uboot/drivers/mtd/ubi/build.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 * Copyright (c) Nokia Corporation, 2007
   5 *
   6 * Author: Artem Bityutskiy (Битюцкий Артём),
   7 *         Frank Haverkamp
   8 */
   9
  10/*
  11 * This file includes UBI initialization and building of UBI devices.
  12 *
  13 * When UBI is initialized, it attaches all the MTD devices specified as the
  14 * module load parameters or the kernel boot parameters. If MTD devices were
  15 * specified, UBI does not attach any MTD device, but it is possible to do
  16 * later using the "UBI control device".
  17 */
  18
  19#ifndef __UBOOT__
  20#include <linux/module.h>
  21#include <linux/moduleparam.h>
  22#include <linux/stringify.h>
  23#include <linux/namei.h>
  24#include <linux/stat.h>
  25#include <linux/miscdevice.h>
  26#include <linux/log2.h>
  27#include <linux/kthread.h>
  28#include <linux/kernel.h>
  29#include <linux/slab.h>
  30#include <linux/major.h>
  31#else
  32#include <linux/bug.h>
  33#include <linux/log2.h>
  34#endif
  35#include <linux/err.h>
  36#include <ubi_uboot.h>
  37#include <linux/mtd/partitions.h>
  38
  39#include "ubi.h"
  40
  41/* Maximum length of the 'mtd=' parameter */
  42#define MTD_PARAM_LEN_MAX 64
  43
  44/* Maximum number of comma-separated items in the 'mtd=' parameter */
  45#define MTD_PARAM_MAX_COUNT 4
  46
  47/* Maximum value for the number of bad PEBs per 1024 PEBs */
  48#define MAX_MTD_UBI_BEB_LIMIT 768
  49
  50#ifdef CONFIG_MTD_UBI_MODULE
  51#define ubi_is_module() 1
  52#else
  53#define ubi_is_module() 0
  54#endif
  55
  56#if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
  57#error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
  58#endif
  59
  60/**
  61 * struct mtd_dev_param - MTD device parameter description data structure.
  62 * @name: MTD character device node path, MTD device name, or MTD device number
  63 *        string
  64 * @vid_hdr_offs: VID header offset
  65 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
  66 */
  67struct mtd_dev_param {
  68        char name[MTD_PARAM_LEN_MAX];
  69        int ubi_num;
  70        int vid_hdr_offs;
  71        int max_beb_per1024;
  72};
  73
  74/* Numbers of elements set in the @mtd_dev_param array */
  75static int __initdata mtd_devs;
  76
  77/* MTD devices specification parameters */
  78static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
  79#ifndef __UBOOT__
  80#ifdef CONFIG_MTD_UBI_FASTMAP
  81/* UBI module parameter to enable fastmap automatically on non-fastmap images */
  82static bool fm_autoconvert;
  83static bool fm_debug;
  84#endif
  85#else
  86#ifdef CONFIG_MTD_UBI_FASTMAP
  87#if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT)
  88#define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0
  89#endif
  90static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT;
  91#if !defined(CONFIG_MTD_UBI_FM_DEBUG)
  92#define CONFIG_MTD_UBI_FM_DEBUG 0
  93#endif
  94static bool fm_debug = CONFIG_MTD_UBI_FM_DEBUG;
  95#endif
  96#endif
  97
  98/* Slab cache for wear-leveling entries */
  99struct kmem_cache *ubi_wl_entry_slab;
 100
 101#ifndef __UBOOT__
 102/* UBI control character device */
 103static struct miscdevice ubi_ctrl_cdev = {
 104        .minor = MISC_DYNAMIC_MINOR,
 105        .name = "ubi_ctrl",
 106        .fops = &ubi_ctrl_cdev_operations,
 107};
 108#endif
 109
 110/* All UBI devices in system */
 111#ifndef __UBOOT__
 112static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
 113#else
 114struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
 115#endif
 116 
 117#ifndef __UBOOT__
 118/* Serializes UBI devices creations and removals */
 119DEFINE_MUTEX(ubi_devices_mutex);
 120
 121/* Protects @ubi_devices and @ubi->ref_count */
 122static DEFINE_SPINLOCK(ubi_devices_lock);
 123
 124/* "Show" method for files in '/<sysfs>/class/ubi/' */
 125static ssize_t ubi_version_show(struct class *class,
 126                                struct class_attribute *attr, char *buf)
 127{
 128        return sprintf(buf, "%d\n", UBI_VERSION);
 129}
 130
 131/* UBI version attribute ('/<sysfs>/class/ubi/version') */
 132static struct class_attribute ubi_class_attrs[] = {
 133        __ATTR(version, S_IRUGO, ubi_version_show, NULL),
 134        __ATTR_NULL
 135};
 136
 137/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
 138struct class ubi_class = {
 139        .name           = UBI_NAME_STR,
 140        .owner          = THIS_MODULE,
 141        .class_attrs    = ubi_class_attrs,
 142};
 143
 144static ssize_t dev_attribute_show(struct device *dev,
 145                                  struct device_attribute *attr, char *buf);
 146
 147/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
 148static struct device_attribute dev_eraseblock_size =
 149        __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
 150static struct device_attribute dev_avail_eraseblocks =
 151        __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 152static struct device_attribute dev_total_eraseblocks =
 153        __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 154static struct device_attribute dev_volumes_count =
 155        __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
 156static struct device_attribute dev_max_ec =
 157        __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
 158static struct device_attribute dev_reserved_for_bad =
 159        __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
 160static struct device_attribute dev_bad_peb_count =
 161        __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
 162static struct device_attribute dev_max_vol_count =
 163        __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
 164static struct device_attribute dev_min_io_size =
 165        __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
 166static struct device_attribute dev_bgt_enabled =
 167        __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
 168static struct device_attribute dev_mtd_num =
 169        __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
 170#endif
 171
 172/**
 173 * ubi_volume_notify - send a volume change notification.
 174 * @ubi: UBI device description object
 175 * @vol: volume description object of the changed volume
 176 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 177 *
 178 * This is a helper function which notifies all subscribers about a volume
 179 * change event (creation, removal, re-sizing, re-naming, updating). Returns
 180 * zero in case of success and a negative error code in case of failure.
 181 */
 182int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
 183{
 184        int ret;
 185        struct ubi_notification nt;
 186
 187        ubi_do_get_device_info(ubi, &nt.di);
 188        ubi_do_get_volume_info(ubi, vol, &nt.vi);
 189
 190        switch (ntype) {
 191        case UBI_VOLUME_ADDED:
 192        case UBI_VOLUME_REMOVED:
 193        case UBI_VOLUME_RESIZED:
 194        case UBI_VOLUME_RENAMED:
 195                ret = ubi_update_fastmap(ubi);
 196                if (ret)
 197                        ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
 198        }
 199
 200        return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
 201}
 202
 203/**
 204 * ubi_notify_all - send a notification to all volumes.
 205 * @ubi: UBI device description object
 206 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 207 * @nb: the notifier to call
 208 *
 209 * This function walks all volumes of UBI device @ubi and sends the @ntype
 210 * notification for each volume. If @nb is %NULL, then all registered notifiers
 211 * are called, otherwise only the @nb notifier is called. Returns the number of
 212 * sent notifications.
 213 */
 214int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
 215{
 216        struct ubi_notification nt;
 217        int i, count = 0;
 218#ifndef __UBOOT__
 219        int ret;
 220#endif
 221
 222        ubi_do_get_device_info(ubi, &nt.di);
 223
 224        mutex_lock(&ubi->device_mutex);
 225        for (i = 0; i < ubi->vtbl_slots; i++) {
 226                /*
 227                 * Since the @ubi->device is locked, and we are not going to
 228                 * change @ubi->volumes, we do not have to lock
 229                 * @ubi->volumes_lock.
 230                 */
 231                if (!ubi->volumes[i])
 232                        continue;
 233
 234                ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
 235#ifndef __UBOOT__
 236                if (nb)
 237                        nb->notifier_call(nb, ntype, &nt);
 238                else
 239                        ret = blocking_notifier_call_chain(&ubi_notifiers, ntype,
 240                                                     &nt);
 241#endif
 242                count += 1;
 243        }
 244        mutex_unlock(&ubi->device_mutex);
 245
 246        return count;
 247}
 248
 249/**
 250 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
 251 * @nb: the notifier to call
 252 *
 253 * This function walks all UBI devices and volumes and sends the
 254 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
 255 * registered notifiers are called, otherwise only the @nb notifier is called.
 256 * Returns the number of sent notifications.
 257 */
 258int ubi_enumerate_volumes(struct notifier_block *nb)
 259{
 260        int i, count = 0;
 261
 262        /*
 263         * Since the @ubi_devices_mutex is locked, and we are not going to
 264         * change @ubi_devices, we do not have to lock @ubi_devices_lock.
 265         */
 266        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 267                struct ubi_device *ubi = ubi_devices[i];
 268
 269                if (!ubi)
 270                        continue;
 271                count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
 272        }
 273
 274        return count;
 275}
 276
 277/**
 278 * ubi_get_device - get UBI device.
 279 * @ubi_num: UBI device number
 280 *
 281 * This function returns UBI device description object for UBI device number
 282 * @ubi_num, or %NULL if the device does not exist. This function increases the
 283 * device reference count to prevent removal of the device. In other words, the
 284 * device cannot be removed if its reference count is not zero.
 285 */
 286struct ubi_device *ubi_get_device(int ubi_num)
 287{
 288        struct ubi_device *ubi;
 289
 290        spin_lock(&ubi_devices_lock);
 291        ubi = ubi_devices[ubi_num];
 292        if (ubi) {
 293                ubi_assert(ubi->ref_count >= 0);
 294                ubi->ref_count += 1;
 295                get_device(&ubi->dev);
 296        }
 297        spin_unlock(&ubi_devices_lock);
 298
 299        return ubi;
 300}
 301
 302/**
 303 * ubi_put_device - drop an UBI device reference.
 304 * @ubi: UBI device description object
 305 */
 306void ubi_put_device(struct ubi_device *ubi)
 307{
 308        spin_lock(&ubi_devices_lock);
 309        ubi->ref_count -= 1;
 310        put_device(&ubi->dev);
 311        spin_unlock(&ubi_devices_lock);
 312}
 313
 314/**
 315 * ubi_get_by_major - get UBI device by character device major number.
 316 * @major: major number
 317 *
 318 * This function is similar to 'ubi_get_device()', but it searches the device
 319 * by its major number.
 320 */
 321struct ubi_device *ubi_get_by_major(int major)
 322{
 323        int i;
 324        struct ubi_device *ubi;
 325
 326        spin_lock(&ubi_devices_lock);
 327        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 328                ubi = ubi_devices[i];
 329                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 330                        ubi_assert(ubi->ref_count >= 0);
 331                        ubi->ref_count += 1;
 332                        get_device(&ubi->dev);
 333                        spin_unlock(&ubi_devices_lock);
 334                        return ubi;
 335                }
 336        }
 337        spin_unlock(&ubi_devices_lock);
 338
 339        return NULL;
 340}
 341
 342/**
 343 * ubi_major2num - get UBI device number by character device major number.
 344 * @major: major number
 345 *
 346 * This function searches UBI device number object by its major number. If UBI
 347 * device was not found, this function returns -ENODEV, otherwise the UBI device
 348 * number is returned.
 349 */
 350int ubi_major2num(int major)
 351{
 352        int i, ubi_num = -ENODEV;
 353
 354        spin_lock(&ubi_devices_lock);
 355        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 356                struct ubi_device *ubi = ubi_devices[i];
 357
 358                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 359                        ubi_num = ubi->ubi_num;
 360                        break;
 361                }
 362        }
 363        spin_unlock(&ubi_devices_lock);
 364
 365        return ubi_num;
 366}
 367
 368#ifndef __UBOOT__
 369/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
 370static ssize_t dev_attribute_show(struct device *dev,
 371                                  struct device_attribute *attr, char *buf)
 372{
 373        ssize_t ret;
 374        struct ubi_device *ubi;
 375
 376        /*
 377         * The below code looks weird, but it actually makes sense. We get the
 378         * UBI device reference from the contained 'struct ubi_device'. But it
 379         * is unclear if the device was removed or not yet. Indeed, if the
 380         * device was removed before we increased its reference count,
 381         * 'ubi_get_device()' will return -ENODEV and we fail.
 382         *
 383         * Remember, 'struct ubi_device' is freed in the release function, so
 384         * we still can use 'ubi->ubi_num'.
 385         */
 386        ubi = container_of(dev, struct ubi_device, dev);
 387        ubi = ubi_get_device(ubi->ubi_num);
 388        if (!ubi)
 389                return -ENODEV;
 390
 391        if (attr == &dev_eraseblock_size)
 392                ret = sprintf(buf, "%d\n", ubi->leb_size);
 393        else if (attr == &dev_avail_eraseblocks)
 394                ret = sprintf(buf, "%d\n", ubi->avail_pebs);
 395        else if (attr == &dev_total_eraseblocks)
 396                ret = sprintf(buf, "%d\n", ubi->good_peb_count);
 397        else if (attr == &dev_volumes_count)
 398                ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
 399        else if (attr == &dev_max_ec)
 400                ret = sprintf(buf, "%d\n", ubi->max_ec);
 401        else if (attr == &dev_reserved_for_bad)
 402                ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
 403        else if (attr == &dev_bad_peb_count)
 404                ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
 405        else if (attr == &dev_max_vol_count)
 406                ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
 407        else if (attr == &dev_min_io_size)
 408                ret = sprintf(buf, "%d\n", ubi->min_io_size);
 409        else if (attr == &dev_bgt_enabled)
 410                ret = sprintf(buf, "%d\n", ubi->thread_enabled);
 411        else if (attr == &dev_mtd_num)
 412                ret = sprintf(buf, "%d\n", ubi->mtd->index);
 413        else
 414                ret = -EINVAL;
 415
 416        ubi_put_device(ubi);
 417        return ret;
 418}
 419
 420static struct attribute *ubi_dev_attrs[] = {
 421        &dev_eraseblock_size.attr,
 422        &dev_avail_eraseblocks.attr,
 423        &dev_total_eraseblocks.attr,
 424        &dev_volumes_count.attr,
 425        &dev_max_ec.attr,
 426        &dev_reserved_for_bad.attr,
 427        &dev_bad_peb_count.attr,
 428        &dev_max_vol_count.attr,
 429        &dev_min_io_size.attr,
 430        &dev_bgt_enabled.attr,
 431        &dev_mtd_num.attr,
 432        NULL
 433};
 434ATTRIBUTE_GROUPS(ubi_dev);
 435
 436static void dev_release(struct device *dev)
 437{
 438        struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
 439
 440        kfree(ubi);
 441}
 442
 443/**
 444 * ubi_sysfs_init - initialize sysfs for an UBI device.
 445 * @ubi: UBI device description object
 446 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
 447 *       taken
 448 *
 449 * This function returns zero in case of success and a negative error code in
 450 * case of failure.
 451 */
 452static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
 453{
 454        int err;
 455
 456        ubi->dev.release = dev_release;
 457        ubi->dev.devt = ubi->cdev.dev;
 458        ubi->dev.class = &ubi_class;
 459        ubi->dev.groups = ubi_dev_groups;
 460        dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
 461        err = device_register(&ubi->dev);
 462        if (err)
 463                return err;
 464
 465        *ref = 1;
 466        return 0;
 467}
 468
 469/**
 470 * ubi_sysfs_close - close sysfs for an UBI device.
 471 * @ubi: UBI device description object
 472 */
 473static void ubi_sysfs_close(struct ubi_device *ubi)
 474{
 475        device_unregister(&ubi->dev);
 476}
 477#endif
 478
 479/**
 480 * kill_volumes - destroy all user volumes.
 481 * @ubi: UBI device description object
 482 */
 483static void kill_volumes(struct ubi_device *ubi)
 484{
 485        int i;
 486
 487        for (i = 0; i < ubi->vtbl_slots; i++)
 488                if (ubi->volumes[i])
 489                        ubi_free_volume(ubi, ubi->volumes[i]);
 490}
 491
 492/**
 493 * uif_init - initialize user interfaces for an UBI device.
 494 * @ubi: UBI device description object
 495 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
 496 *       taken, otherwise set to %0
 497 *
 498 * This function initializes various user interfaces for an UBI device. If the
 499 * initialization fails at an early stage, this function frees all the
 500 * resources it allocated, returns an error, and @ref is set to %0. However,
 501 * if the initialization fails after the UBI device was registered in the
 502 * driver core subsystem, this function takes a reference to @ubi->dev, because
 503 * otherwise the release function ('dev_release()') would free whole @ubi
 504 * object. The @ref argument is set to %1 in this case. The caller has to put
 505 * this reference.
 506 *
 507 * This function returns zero in case of success and a negative error code in
 508 * case of failure.
 509 */
 510static int uif_init(struct ubi_device *ubi, int *ref)
 511{
 512        int i, err;
 513#ifndef __UBOOT__
 514        dev_t dev;
 515#endif
 516
 517        *ref = 0;
 518        sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
 519
 520        /*
 521         * Major numbers for the UBI character devices are allocated
 522         * dynamically. Major numbers of volume character devices are
 523         * equivalent to ones of the corresponding UBI character device. Minor
 524         * numbers of UBI character devices are 0, while minor numbers of
 525         * volume character devices start from 1. Thus, we allocate one major
 526         * number and ubi->vtbl_slots + 1 minor numbers.
 527         */
 528        err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
 529        if (err) {
 530                ubi_err(ubi, "cannot register UBI character devices");
 531                return err;
 532        }
 533
 534        ubi_assert(MINOR(dev) == 0);
 535        cdev_init(&ubi->cdev, &ubi_cdev_operations);
 536        dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
 537        ubi->cdev.owner = THIS_MODULE;
 538
 539        err = cdev_add(&ubi->cdev, dev, 1);
 540        if (err) {
 541                ubi_err(ubi, "cannot add character device");
 542                goto out_unreg;
 543        }
 544
 545        err = ubi_sysfs_init(ubi, ref);
 546        if (err)
 547                goto out_sysfs;
 548
 549        for (i = 0; i < ubi->vtbl_slots; i++)
 550                if (ubi->volumes[i]) {
 551                        err = ubi_add_volume(ubi, ubi->volumes[i]);
 552                        if (err) {
 553                                ubi_err(ubi, "cannot add volume %d", i);
 554                                goto out_volumes;
 555                        }
 556                }
 557
 558        return 0;
 559
 560out_volumes:
 561        kill_volumes(ubi);
 562out_sysfs:
 563        if (*ref)
 564                get_device(&ubi->dev);
 565        ubi_sysfs_close(ubi);
 566        cdev_del(&ubi->cdev);
 567out_unreg:
 568        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 569        ubi_err(ubi, "cannot initialize UBI %s, error %d",
 570                ubi->ubi_name, err);
 571        return err;
 572}
 573
 574/**
 575 * uif_close - close user interfaces for an UBI device.
 576 * @ubi: UBI device description object
 577 *
 578 * Note, since this function un-registers UBI volume device objects (@vol->dev),
 579 * the memory allocated voe the volumes is freed as well (in the release
 580 * function).
 581 */
 582static void uif_close(struct ubi_device *ubi)
 583{
 584        kill_volumes(ubi);
 585        ubi_sysfs_close(ubi);
 586        cdev_del(&ubi->cdev);
 587        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 588}
 589
 590/**
 591 * ubi_free_internal_volumes - free internal volumes.
 592 * @ubi: UBI device description object
 593 */
 594void ubi_free_internal_volumes(struct ubi_device *ubi)
 595{
 596        int i;
 597
 598        for (i = ubi->vtbl_slots;
 599             i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 600                kfree(ubi->volumes[i]->eba_tbl);
 601                kfree(ubi->volumes[i]);
 602        }
 603}
 604
 605static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
 606{
 607        int limit, device_pebs;
 608        uint64_t device_size;
 609
 610        if (!max_beb_per1024)
 611                return 0;
 612
 613        /*
 614         * Here we are using size of the entire flash chip and
 615         * not just the MTD partition size because the maximum
 616         * number of bad eraseblocks is a percentage of the
 617         * whole device and bad eraseblocks are not fairly
 618         * distributed over the flash chip. So the worst case
 619         * is that all the bad eraseblocks of the chip are in
 620         * the MTD partition we are attaching (ubi->mtd).
 621         */
 622        device_size = mtd_get_device_size(ubi->mtd);
 623        device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
 624        limit = mult_frac(device_pebs, max_beb_per1024, 1024);
 625
 626        /* Round it up */
 627        if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
 628                limit += 1;
 629
 630        return limit;
 631}
 632
 633/**
 634 * io_init - initialize I/O sub-system for a given UBI device.
 635 * @ubi: UBI device description object
 636 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 637 *
 638 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
 639 * assumed:
 640 *   o EC header is always at offset zero - this cannot be changed;
 641 *   o VID header starts just after the EC header at the closest address
 642 *     aligned to @io->hdrs_min_io_size;
 643 *   o data starts just after the VID header at the closest address aligned to
 644 *     @io->min_io_size
 645 *
 646 * This function returns zero in case of success and a negative error code in
 647 * case of failure.
 648 */
 649static int io_init(struct ubi_device *ubi, int max_beb_per1024)
 650{
 651        dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
 652        dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
 653
 654        if (ubi->mtd->numeraseregions != 0) {
 655                /*
 656                 * Some flashes have several erase regions. Different regions
 657                 * may have different eraseblock size and other
 658                 * characteristics. It looks like mostly multi-region flashes
 659                 * have one "main" region and one or more small regions to
 660                 * store boot loader code or boot parameters or whatever. I
 661                 * guess we should just pick the largest region. But this is
 662                 * not implemented.
 663                 */
 664                ubi_err(ubi, "multiple regions, not implemented");
 665                return -EINVAL;
 666        }
 667
 668        if (ubi->vid_hdr_offset < 0)
 669                return -EINVAL;
 670
 671        /*
 672         * Note, in this implementation we support MTD devices with 0x7FFFFFFF
 673         * physical eraseblocks maximum.
 674         */
 675
 676        ubi->peb_size   = ubi->mtd->erasesize;
 677        ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
 678        ubi->flash_size = ubi->mtd->size;
 679
 680        if (mtd_can_have_bb(ubi->mtd)) {
 681                ubi->bad_allowed = 1;
 682                ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
 683        }
 684
 685        if (ubi->mtd->type == MTD_NORFLASH) {
 686                ubi_assert(ubi->mtd->writesize == 1);
 687                ubi->nor_flash = 1;
 688        }
 689
 690        ubi->min_io_size = ubi->mtd->writesize;
 691        ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
 692
 693        /*
 694         * Make sure minimal I/O unit is power of 2. Note, there is no
 695         * fundamental reason for this assumption. It is just an optimization
 696         * which allows us to avoid costly division operations.
 697         */
 698        if (!is_power_of_2(ubi->min_io_size)) {
 699                ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
 700                        ubi->min_io_size);
 701                return -EINVAL;
 702        }
 703
 704        ubi_assert(ubi->hdrs_min_io_size > 0);
 705        ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
 706        ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
 707
 708        ubi->max_write_size = ubi->mtd->writebufsize;
 709        /*
 710         * Maximum write size has to be greater or equivalent to min. I/O
 711         * size, and be multiple of min. I/O size.
 712         */
 713        if (ubi->max_write_size < ubi->min_io_size ||
 714            ubi->max_write_size % ubi->min_io_size ||
 715            !is_power_of_2(ubi->max_write_size)) {
 716                ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
 717                        ubi->max_write_size, ubi->min_io_size);
 718                return -EINVAL;
 719        }
 720
 721        /* Calculate default aligned sizes of EC and VID headers */
 722        ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
 723        ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
 724
 725        dbg_gen("min_io_size      %d", ubi->min_io_size);
 726        dbg_gen("max_write_size   %d", ubi->max_write_size);
 727        dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
 728        dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
 729        dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
 730
 731        if (ubi->vid_hdr_offset == 0)
 732                /* Default offset */
 733                ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
 734                                      ubi->ec_hdr_alsize;
 735        else {
 736                ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
 737                                                ~(ubi->hdrs_min_io_size - 1);
 738                ubi->vid_hdr_shift = ubi->vid_hdr_offset -
 739                                                ubi->vid_hdr_aloffset;
 740        }
 741
 742        /* Similar for the data offset */
 743        ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
 744        ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
 745
 746        dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
 747        dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
 748        dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
 749        dbg_gen("leb_start        %d", ubi->leb_start);
 750
 751        /* The shift must be aligned to 32-bit boundary */
 752        if (ubi->vid_hdr_shift % 4) {
 753                ubi_err(ubi, "unaligned VID header shift %d",
 754                        ubi->vid_hdr_shift);
 755                return -EINVAL;
 756        }
 757
 758        /* Check sanity */
 759        if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
 760            ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
 761            ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
 762            ubi->leb_start & (ubi->min_io_size - 1)) {
 763                ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
 764                        ubi->vid_hdr_offset, ubi->leb_start);
 765                return -EINVAL;
 766        }
 767
 768        /*
 769         * Set maximum amount of physical erroneous eraseblocks to be 10%.
 770         * Erroneous PEB are those which have read errors.
 771         */
 772        ubi->max_erroneous = ubi->peb_count / 10;
 773        if (ubi->max_erroneous < 16)
 774                ubi->max_erroneous = 16;
 775        dbg_gen("max_erroneous    %d", ubi->max_erroneous);
 776
 777        /*
 778         * It may happen that EC and VID headers are situated in one minimal
 779         * I/O unit. In this case we can only accept this UBI image in
 780         * read-only mode.
 781         */
 782        if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
 783                ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
 784                ubi->ro_mode = 1;
 785        }
 786
 787        ubi->leb_size = ubi->peb_size - ubi->leb_start;
 788
 789        if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
 790                ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
 791                        ubi->mtd->index);
 792                ubi->ro_mode = 1;
 793        }
 794
 795        /*
 796         * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
 797         * unfortunately, MTD does not provide this information. We should loop
 798         * over all physical eraseblocks and invoke mtd->block_is_bad() for
 799         * each physical eraseblock. So, we leave @ubi->bad_peb_count
 800         * uninitialized so far.
 801         */
 802
 803        return 0;
 804}
 805
 806/**
 807 * autoresize - re-size the volume which has the "auto-resize" flag set.
 808 * @ubi: UBI device description object
 809 * @vol_id: ID of the volume to re-size
 810 *
 811 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
 812 * the volume table to the largest possible size. See comments in ubi-header.h
 813 * for more description of the flag. Returns zero in case of success and a
 814 * negative error code in case of failure.
 815 */
 816static int autoresize(struct ubi_device *ubi, int vol_id)
 817{
 818        struct ubi_volume_desc desc;
 819        struct ubi_volume *vol = ubi->volumes[vol_id];
 820        int err, old_reserved_pebs = vol->reserved_pebs;
 821
 822        if (ubi->ro_mode) {
 823                ubi_warn(ubi, "skip auto-resize because of R/O mode");
 824                return 0;
 825        }
 826
 827        /*
 828         * Clear the auto-resize flag in the volume in-memory copy of the
 829         * volume table, and 'ubi_resize_volume()' will propagate this change
 830         * to the flash.
 831         */
 832        ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
 833
 834        if (ubi->avail_pebs == 0) {
 835                struct ubi_vtbl_record vtbl_rec;
 836
 837                /*
 838                 * No available PEBs to re-size the volume, clear the flag on
 839                 * flash and exit.
 840                 */
 841                vtbl_rec = ubi->vtbl[vol_id];
 842                err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
 843                if (err)
 844                        ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
 845                                vol_id);
 846        } else {
 847                desc.vol = vol;
 848                err = ubi_resize_volume(&desc,
 849                                        old_reserved_pebs + ubi->avail_pebs);
 850                if (err)
 851                        ubi_err(ubi, "cannot auto-resize volume %d",
 852                                vol_id);
 853        }
 854
 855        if (err)
 856                return err;
 857
 858        ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
 859                vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
 860        return 0;
 861}
 862
 863/**
 864 * ubi_attach_mtd_dev - attach an MTD device.
 865 * @mtd: MTD device description object
 866 * @ubi_num: number to assign to the new UBI device
 867 * @vid_hdr_offset: VID header offset
 868 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 869 *
 870 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
 871 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
 872 * which case this function finds a vacant device number and assigns it
 873 * automatically. Returns the new UBI device number in case of success and a
 874 * negative error code in case of failure.
 875 *
 876 * Note, the invocations of this function has to be serialized by the
 877 * @ubi_devices_mutex.
 878 */
 879int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
 880                       int vid_hdr_offset, int max_beb_per1024)
 881{
 882        struct ubi_device *ubi;
 883        int i, err, ref = 0;
 884
 885        if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
 886                return -EINVAL;
 887
 888        if (!max_beb_per1024)
 889                max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
 890
 891        /*
 892         * Check if we already have the same MTD device attached.
 893         *
 894         * Note, this function assumes that UBI devices creations and deletions
 895         * are serialized, so it does not take the &ubi_devices_lock.
 896         */
 897        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 898                ubi = ubi_devices[i];
 899                if (ubi && mtd->index == ubi->mtd->index) {
 900                        ubi_err(ubi, "mtd%d is already attached to ubi%d",
 901                                mtd->index, i);
 902                        return -EEXIST;
 903                }
 904        }
 905
 906        /*
 907         * Make sure this MTD device is not emulated on top of an UBI volume
 908         * already. Well, generally this recursion works fine, but there are
 909         * different problems like the UBI module takes a reference to itself
 910         * by attaching (and thus, opening) the emulated MTD device. This
 911         * results in inability to unload the module. And in general it makes
 912         * no sense to attach emulated MTD devices, so we prohibit this.
 913         */
 914        if (mtd->type == MTD_UBIVOLUME) {
 915                ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
 916                        mtd->index);
 917                return -EINVAL;
 918        }
 919
 920        if (ubi_num == UBI_DEV_NUM_AUTO) {
 921                /* Search for an empty slot in the @ubi_devices array */
 922                for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
 923                        if (!ubi_devices[ubi_num])
 924                                break;
 925                if (ubi_num == UBI_MAX_DEVICES) {
 926                        ubi_err(ubi, "only %d UBI devices may be created",
 927                                UBI_MAX_DEVICES);
 928                        return -ENFILE;
 929                }
 930        } else {
 931                if (ubi_num >= UBI_MAX_DEVICES)
 932                        return -EINVAL;
 933
 934                /* Make sure ubi_num is not busy */
 935                if (ubi_devices[ubi_num]) {
 936                        ubi_err(ubi, "already exists");
 937                        return -EEXIST;
 938                }
 939        }
 940
 941        ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
 942        if (!ubi)
 943                return -ENOMEM;
 944
 945        ubi->mtd = mtd;
 946        ubi->ubi_num = ubi_num;
 947        ubi->vid_hdr_offset = vid_hdr_offset;
 948        ubi->autoresize_vol_id = -1;
 949
 950#ifdef CONFIG_MTD_UBI_FASTMAP
 951        ubi->fm_pool.used = ubi->fm_pool.size = 0;
 952        ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
 953
 954        /*
 955         * fm_pool.max_size is 5% of the total number of PEBs but it's also
 956         * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
 957         */
 958        ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
 959                ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
 960        ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
 961                UBI_FM_MIN_POOL_SIZE);
 962
 963        ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
 964        ubi->fm_disabled = !fm_autoconvert;
 965        if (fm_debug)
 966                ubi_enable_dbg_chk_fastmap(ubi);
 967
 968        if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
 969            <= UBI_FM_MAX_START) {
 970                ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
 971                        UBI_FM_MAX_START);
 972                ubi->fm_disabled = 1;
 973        }
 974
 975        ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
 976        ubi_msg(ubi, "default fastmap WL pool size: %d",
 977                ubi->fm_wl_pool.max_size);
 978#else
 979        ubi->fm_disabled = 1;
 980#endif
 981        mutex_init(&ubi->buf_mutex);
 982        mutex_init(&ubi->ckvol_mutex);
 983        mutex_init(&ubi->device_mutex);
 984        spin_lock_init(&ubi->volumes_lock);
 985        init_rwsem(&ubi->fm_protect);
 986        init_rwsem(&ubi->fm_eba_sem);
 987
 988        ubi_msg(ubi, "attaching mtd%d", mtd->index);
 989
 990        err = io_init(ubi, max_beb_per1024);
 991        if (err)
 992                goto out_free;
 993
 994        err = -ENOMEM;
 995        ubi->peb_buf = vmalloc(ubi->peb_size);
 996        if (!ubi->peb_buf)
 997                goto out_free;
 998
 999#ifdef CONFIG_MTD_UBI_FASTMAP
1000        ubi->fm_size = ubi_calc_fm_size(ubi);
1001        ubi->fm_buf = vzalloc(ubi->fm_size);
1002        if (!ubi->fm_buf)
1003                goto out_free;
1004#endif
1005        err = ubi_attach(ubi, 0);
1006        if (err) {
1007                ubi_err(ubi, "failed to attach mtd%d, error %d",
1008                        mtd->index, err);
1009                goto out_free;
1010        }
1011
1012        if (ubi->autoresize_vol_id != -1) {
1013                err = autoresize(ubi, ubi->autoresize_vol_id);
1014                if (err)
1015                        goto out_detach;
1016        }
1017
1018        err = uif_init(ubi, &ref);
1019        if (err)
1020                goto out_detach;
1021
1022        err = ubi_debugfs_init_dev(ubi);
1023        if (err)
1024                goto out_uif;
1025
1026        ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1027        if (IS_ERR(ubi->bgt_thread)) {
1028                err = PTR_ERR(ubi->bgt_thread);
1029                ubi_err(ubi, "cannot spawn \"%s\", error %d",
1030                        ubi->bgt_name, err);
1031                goto out_debugfs;
1032        }
1033
1034        ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1035                mtd->index, mtd->name, ubi->flash_size >> 20);
1036        ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1037                ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1038        ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1039                ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1040        ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1041                ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1042        ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1043                ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1044        ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1045                ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1046                ubi->vtbl_slots);
1047        ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1048                ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1049                ubi->image_seq);
1050        ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1051                ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1052
1053        /*
1054         * The below lock makes sure we do not race with 'ubi_thread()' which
1055         * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1056         */
1057        spin_lock(&ubi->wl_lock);
1058        ubi->thread_enabled = 1;
1059#ifndef __UBOOT__
1060        wake_up_process(ubi->bgt_thread);
1061#else
1062        ubi_do_worker(ubi);
1063#endif
1064
1065        spin_unlock(&ubi->wl_lock);
1066
1067        ubi_devices[ubi_num] = ubi;
1068        ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1069        return ubi_num;
1070
1071out_debugfs:
1072        ubi_debugfs_exit_dev(ubi);
1073out_uif:
1074        get_device(&ubi->dev);
1075        ubi_assert(ref);
1076        uif_close(ubi);
1077out_detach:
1078        ubi_wl_close(ubi);
1079        ubi_free_internal_volumes(ubi);
1080        vfree(ubi->vtbl);
1081out_free:
1082        vfree(ubi->peb_buf);
1083        vfree(ubi->fm_buf);
1084        if (ref)
1085                put_device(&ubi->dev);
1086        else
1087                kfree(ubi);
1088        return err;
1089}
1090
1091/**
1092 * ubi_detach_mtd_dev - detach an MTD device.
1093 * @ubi_num: UBI device number to detach from
1094 * @anyway: detach MTD even if device reference count is not zero
1095 *
1096 * This function destroys an UBI device number @ubi_num and detaches the
1097 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1098 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1099 * exist.
1100 *
1101 * Note, the invocations of this function has to be serialized by the
1102 * @ubi_devices_mutex.
1103 */
1104int ubi_detach_mtd_dev(int ubi_num, int anyway)
1105{
1106        struct ubi_device *ubi;
1107
1108        if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1109                return -EINVAL;
1110
1111        ubi = ubi_get_device(ubi_num);
1112        if (!ubi)
1113                return -EINVAL;
1114
1115        spin_lock(&ubi_devices_lock);
1116        put_device(&ubi->dev);
1117        ubi->ref_count -= 1;
1118        if (ubi->ref_count) {
1119                if (!anyway) {
1120                        spin_unlock(&ubi_devices_lock);
1121                        return -EBUSY;
1122                }
1123                /* This may only happen if there is a bug */
1124                ubi_err(ubi, "%s reference count %d, destroy anyway",
1125                        ubi->ubi_name, ubi->ref_count);
1126        }
1127        ubi_devices[ubi_num] = NULL;
1128        spin_unlock(&ubi_devices_lock);
1129
1130        ubi_assert(ubi_num == ubi->ubi_num);
1131        ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1132        ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1133#ifdef CONFIG_MTD_UBI_FASTMAP
1134        /* If we don't write a new fastmap at detach time we lose all
1135         * EC updates that have been made since the last written fastmap.
1136         * In case of fastmap debugging we omit the update to simulate an
1137         * unclean shutdown. */
1138        if (!ubi_dbg_chk_fastmap(ubi))
1139                ubi_update_fastmap(ubi);
1140#endif
1141        /*
1142         * Before freeing anything, we have to stop the background thread to
1143         * prevent it from doing anything on this device while we are freeing.
1144         */
1145        if (ubi->bgt_thread)
1146                kthread_stop(ubi->bgt_thread);
1147
1148        /*
1149         * Get a reference to the device in order to prevent 'dev_release()'
1150         * from freeing the @ubi object.
1151         */
1152        get_device(&ubi->dev);
1153
1154        ubi_debugfs_exit_dev(ubi);
1155        uif_close(ubi);
1156
1157        ubi_wl_close(ubi);
1158        ubi_free_internal_volumes(ubi);
1159        vfree(ubi->vtbl);
1160        put_mtd_device(ubi->mtd);
1161        vfree(ubi->peb_buf);
1162        vfree(ubi->fm_buf);
1163        ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1164        put_device(&ubi->dev);
1165        return 0;
1166}
1167
1168#ifndef __UBOOT__
1169/**
1170 * open_mtd_by_chdev - open an MTD device by its character device node path.
1171 * @mtd_dev: MTD character device node path
1172 *
1173 * This helper function opens an MTD device by its character node device path.
1174 * Returns MTD device description object in case of success and a negative
1175 * error code in case of failure.
1176 */
1177static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1178{
1179        int err, major, minor, mode;
1180        struct path path;
1181
1182        /* Probably this is an MTD character device node path */
1183        err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1184        if (err)
1185                return ERR_PTR(err);
1186
1187        /* MTD device number is defined by the major / minor numbers */
1188        major = imajor(d_backing_inode(path.dentry));
1189        minor = iminor(d_backing_inode(path.dentry));
1190        mode = d_backing_inode(path.dentry)->i_mode;
1191        path_put(&path);
1192        if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1193                return ERR_PTR(-EINVAL);
1194
1195        if (minor & 1)
1196                /*
1197                 * Just do not think the "/dev/mtdrX" devices support is need,
1198                 * so do not support them to avoid doing extra work.
1199                 */
1200                return ERR_PTR(-EINVAL);
1201
1202        return get_mtd_device(NULL, minor / 2);
1203}
1204#endif
1205
1206/**
1207 * open_mtd_device - open MTD device by name, character device path, or number.
1208 * @mtd_dev: name, character device node path, or MTD device device number
1209 *
1210 * This function tries to open and MTD device described by @mtd_dev string,
1211 * which is first treated as ASCII MTD device number, and if it is not true, it
1212 * is treated as MTD device name, and if that is also not true, it is treated
1213 * as MTD character device node path. Returns MTD device description object in
1214 * case of success and a negative error code in case of failure.
1215 */
1216static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1217{
1218        struct mtd_info *mtd;
1219        int mtd_num;
1220        char *endp;
1221
1222        mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1223        if (*endp != '\0' || mtd_dev == endp) {
1224                /*
1225                 * This does not look like an ASCII integer, probably this is
1226                 * MTD device name.
1227                 */
1228                mtd = get_mtd_device_nm(mtd_dev);
1229#ifndef __UBOOT__
1230                if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1231                        /* Probably this is an MTD character device node path */
1232                        mtd = open_mtd_by_chdev(mtd_dev);
1233#endif
1234        } else
1235                mtd = get_mtd_device(NULL, mtd_num);
1236
1237        return mtd;
1238}
1239
1240#ifndef __UBOOT__
1241static int __init ubi_init(void)
1242#else
1243int ubi_init(void)
1244#endif
1245{
1246        int err, i, k;
1247
1248        /* Ensure that EC and VID headers have correct size */
1249        BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1250        BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1251
1252        if (mtd_devs > UBI_MAX_DEVICES) {
1253                pr_err("UBI error: too many MTD devices, maximum is %d",
1254                       UBI_MAX_DEVICES);
1255                return -EINVAL;
1256        }
1257
1258        /* Create base sysfs directory and sysfs files */
1259        err = class_register(&ubi_class);
1260        if (err < 0)
1261                return err;
1262
1263        err = misc_register(&ubi_ctrl_cdev);
1264        if (err) {
1265                pr_err("UBI error: cannot register device");
1266                goto out;
1267        }
1268
1269        ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1270                                              sizeof(struct ubi_wl_entry),
1271                                              0, 0, NULL);
1272        if (!ubi_wl_entry_slab) {
1273                err = -ENOMEM;
1274                goto out_dev_unreg;
1275        }
1276
1277        err = ubi_debugfs_init();
1278        if (err)
1279                goto out_slab;
1280
1281
1282        /* Attach MTD devices */
1283        for (i = 0; i < mtd_devs; i++) {
1284                struct mtd_dev_param *p = &mtd_dev_param[i];
1285                struct mtd_info *mtd;
1286
1287                cond_resched();
1288
1289                mtd = open_mtd_device(p->name);
1290                if (IS_ERR(mtd)) {
1291                        err = PTR_ERR(mtd);
1292                        pr_err("UBI error: cannot open mtd %s, error %d",
1293                               p->name, err);
1294                        /* See comment below re-ubi_is_module(). */
1295                        if (ubi_is_module())
1296                                goto out_detach;
1297                        continue;
1298                }
1299
1300                mutex_lock(&ubi_devices_mutex);
1301                err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1302                                         p->vid_hdr_offs, p->max_beb_per1024);
1303                mutex_unlock(&ubi_devices_mutex);
1304                if (err < 0) {
1305                        pr_err("UBI error: cannot attach mtd%d",
1306                               mtd->index);
1307                        put_mtd_device(mtd);
1308
1309                        /*
1310                         * Originally UBI stopped initializing on any error.
1311                         * However, later on it was found out that this
1312                         * behavior is not very good when UBI is compiled into
1313                         * the kernel and the MTD devices to attach are passed
1314                         * through the command line. Indeed, UBI failure
1315                         * stopped whole boot sequence.
1316                         *
1317                         * To fix this, we changed the behavior for the
1318                         * non-module case, but preserved the old behavior for
1319                         * the module case, just for compatibility. This is a
1320                         * little inconsistent, though.
1321                         */
1322                        if (ubi_is_module())
1323                                goto out_detach;
1324                }
1325        }
1326
1327        err = ubiblock_init();
1328        if (err) {
1329                pr_err("UBI error: block: cannot initialize, error %d", err);
1330
1331                /* See comment above re-ubi_is_module(). */
1332                if (ubi_is_module())
1333                        goto out_detach;
1334        }
1335
1336        return 0;
1337
1338out_detach:
1339        for (k = 0; k < i; k++)
1340                if (ubi_devices[k]) {
1341                        mutex_lock(&ubi_devices_mutex);
1342                        ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1343                        mutex_unlock(&ubi_devices_mutex);
1344                }
1345        ubi_debugfs_exit();
1346out_slab:
1347        kmem_cache_destroy(ubi_wl_entry_slab);
1348out_dev_unreg:
1349        misc_deregister(&ubi_ctrl_cdev);
1350out:
1351#ifdef __UBOOT__
1352        /* Reset any globals that the driver depends on being zeroed */
1353        mtd_devs = 0;
1354#endif
1355        class_unregister(&ubi_class);
1356        pr_err("UBI error: cannot initialize UBI, error %d", err);
1357        return err;
1358}
1359late_initcall(ubi_init);
1360
1361#ifndef __UBOOT__
1362static void __exit ubi_exit(void)
1363#else
1364void ubi_exit(void)
1365#endif
1366{
1367        int i;
1368
1369        ubiblock_exit();
1370
1371        for (i = 0; i < UBI_MAX_DEVICES; i++)
1372                if (ubi_devices[i]) {
1373                        mutex_lock(&ubi_devices_mutex);
1374                        ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1375                        mutex_unlock(&ubi_devices_mutex);
1376                }
1377        ubi_debugfs_exit();
1378        kmem_cache_destroy(ubi_wl_entry_slab);
1379        misc_deregister(&ubi_ctrl_cdev);
1380        class_unregister(&ubi_class);
1381#ifdef __UBOOT__
1382        /* Reset any globals that the driver depends on being zeroed */
1383        mtd_devs = 0;
1384#endif
1385}
1386module_exit(ubi_exit);
1387
1388/**
1389 * bytes_str_to_int - convert a number of bytes string into an integer.
1390 * @str: the string to convert
1391 *
1392 * This function returns positive resulting integer in case of success and a
1393 * negative error code in case of failure.
1394 */
1395static int __init bytes_str_to_int(const char *str)
1396{
1397        char *endp;
1398        unsigned long result;
1399
1400        result = simple_strtoul(str, &endp, 0);
1401        if (str == endp || result >= INT_MAX) {
1402                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1403                return -EINVAL;
1404        }
1405
1406        switch (*endp) {
1407        case 'G':
1408                result *= 1024;
1409        case 'M':
1410                result *= 1024;
1411        case 'K':
1412                result *= 1024;
1413                if (endp[1] == 'i' && endp[2] == 'B')
1414                        endp += 2;
1415        case '\0':
1416                break;
1417        default:
1418                pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1419                return -EINVAL;
1420        }
1421
1422        return result;
1423}
1424
1425int kstrtoint(const char *s, unsigned int base, int *res)
1426{
1427        unsigned long long tmp;
1428
1429        tmp = simple_strtoull(s, NULL, base);
1430        if (tmp != (unsigned long long)(int)tmp)
1431                return -ERANGE;
1432
1433        return (int)tmp;
1434}
1435
1436/**
1437 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1438 * @val: the parameter value to parse
1439 * @kp: not used
1440 *
1441 * This function returns zero in case of success and a negative error code in
1442 * case of error.
1443 */
1444#ifndef __UBOOT__
1445static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1446#else
1447int ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1448#endif
1449{
1450        int i, len;
1451        struct mtd_dev_param *p;
1452        char buf[MTD_PARAM_LEN_MAX];
1453        char *pbuf = &buf[0];
1454        char *tokens[MTD_PARAM_MAX_COUNT], *token;
1455
1456        if (!val)
1457                return -EINVAL;
1458
1459        if (mtd_devs == UBI_MAX_DEVICES) {
1460                pr_err("UBI error: too many parameters, max. is %d\n",
1461                       UBI_MAX_DEVICES);
1462                return -EINVAL;
1463        }
1464
1465        len = strnlen(val, MTD_PARAM_LEN_MAX);
1466        if (len == MTD_PARAM_LEN_MAX) {
1467                pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1468                       val, MTD_PARAM_LEN_MAX);
1469                return -EINVAL;
1470        }
1471
1472        if (len == 0) {
1473                pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1474                return 0;
1475        }
1476
1477        strcpy(buf, val);
1478
1479        /* Get rid of the final newline */
1480        if (buf[len - 1] == '\n')
1481                buf[len - 1] = '\0';
1482
1483        for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1484                tokens[i] = strsep(&pbuf, ",");
1485
1486        if (pbuf) {
1487                pr_err("UBI error: too many arguments at \"%s\"\n", val);
1488                return -EINVAL;
1489        }
1490
1491        p = &mtd_dev_param[mtd_devs];
1492        strcpy(&p->name[0], tokens[0]);
1493
1494        token = tokens[1];
1495        if (token) {
1496                p->vid_hdr_offs = bytes_str_to_int(token);
1497
1498                if (p->vid_hdr_offs < 0)
1499                        return p->vid_hdr_offs;
1500        }
1501
1502        token = tokens[2];
1503        if (token) {
1504                int err = kstrtoint(token, 10, &p->max_beb_per1024);
1505
1506                if (err) {
1507                        pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1508                               token);
1509                        return -EINVAL;
1510                }
1511        }
1512
1513        token = tokens[3];
1514        if (token) {
1515                int err = kstrtoint(token, 10, &p->ubi_num);
1516
1517                if (err) {
1518                        pr_err("UBI error: bad value for ubi_num parameter: %s",
1519                               token);
1520                        return -EINVAL;
1521                }
1522        } else
1523                p->ubi_num = UBI_DEV_NUM_AUTO;
1524
1525        mtd_devs += 1;
1526        return 0;
1527}
1528
1529module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1530MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1531                      "Multiple \"mtd\" parameters may be specified.\n"
1532                      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1533                      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1534                      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1535                      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1536                      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1537                      "\n"
1538                      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1539                      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1540                      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1541                      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1542                      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1543#ifdef CONFIG_MTD_UBI_FASTMAP
1544module_param(fm_autoconvert, bool, 0644);
1545MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1546module_param(fm_debug, bool, 0);
1547MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1548#endif
1549MODULE_VERSION(__stringify(UBI_VERSION));
1550MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1551MODULE_AUTHOR("Artem Bityutskiy");
1552MODULE_LICENSE("GPL");
1553