uboot/drivers/timer/tsc_timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (c) 2012 The Chromium OS Authors.
   4 *
   5 * TSC calibration codes are adapted from Linux kernel
   6 * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
   7 */
   8
   9#include <common.h>
  10#include <dm.h>
  11#include <malloc.h>
  12#include <timer.h>
  13#include <asm/cpu.h>
  14#include <asm/io.h>
  15#include <asm/i8254.h>
  16#include <asm/ibmpc.h>
  17#include <asm/msr.h>
  18#include <asm/u-boot-x86.h>
  19
  20#define MAX_NUM_FREQS   9
  21
  22DECLARE_GLOBAL_DATA_PTR;
  23
  24/*
  25 * According to Intel 64 and IA-32 System Programming Guide,
  26 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
  27 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
  28 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
  29 * so we need manually differentiate SoC families. This is what the
  30 * field msr_plat does.
  31 */
  32struct freq_desc {
  33        u8 x86_family;  /* CPU family */
  34        u8 x86_model;   /* model */
  35        /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
  36        u8 msr_plat;
  37        u32 freqs[MAX_NUM_FREQS];
  38};
  39
  40static struct freq_desc freq_desc_tables[] = {
  41        /* PNW */
  42        { 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
  43        /* CLV+ */
  44        { 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
  45        /* TNG - Intel Atom processor Z3400 series */
  46        { 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
  47        /* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
  48        { 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
  49        /* ANN - Intel Atom processor Z3500 series */
  50        { 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
  51        /* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
  52        { 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
  53                        80000, 93300, 90000, 88900, 87500 } },
  54        /* Ivybridge */
  55        { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
  56};
  57
  58static int match_cpu(u8 family, u8 model)
  59{
  60        int i;
  61
  62        for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
  63                if ((family == freq_desc_tables[i].x86_family) &&
  64                    (model == freq_desc_tables[i].x86_model))
  65                        return i;
  66        }
  67
  68        return -1;
  69}
  70
  71/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
  72#define id_to_freq(cpu_index, freq_id) \
  73        (freq_desc_tables[cpu_index].freqs[freq_id])
  74
  75/*
  76 * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
  77 * reliable and the frequency is known (provided by HW).
  78 *
  79 * On these platforms PIT/HPET is generally not available so calibration won't
  80 * work at all and there is no other clocksource to act as a watchdog for the
  81 * TSC, so we have no other choice than to trust it.
  82 *
  83 * Returns the TSC frequency in MHz or 0 if HW does not provide it.
  84 */
  85static unsigned long __maybe_unused cpu_mhz_from_msr(void)
  86{
  87        u32 lo, hi, ratio, freq_id, freq;
  88        unsigned long res;
  89        int cpu_index;
  90
  91        if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
  92                return 0;
  93
  94        cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
  95        if (cpu_index < 0)
  96                return 0;
  97
  98        if (freq_desc_tables[cpu_index].msr_plat) {
  99                rdmsr(MSR_PLATFORM_INFO, lo, hi);
 100                ratio = (lo >> 8) & 0xff;
 101        } else {
 102                rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 103                ratio = (hi >> 8) & 0x1f;
 104        }
 105        debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
 106
 107        if (freq_desc_tables[cpu_index].msr_plat == 2) {
 108                /* TODO: Figure out how best to deal with this */
 109                freq = 100000;
 110                debug("Using frequency: %u KHz\n", freq);
 111        } else {
 112                /* Get FSB FREQ ID */
 113                rdmsr(MSR_FSB_FREQ, lo, hi);
 114                freq_id = lo & 0x7;
 115                freq = id_to_freq(cpu_index, freq_id);
 116                debug("Resolved frequency ID: %u, frequency: %u KHz\n",
 117                      freq_id, freq);
 118        }
 119
 120        /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
 121        res = freq * ratio / 1000;
 122        debug("TSC runs at %lu MHz\n", res);
 123
 124        return res;
 125}
 126
 127/*
 128 * This reads the current MSB of the PIT counter, and
 129 * checks if we are running on sufficiently fast and
 130 * non-virtualized hardware.
 131 *
 132 * Our expectations are:
 133 *
 134 *  - the PIT is running at roughly 1.19MHz
 135 *
 136 *  - each IO is going to take about 1us on real hardware,
 137 *    but we allow it to be much faster (by a factor of 10) or
 138 *    _slightly_ slower (ie we allow up to a 2us read+counter
 139 *    update - anything else implies a unacceptably slow CPU
 140 *    or PIT for the fast calibration to work.
 141 *
 142 *  - with 256 PIT ticks to read the value, we have 214us to
 143 *    see the same MSB (and overhead like doing a single TSC
 144 *    read per MSB value etc).
 145 *
 146 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 147 *    them each to take about a microsecond on real hardware.
 148 *    So we expect a count value of around 100. But we'll be
 149 *    generous, and accept anything over 50.
 150 *
 151 *  - if the PIT is stuck, and we see *many* more reads, we
 152 *    return early (and the next caller of pit_expect_msb()
 153 *    then consider it a failure when they don't see the
 154 *    next expected value).
 155 *
 156 * These expectations mean that we know that we have seen the
 157 * transition from one expected value to another with a fairly
 158 * high accuracy, and we didn't miss any events. We can thus
 159 * use the TSC value at the transitions to calculate a pretty
 160 * good value for the TSC frequencty.
 161 */
 162static inline int pit_verify_msb(unsigned char val)
 163{
 164        /* Ignore LSB */
 165        inb(0x42);
 166        return inb(0x42) == val;
 167}
 168
 169static inline int pit_expect_msb(unsigned char val, u64 *tscp,
 170                                 unsigned long *deltap)
 171{
 172        int count;
 173        u64 tsc = 0, prev_tsc = 0;
 174
 175        for (count = 0; count < 50000; count++) {
 176                if (!pit_verify_msb(val))
 177                        break;
 178                prev_tsc = tsc;
 179                tsc = rdtsc();
 180        }
 181        *deltap = rdtsc() - prev_tsc;
 182        *tscp = tsc;
 183
 184        /*
 185         * We require _some_ success, but the quality control
 186         * will be based on the error terms on the TSC values.
 187         */
 188        return count > 5;
 189}
 190
 191/*
 192 * How many MSB values do we want to see? We aim for
 193 * a maximum error rate of 500ppm (in practice the
 194 * real error is much smaller), but refuse to spend
 195 * more than 50ms on it.
 196 */
 197#define MAX_QUICK_PIT_MS 50
 198#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 199
 200static unsigned long __maybe_unused quick_pit_calibrate(void)
 201{
 202        int i;
 203        u64 tsc, delta;
 204        unsigned long d1, d2;
 205
 206        /* Set the Gate high, disable speaker */
 207        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 208
 209        /*
 210         * Counter 2, mode 0 (one-shot), binary count
 211         *
 212         * NOTE! Mode 2 decrements by two (and then the
 213         * output is flipped each time, giving the same
 214         * final output frequency as a decrement-by-one),
 215         * so mode 0 is much better when looking at the
 216         * individual counts.
 217         */
 218        outb(0xb0, 0x43);
 219
 220        /* Start at 0xffff */
 221        outb(0xff, 0x42);
 222        outb(0xff, 0x42);
 223
 224        /*
 225         * The PIT starts counting at the next edge, so we
 226         * need to delay for a microsecond. The easiest way
 227         * to do that is to just read back the 16-bit counter
 228         * once from the PIT.
 229         */
 230        pit_verify_msb(0);
 231
 232        if (pit_expect_msb(0xff, &tsc, &d1)) {
 233                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 234                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 235                                break;
 236
 237                        /*
 238                         * Iterate until the error is less than 500 ppm
 239                         */
 240                        delta -= tsc;
 241                        if (d1+d2 >= delta >> 11)
 242                                continue;
 243
 244                        /*
 245                         * Check the PIT one more time to verify that
 246                         * all TSC reads were stable wrt the PIT.
 247                         *
 248                         * This also guarantees serialization of the
 249                         * last cycle read ('d2') in pit_expect_msb.
 250                         */
 251                        if (!pit_verify_msb(0xfe - i))
 252                                break;
 253                        goto success;
 254                }
 255        }
 256        debug("Fast TSC calibration failed\n");
 257        return 0;
 258
 259success:
 260        /*
 261         * Ok, if we get here, then we've seen the
 262         * MSB of the PIT decrement 'i' times, and the
 263         * error has shrunk to less than 500 ppm.
 264         *
 265         * As a result, we can depend on there not being
 266         * any odd delays anywhere, and the TSC reads are
 267         * reliable (within the error).
 268         *
 269         * kHz = ticks / time-in-seconds / 1000;
 270         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 271         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 272         */
 273        delta *= PIT_TICK_RATE;
 274        delta /= (i*256*1000);
 275        debug("Fast TSC calibration using PIT\n");
 276        return delta / 1000;
 277}
 278
 279/* Get the speed of the TSC timer in MHz */
 280unsigned notrace long get_tbclk_mhz(void)
 281{
 282        return get_tbclk() / 1000000;
 283}
 284
 285static ulong get_ms_timer(void)
 286{
 287        return (get_ticks() * 1000) / get_tbclk();
 288}
 289
 290ulong get_timer(ulong base)
 291{
 292        return get_ms_timer() - base;
 293}
 294
 295ulong notrace timer_get_us(void)
 296{
 297        return get_ticks() / get_tbclk_mhz();
 298}
 299
 300ulong timer_get_boot_us(void)
 301{
 302        return timer_get_us();
 303}
 304
 305void __udelay(unsigned long usec)
 306{
 307        u64 now = get_ticks();
 308        u64 stop;
 309
 310        stop = now + usec * get_tbclk_mhz();
 311
 312        while ((int64_t)(stop - get_ticks()) > 0)
 313#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
 314                /*
 315                 * Add a 'pause' instruction on qemu target,
 316                 * to give other VCPUs a chance to run.
 317                 */
 318                asm volatile("pause");
 319#else
 320                ;
 321#endif
 322}
 323
 324static int tsc_timer_get_count(struct udevice *dev, u64 *count)
 325{
 326        u64 now_tick = rdtsc();
 327
 328        *count = now_tick - gd->arch.tsc_base;
 329
 330        return 0;
 331}
 332
 333static void tsc_timer_ensure_setup(void)
 334{
 335        if (gd->arch.tsc_base)
 336                return;
 337        gd->arch.tsc_base = rdtsc();
 338
 339        /*
 340         * If there is no clock frequency specified in the device tree,
 341         * calibrate it by ourselves.
 342         */
 343        if (!gd->arch.clock_rate) {
 344                unsigned long fast_calibrate;
 345
 346                fast_calibrate = cpu_mhz_from_msr();
 347                if (!fast_calibrate) {
 348                        fast_calibrate = quick_pit_calibrate();
 349                        if (!fast_calibrate)
 350                                panic("TSC frequency is ZERO");
 351                }
 352
 353                gd->arch.clock_rate = fast_calibrate * 1000000;
 354        }
 355}
 356
 357static int tsc_timer_probe(struct udevice *dev)
 358{
 359        struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
 360
 361        tsc_timer_ensure_setup();
 362        uc_priv->clock_rate = gd->arch.clock_rate;
 363
 364        return 0;
 365}
 366
 367unsigned long notrace timer_early_get_rate(void)
 368{
 369        tsc_timer_ensure_setup();
 370
 371        return gd->arch.clock_rate;
 372}
 373
 374u64 notrace timer_early_get_count(void)
 375{
 376        return rdtsc() - gd->arch.tsc_base;
 377}
 378
 379static const struct timer_ops tsc_timer_ops = {
 380        .get_count = tsc_timer_get_count,
 381};
 382
 383static const struct udevice_id tsc_timer_ids[] = {
 384        { .compatible = "x86,tsc-timer", },
 385        { }
 386};
 387
 388U_BOOT_DRIVER(tsc_timer) = {
 389        .name   = "tsc_timer",
 390        .id     = UCLASS_TIMER,
 391        .of_match = tsc_timer_ids,
 392        .probe = tsc_timer_probe,
 393        .ops    = &tsc_timer_ops,
 394        .flags = DM_FLAG_PRE_RELOC,
 395};
 396