near bigger one ) */
 718                if (*cap <= 2)
 719                        host->pmecc_corr_cap = 2;
 720                else if (*cap <= 4)
 721                        host->pmecc_corr_cap = 4;
 722                else if (*cap <= 8)
 723                        host->pmecc_corr_cap = 8;
 724                else if (*cap <= 12)
 725                        host->pmecc_corr_cap = 12;
 726                else if (*cap <= 24)
 727                        host->pmecc_corr_cap = 24;
 728                else
 729#ifdef CONFIG_SAMA5D2
 730                        host->pmecc_corr_cap = 32;
 731#else
 732                        host->pmecc_corr_cap = 24;
 733#endif
 734        }
 735        if (host->pmecc_sector_size == 0) {
 736                /* use the most fitable sector size (the near smaller one ) */
 737                if (*sector_size >= 1024)
 738                        host->pmecc_sector_size = 1024;
 739                else if (*sector_size >= 512)
 740                        host->pmecc_sector_size = 512;
 741                else
 742                        return -EINVAL;
 743        }
 744        return 0;
 745}
 746#endif
 747
 748#if defined(NO_GALOIS_TABLE_IN_ROM)
 749static uint16_t *pmecc_galois_table;
 750static inline int deg(unsigned int poly)
 751{
 752        /* polynomial degree is the most-significant bit index */
 753        return fls(poly) - 1;
 754}
 755
 756static int build_gf_tables(int mm, unsigned int poly,
 757                           int16_t *index_of, int16_t *alpha_to)
 758{
 759        unsigned int i, x = 1;
 760        const unsigned int k = 1 << deg(poly);
 761        unsigned int nn = (1 << mm) - 1;
 762
 763        /* primitive polynomial must be of degree m */
 764        if (k != (1u << mm))
 765                return -EINVAL;
 766
 767        for (i = 0; i < nn; i++) {
 768                alpha_to[i] = x;
 769                index_of[x] = i;
 770                if (i && (x == 1))
 771                        /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
 772                        return -EINVAL;
 773                x <<= 1;
 774                if (x & k)
 775                        x ^= poly;
 776        }
 777
 778        alpha_to[nn] = 1;
 779        index_of[0] = 0;
 780
 781        return 0;
 782}
 783
 784static uint16_t *create_lookup_table(int sector_size)
 785{
 786        int degree = (sector_size == 512) ?
 787                        PMECC_GF_DIMENSION_13 :
 788                        PMECC_GF_DIMENSION_14;
 789        unsigned int poly = (sector_size == 512) ?
 790                        PMECC_GF_13_PRIMITIVE_POLY :
 791                        PMECC_GF_14_PRIMITIVE_POLY;
 792        int table_size = (sector_size == 512) ?
 793                        PMECC_INDEX_TABLE_SIZE_512 :
 794                        PMECC_INDEX_TABLE_SIZE_1024;
 795
 796        int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
 797        if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
 798                return NULL;
 799
 800        return (uint16_t *)addr;
 801}
 802#endif
 803
 804static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
 805                struct mtd_info *mtd)
 806{
 807        struct atmel_nand_host *host;
 808        int cap, sector_size;
 809
 810        host = &pmecc_host;
 811        nand_set_controller_data(nand, host);
 812
 813        nand->ecc.mode = NAND_ECC_HW;
 814        nand->ecc.calculate = NULL;
 815        nand->ecc.correct = NULL;
 816        nand->ecc.hwctl = NULL;
 817
 818#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
 819        host->pmecc_corr_cap = host->pmecc_sector_size = 0;
 820
 821#ifdef CONFIG_PMECC_CAP
 822        host->pmecc_corr_cap = CONFIG_PMECC_CAP;
 823#endif
 824#ifdef CONFIG_PMECC_SECTOR_SIZE
 825        host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
 826#endif
 827        /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
 828         * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
 829         * from ONFI.
 830         */
 831        if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
 832                dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",
 833                        cap, sector_size);
 834                return -EINVAL;
 835        }
 836
 837        if (cap > host->pmecc_corr_cap)
 838                dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
 839                                host->pmecc_corr_cap, cap);
 840        if (sector_size < host->pmecc_sector_size)
 841                dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
 842                                host->pmecc_sector_size, sector_size);
 843#else   /* CONFIG_SYS_NAND_ONFI_DETECTION */
 844        host->pmecc_corr_cap = CONFIG_PMECC_CAP;
 845        host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
 846#endif
 847
 848        cap = host->pmecc_corr_cap;
 849        sector_size = host->pmecc_sector_size;
 850
 851        /* TODO: need check whether cap & sector_size is validate */
 852#if defined(NO_GALOIS_TABLE_IN_ROM)
 853        /*
 854         * As pmecc_rom_base is the begin of the gallois field table, So the
 855         * index offset just set as 0.
 856         */
 857        host->pmecc_index_table_offset = 0;
 858#else
 859        if (host->pmecc_sector_size == 512)
 860                host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
 861        else
 862                host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
 863#endif
 864
 865        pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",
 866                 cap, sector_size);
 867
 868        host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
 869        host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
 870                        ATMEL_BASE_PMERRLOC;
 871#if defined(NO_GALOIS_TABLE_IN_ROM)
 872        pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
 873        if (!pmecc_galois_table) {
 874                dev_err(host->dev, "out of memory\n");
 875                return -ENOMEM;
 876        }
 877
 878        host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
 879#else
 880        host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
 881#endif
 882
 883        /* ECC is calculated for the whole page (1 step) */
 884        nand->ecc.size = mtd->writesize;
 885
 886        /* set ECC page size and oob layout */
 887        switch (mtd->writesize) {
 888        case 2048:
 889        case 4096:
 890        case 8192:
 891                host->pmecc_degree = (sector_size == 512) ?
 892                        PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
 893                host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
 894                host->pmecc_sector_number = mtd->writesize / sector_size;
 895                host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
 896                        cap, sector_size);
 897                host->pmecc_alpha_to = pmecc_get_alpha_to(host);
 898                host->pmecc_index_of = host->pmecc_rom_base +
 899                        host->pmecc_index_table_offset;
 900
 901                nand->ecc.steps = 1;
 902                nand->ecc.bytes = host->pmecc_bytes_per_sector *
 903                                       host->pmecc_sector_number;
 904
 905                if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
 906                        dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
 907                                        MTD_MAX_ECCPOS_ENTRIES_LARGE);
 908                        return -EINVAL;
 909                }
 910
 911                if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
 912                        dev_err(host->dev, "No room for ECC bytes\n");
 913                        return -EINVAL;
 914                }
 915                pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
 916                                        mtd->oobsize,
 917                                        nand->ecc.bytes);
 918                nand->ecc.layout = &atmel_pmecc_oobinfo;
 919                break;
 920        case 512:
 921        case 1024:
 922                /* TODO */
 923                dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
 924        default:
 925                /* page size not handled by HW ECC */
 926                /* switching back to soft ECC */
 927                nand->ecc.mode = NAND_ECC_SOFT;
 928                nand->ecc.read_page = NULL;
 929                nand->ecc.postpad = 0;
 930                nand->ecc.prepad = 0;
 931                nand->ecc.bytes = 0;
 932                return 0;
 933        }
 934
 935        /* Allocate data for PMECC computation */
 936        if (pmecc_data_alloc(host)) {
 937                dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
 938                return -ENOMEM;
 939        }
 940
 941        nand->options |= NAND_NO_SUBPAGE_WRITE;
 942        nand->ecc.read_page = atmel_nand_pmecc_read_page;
 943        nand->ecc.write_page = atmel_nand_pmecc_write_page;
 944        nand->ecc.strength = cap;
 945
 946        /* Check the PMECC ip version */
 947        host->pmecc_version = pmecc_readl(host->pmerrloc, version);
 948        dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);
 949
 950        atmel_pmecc_core_init(mtd);
 951
 952        return 0;
 953}
 954
 955#else
 956
 957/* oob layout for large page size
 958 * bad block info is on bytes 0 and 1
 959 * the bytes have to be consecutives to avoid
 960 * several NAND_CMD_RNDOUT during read
 961 */
 962static struct nand_ecclayout atmel_oobinfo_large = {
 963        .eccbytes = 4,
 964        .eccpos = {60, 61, 62, 63},
 965        .oobfree = {
 966                {2, 58}
 967        },
 968};
 969
 970/* oob layout for small page size
 971 * bad block info is on bytes 4 and 5
 972 * the bytes have to be consecutives to avoid
 973 * several NAND_CMD_RNDOUT during read
 974 */
 975static struct nand_ecclayout atmel_oobinfo_small = {
 976        .eccbytes = 4,
 977        .eccpos = {0, 1, 2, 3},
 978        .oobfree = {
 979                {6, 10}
 980        },
 981};
 982
 983/*
 984 * Calculate HW ECC
 985 *
 986 * function called after a write
 987 *
 988 * mtd:        MTD block structure
 989 * dat:        raw data (unused)
 990 * ecc_code:   buffer for ECC
 991 */
 992static int atmel_nand_calculate(struct mtd_info *mtd,
 993                const u_char *dat, unsigned char *ecc_code)
 994{
 995        unsigned int ecc_value;
 996
 997        /* get the first 2 ECC bytes */
 998        ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
 999
1000        ecc_code[0] = ecc_value & 0xFF;
1001        ecc_code[1] = (ecc_value >> 8) & 0xFF;
1002
1003        /* get the last 2 ECC bytes */
1004        ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
1005
1006        ecc_code[2] = ecc_value & 0xFF;
1007        ecc_code[3] = (ecc_value >> 8) & 0xFF;
1008
1009        return 0;
1010}
1011
1012/*
1013 * HW ECC read page function
1014 *
1015 * mtd:        mtd info structure
1016 * chip:       nand chip info structure
1017 * buf:        buffer to store read data
1018 * oob_required:    caller expects OOB data read to chip->oob_poi
1019 */
1020static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1021                                uint8_t *buf, int oob_required, int page)
1022{
1023        int eccsize = chip->ecc.size;
1024        int eccbytes = chip->ecc.bytes;
1025        uint32_t *eccpos = chip->ecc.layout->eccpos;
1026        uint8_t *p = buf;
1027        uint8_t *oob = chip->oob_poi;
1028        uint8_t *ecc_pos;
1029        int stat;
1030
1031        /* read the page */
1032        chip->read_buf(mtd, p, eccsize);
1033
1034        /* move to ECC position if needed */
1035        if (eccpos[0] != 0) {
1036                /* This only works on large pages
1037                 * because the ECC controller waits for
1038                 * NAND_CMD_RNDOUTSTART after the
1039                 * NAND_CMD_RNDOUT.
1040                 * anyway, for small pages, the eccpos[0] == 0
1041                 */
1042                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1043                                mtd->writesize + eccpos[0], -1);
1044        }
1045
1046        /* the ECC controller needs to read the ECC just after the data */
1047        ecc_pos = oob + eccpos[0];
1048        chip->read_buf(mtd, ecc_pos, eccbytes);
1049
1050        /* check if there's an error */
1051        stat = chip->ecc.correct(mtd, p, oob, NULL);
1052
1053        if (stat < 0)
1054                mtd->ecc_stats.failed++;
1055        else
1056                mtd->ecc_stats.corrected += stat;
1057
1058        /* get back to oob start (end of page) */
1059        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1060
1061        /* read the oob */
1062        chip->read_buf(mtd, oob, mtd->oobsize);
1063
1064        return 0;
1065}
1066
1067/*
1068 * HW ECC Correction
1069 *
1070 * function called after a read
1071 *
1072 * mtd:        MTD block structure
1073 * dat:        raw data read from the chip
1074 * read_ecc:   ECC from the chip (unused)
1075 * isnull:     unused
1076 *
1077 * Detect and correct a 1 bit error for a page
1078 */
1079static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1080                u_char *read_ecc, u_char *isnull)
1081{
1082        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1083        unsigned int ecc_status;
1084        unsigned int ecc_word, ecc_bit;
1085
1086        /* get the status from the Status Register */
1087        ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1088
1089        /* if there's no error */
1090        if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1091                return 0;
1092
1093        /* get error bit offset (4 bits) */
1094        ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1095        /* get word address (12 bits) */
1096        ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1097        ecc_word >>= 4;
1098
1099        /* if there are multiple errors */
1100        if (ecc_status & ATMEL_ECC_MULERR) {
1101                /* check if it is a freshly erased block
1102                 * (filled with 0xff) */
1103                if ((ecc_bit == ATMEL_ECC_BITADDR)
1104                                && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1105                        /* the block has just been erased, return OK */
1106                        return 0;
1107                }
1108                /* it doesn't seems to be a freshly
1109                 * erased block.
1110                 * We can't correct so many errors */
1111                dev_warn(host->dev, "atmel_nand : multiple errors detected."
1112                                " Unable to correct.\n");
1113                return -EBADMSG;
1114        }
1115
1116        /* if there's a single bit error : we can correct it */
1117        if (ecc_status & ATMEL_ECC_ECCERR) {
1118                /* there's nothing much to do here.
1119                 * the bit error is on the ECC itself.
1120                 */
1121                dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
1122                                " Nothing to correct\n");
1123                return 0;
1124        }
1125
1126        dev_warn(host->dev, "atmel_nand : one bit error on data."
1127                        " (word offset in the page :"
1128                        " 0x%x bit offset : 0x%x)\n",
1129                        ecc_word, ecc_bit);
1130        /* correct the error */
1131        if (nand_chip->options & NAND_BUSWIDTH_16) {
1132                /* 16 bits words */
1133                ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1134        } else {
1135                /* 8 bits words */
1136                dat[ecc_word] ^= (1 << ecc_bit);
1137        }
1138        dev_warn(host->dev, "atmel_nand : error corrected\n");
1139        return 1;
1140}
1141
1142/*
1143 * Enable HW ECC : unused on most chips
1144 */
1145static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1146{
1147}
1148
1149int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1150{
1151        nand->ecc.mode = NAND_ECC_HW;
1152        nand->ecc.calculate = atmel_nand_calculate;
1153        nand->ecc.correct = atmel_nand_correct;
1154        nand->ecc.hwctl = atmel_nand_hwctl;
1155        nand->ecc.read_page = atmel_nand_read_page;
1156        nand->ecc.bytes = 4;
1157        nand->ecc.strength = 4;
1158
1159        if (nand->ecc.mode == NAND_ECC_HW) {
1160                /* ECC is calculated for the whole page (1 step) */
1161                nand->ecc.size = mtd->writesize;
1162
1163                /* set ECC page size and oob layout */
1164                switch (mtd->writesize) {
1165                case 512:
1166                        nand->ecc.layout = &atmel_oobinfo_small;
1167                        ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1168                                        ATMEL_ECC_PAGESIZE_528);
1169                        break;
1170                case 1024:
1171                        nand->ecc.layout = &atmel_oobinfo_large;
1172                        ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1173                                        ATMEL_ECC_PAGESIZE_1056);
1174                        break;
1175                case 2048:
1176                        nand->ecc.layout = &atmel_oobinfo_large;
1177                        ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1178                                        ATMEL_ECC_PAGESIZE_2112);
1179                        break;
1180                case 4096:
1181                        nand->ecc.layout = &atmel_oobinfo_large;
1182                        ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1183                                        ATMEL_ECC_PAGESIZE_4224);
1184                        break;
1185                default:
1186                        /* page size not handled by HW ECC */
1187                        /* switching back to soft ECC */
1188                        nand->ecc.mode = NAND_ECC_SOFT;
1189                        nand->ecc.calculate = NULL;
1190                        nand->ecc.correct = NULL;
1191                        nand->ecc.hwctl = NULL;
1192                        nand->ecc.read_page = NULL;
1193                        nand->ecc.postpad = 0;
1194                        nand->ecc.prepad = 0;
1195                        nand->ecc.bytes = 0;
1196                        break;
1197                }
1198        }
1199
1200        return 0;
1201}
1202
1203#endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1204
1205#endif /* CONFIG_ATMEL_NAND_HWECC */
1206
1207static void at91_nand_hwcontrol(struct mtd_info *mtd,
1208                                         int cmd, unsigned int ctrl)
1209{
1210        struct nand_chip *this = mtd_to_nand(mtd);
1211
1212        if (ctrl & NAND_CTRL_CHANGE) {
1213                ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1214                IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1215                             | CONFIG_SYS_NAND_MASK_CLE);
1216
1217                if (ctrl & NAND_CLE)
1218                        IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1219                if (ctrl & NAND_ALE)
1220                        IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1221
1222#ifdef CONFIG_SYS_NAND_ENABLE_PIN
1223                at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
1224                                    !(ctrl & NAND_NCE));
1225#endif
1226                this->IO_ADDR_W = (void *) IO_ADDR_W;
1227        }
1228
1229        if (cmd != NAND_CMD_NONE)
1230                writeb(cmd, this->IO_ADDR_W);
1231}
1232
1233#ifdef CONFIG_SYS_NAND_READY_PIN
1234static int at91_nand_ready(struct mtd_info *mtd)
1235{
1236        return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
1237}
1238#endif
1239
1240#ifdef CONFIG_SPL_BUILD
1241/* The following code is for SPL */
1242static struct mtd_info *mtd;
1243static struct nand_chip nand_chip;
1244
1245static int nand_command(int block, int page, uint32_t offs, u8 cmd)
1246{
1247        struct nand_chip *this = mtd_to_nand(mtd);
1248        int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1249        void (*hwctrl)(struct mtd_info *mtd, int cmd,
1250                        unsigned int ctrl) = this->cmd_ctrl;
1251
1252        while (!this->dev_ready(mtd))
1253                ;
1254
1255        if (cmd == NAND_CMD_READOOB) {
1256                offs += CONFIG_SYS_NAND_PAGE_SIZE;
1257                cmd = NAND_CMD_READ0;
1258        }
1259
1260        hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1261
1262        if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
1263                offs >>= 1;
1264
1265        hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1266        hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
1267        hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
1268        hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
1269#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1270        hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
1271#endif
1272        hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1273
1274        hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1275        hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1276
1277        while (!this->dev_ready(mtd))
1278                ;
1279
1280        return 0;
1281}
1282
1283static int nand_is_bad_block(int block)
1284{
1285        struct nand_chip *this = mtd_to_nand(mtd);
1286
1287        nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
1288
1289        if (this->options & NAND_BUSWIDTH_16) {
1290                if (readw(this->IO_ADDR_R) != 0xffff)
1291                        return 1;
1292        } else {
1293                if (readb(this->IO_ADDR_R) != 0xff)
1294                        return 1;
1295        }
1296
1297        return 0;
1298}
1299
1300#ifdef CONFIG_SPL_NAND_ECC
1301static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
1302#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
1303                  CONFIG_SYS_NAND_ECCSIZE)
1304#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
1305
1306static int nand_read_page(int block, int page, void *dst)
1307{
1308        struct nand_chip *this = mtd_to_nand(mtd);
1309        u_char ecc_calc[ECCTOTAL];
1310        u_char ecc_code[ECCTOTAL];
1311        u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
1312        int eccsize = CONFIG_SYS_NAND_ECCSIZE;
1313        int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
1314        int eccsteps = ECCSTEPS;
1315        int i;
1316        uint8_t *p = dst;
1317        nand_command(block, page, 0, NAND_CMD_READ0);
1318
1319        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1320                if (this->ecc.mode != NAND_ECC_SOFT)
1321                        this->ecc.hwctl(mtd, NAND_ECC_READ);
1322                this->read_buf(mtd, p, eccsize);
1323                this->ecc.calculate(mtd, p, &ecc_calc[i]);
1324        }
1325        this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
1326
1327        for (i = 0; i < ECCTOTAL; i++)
1328                ecc_code[i] = oob_data[nand_ecc_pos[i]];
1329
1330        eccsteps = ECCSTEPS;
1331        p = dst;
1332
1333        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1334                this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1335
1336        return 0;
1337}
1338
1339int spl_nand_erase_one(int block, int page)
1340{
1341        struct nand_chip *this = mtd_to_nand(mtd);
1342        void (*hwctrl)(struct mtd_info *mtd, int cmd,
1343                        unsigned int ctrl) = this->cmd_ctrl;
1344        int page_addr;
1345
1346        if (nand_chip.select_chip)
1347                nand_chip.select_chip(mtd, 0);
1348
1349        page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1350        hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1351        /* Row address */
1352        hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1353        hwctrl(mtd, ((page_addr >> 8) & 0xff),
1354               NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1355#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1356        /* One more address cycle for devices > 128MiB */
1357        hwctrl(mtd, (page_addr >> 16) & 0x0f,
1358               NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1359#endif
1360        hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1361
1362        while (!this->dev_ready(mtd))
1363                ;
1364
1365        nand_deselect();
1366
1367        return 0;
1368}
1369#else
1370static int nand_read_page(int block, int page, void *dst)
1371{
1372        struct nand_chip *this = mtd_to_nand(mtd);
1373
1374        nand_command(block, page, 0, NAND_CMD_READ0);
1375        atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
1376
1377        return 0;
1378}
1379#endif /* CONFIG_SPL_NAND_ECC */
1380
1381int at91_nand_wait_ready(struct mtd_info *mtd)
1382{
1383        struct nand_chip *this = mtd_to_nand(mtd);
1384
1385        udelay(this->chip_delay);
1386
1387        return 1;
1388}
1389
1390int board_nand_init(struct nand_chip *nand)
1391{
1392        int ret = 0;
1393
1394        nand->ecc.mode = NAND_ECC_SOFT;
1395#ifdef CONFIG_SYS_NAND_DBW_16
1396        nand->options = NAND_BUSWIDTH_16;
1397        nand->read_buf = nand_read_buf16;
1398#else
1399        nand->read_buf = nand_read_buf;
1400#endif
1401        nand->cmd_ctrl = at91_nand_hwcontrol;
1402#ifdef CONFIG_SYS_NAND_READY_PIN
1403        nand->dev_ready = at91_nand_ready;
1404#else
1405        nand->dev_ready = at91_nand_wait_ready;
1406#endif
1407        nand->chip_delay = 20;
1408#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1409        nand->bbt_options |= NAND_BBT_USE_FLASH;
1410#endif
1411
1412#ifdef CONFIG_ATMEL_NAND_HWECC
1413#ifdef CONFIG_ATMEL_NAND_HW_PMECC
1414        ret = atmel_pmecc_nand_init_params(nand, mtd);
1415#endif
1416#endif
1417
1418        return ret;
1419}
1420
1421void nand_init(void)
1422{
1423        mtd = nand_to_mtd(&nand_chip);
1424        mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
1425        mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
1426        nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
1427        nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
1428        board_nand_init(&nand_chip);
1429
1430#ifdef CONFIG_SPL_NAND_ECC
1431        if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
1432                nand_chip.ecc.calculate = nand_calculate_ecc;
1433                nand_chip.ecc.correct = nand_correct_data;
1434        }
1435#endif
1436
1437        if (nand_chip.select_chip)
1438                nand_chip.select_chip(mtd, 0);
1439}
1440
1441void nand_deselect(void)
1442{
1443        if (nand_chip.select_chip)
1444                nand_chip.select_chip(mtd, -1);
1445}
1446
1447#include "nand_spl_loaders.c"
1448
1449#else
1450
1451#ifndef CONFIG_SYS_NAND_BASE_LIST
1452#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1453#endif
1454static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1455static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1456
1457int atmel_nand_chip_init(int devnum, ulong base_addr)
1458{
1459        int ret;
1460        struct nand_chip *nand = &nand_chip[devnum];
1461        struct mtd_info *mtd = nand_to_mtd(nand);
1462
1463        nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1464
1465#ifdef CONFIG_NAND_ECC_BCH
1466        nand->ecc.mode = NAND_ECC_SOFT_BCH;
1467#else
1468        nand->ecc.mode = NAND_ECC_SOFT;
1469#endif
1470#ifdef CONFIG_SYS_NAND_DBW_16
1471        nand->options = NAND_BUSWIDTH_16;
1472#endif
1473        nand->cmd_ctrl = at91_nand_hwcontrol;
1474#ifdef CONFIG_SYS_NAND_READY_PIN
1475        nand->dev_ready = at91_nand_ready;
1476#endif
1477        nand->chip_delay = 75;
1478#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1479        nand->bbt_options |= NAND_BBT_USE_FLASH;
1480#endif
1481
1482        ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1483        if (ret)
1484                return ret;
1485
1486#ifdef CONFIG_ATMEL_NAND_HWECC
1487#ifdef CONFIG_ATMEL_NAND_HW_PMECC
1488        ret = atmel_pmecc_nand_init_params(nand, mtd);
1489#else
1490        ret = atmel_hwecc_nand_init_param(nand, mtd);
1491#endif
1492        if (ret)
1493                return ret;
1494#endif
1495
1496        ret = nand_scan_tail(mtd);
1497        if (!ret)
1498                nand_register(devnum, mtd);
1499
1500        return ret;
1501}
1502
1503void board_nand_init(void)
1504{
1505        int i;
1506        for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1507                if (atmel_nand_chip_init(i, base_addr[i]))
1508                        dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
1509                                i);
1510}
1511#endif /* CONFIG_SPL_BUILD */
1512