uboot/fs/ubifs/budget.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements the budgeting sub-system which is responsible for UBIFS
  13 * space management.
  14 *
  15 * Factors such as compression, wasted space at the ends of LEBs, space in other
  16 * journal heads, the effect of updates on the index, and so on, make it
  17 * impossible to accurately predict the amount of space needed. Consequently
  18 * approximations are used.
  19 */
  20
  21#include "ubifs.h"
  22#ifndef __UBOOT__
  23#include <linux/writeback.h>
  24#else
  25#include <linux/err.h>
  26#endif
  27#include <linux/math64.h>
  28
  29/*
  30 * When pessimistic budget calculations say that there is no enough space,
  31 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
  32 * or committing. The below constant defines maximum number of times UBIFS
  33 * repeats the operations.
  34 */
  35#define MAX_MKSPC_RETRIES 3
  36
  37/*
  38 * The below constant defines amount of dirty pages which should be written
  39 * back at when trying to shrink the liability.
  40 */
  41#define NR_TO_WRITE 16
  42
  43#ifndef __UBOOT__
  44/**
  45 * shrink_liability - write-back some dirty pages/inodes.
  46 * @c: UBIFS file-system description object
  47 * @nr_to_write: how many dirty pages to write-back
  48 *
  49 * This function shrinks UBIFS liability by means of writing back some amount
  50 * of dirty inodes and their pages.
  51 *
  52 * Note, this function synchronizes even VFS inodes which are locked
  53 * (@i_mutex) by the caller of the budgeting function, because write-back does
  54 * not touch @i_mutex.
  55 */
  56static void shrink_liability(struct ubifs_info *c, int nr_to_write)
  57{
  58        down_read(&c->vfs_sb->s_umount);
  59        writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE);
  60        up_read(&c->vfs_sb->s_umount);
  61}
  62
  63/**
  64 * run_gc - run garbage collector.
  65 * @c: UBIFS file-system description object
  66 *
  67 * This function runs garbage collector to make some more free space. Returns
  68 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
  69 * negative error code in case of failure.
  70 */
  71static int run_gc(struct ubifs_info *c)
  72{
  73        int err, lnum;
  74
  75        /* Make some free space by garbage-collecting dirty space */
  76        down_read(&c->commit_sem);
  77        lnum = ubifs_garbage_collect(c, 1);
  78        up_read(&c->commit_sem);
  79        if (lnum < 0)
  80                return lnum;
  81
  82        /* GC freed one LEB, return it to lprops */
  83        dbg_budg("GC freed LEB %d", lnum);
  84        err = ubifs_return_leb(c, lnum);
  85        if (err)
  86                return err;
  87        return 0;
  88}
  89
  90/**
  91 * get_liability - calculate current liability.
  92 * @c: UBIFS file-system description object
  93 *
  94 * This function calculates and returns current UBIFS liability, i.e. the
  95 * amount of bytes UBIFS has "promised" to write to the media.
  96 */
  97static long long get_liability(struct ubifs_info *c)
  98{
  99        long long liab;
 100
 101        spin_lock(&c->space_lock);
 102        liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
 103        spin_unlock(&c->space_lock);
 104        return liab;
 105}
 106
 107/**
 108 * make_free_space - make more free space on the file-system.
 109 * @c: UBIFS file-system description object
 110 *
 111 * This function is called when an operation cannot be budgeted because there
 112 * is supposedly no free space. But in most cases there is some free space:
 113 *   o budgeting is pessimistic, so it always budgets more than it is actually
 114 *     needed, so shrinking the liability is one way to make free space - the
 115 *     cached data will take less space then it was budgeted for;
 116 *   o GC may turn some dark space into free space (budgeting treats dark space
 117 *     as not available);
 118 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
 119 *
 120 * So this function tries to do the above. Returns %-EAGAIN if some free space
 121 * was presumably made and the caller has to re-try budgeting the operation.
 122 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
 123 * codes on failures.
 124 */
 125static int make_free_space(struct ubifs_info *c)
 126{
 127        int err, retries = 0;
 128        long long liab1, liab2;
 129
 130        do {
 131                liab1 = get_liability(c);
 132                /*
 133                 * We probably have some dirty pages or inodes (liability), try
 134                 * to write them back.
 135                 */
 136                dbg_budg("liability %lld, run write-back", liab1);
 137                shrink_liability(c, NR_TO_WRITE);
 138
 139                liab2 = get_liability(c);
 140                if (liab2 < liab1)
 141                        return -EAGAIN;
 142
 143                dbg_budg("new liability %lld (not shrunk)", liab2);
 144
 145                /* Liability did not shrink again, try GC */
 146                dbg_budg("Run GC");
 147                err = run_gc(c);
 148                if (!err)
 149                        return -EAGAIN;
 150
 151                if (err != -EAGAIN && err != -ENOSPC)
 152                        /* Some real error happened */
 153                        return err;
 154
 155                dbg_budg("Run commit (retries %d)", retries);
 156                err = ubifs_run_commit(c);
 157                if (err)
 158                        return err;
 159        } while (retries++ < MAX_MKSPC_RETRIES);
 160
 161        return -ENOSPC;
 162}
 163#endif
 164
 165/**
 166 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
 167 * @c: UBIFS file-system description object
 168 *
 169 * This function calculates and returns the number of LEBs which should be kept
 170 * for index usage.
 171 */
 172int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
 173{
 174        int idx_lebs;
 175        long long idx_size;
 176
 177        idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
 178        /* And make sure we have thrice the index size of space reserved */
 179        idx_size += idx_size << 1;
 180        /*
 181         * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
 182         * pair, nor similarly the two variables for the new index size, so we
 183         * have to do this costly 64-bit division on fast-path.
 184         */
 185        idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
 186        /*
 187         * The index head is not available for the in-the-gaps method, so add an
 188         * extra LEB to compensate.
 189         */
 190        idx_lebs += 1;
 191        if (idx_lebs < MIN_INDEX_LEBS)
 192                idx_lebs = MIN_INDEX_LEBS;
 193        return idx_lebs;
 194}
 195
 196#ifndef __UBOOT__
 197/**
 198 * ubifs_calc_available - calculate available FS space.
 199 * @c: UBIFS file-system description object
 200 * @min_idx_lebs: minimum number of LEBs reserved for the index
 201 *
 202 * This function calculates and returns amount of FS space available for use.
 203 */
 204long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
 205{
 206        int subtract_lebs;
 207        long long available;
 208
 209        available = c->main_bytes - c->lst.total_used;
 210
 211        /*
 212         * Now 'available' contains theoretically available flash space
 213         * assuming there is no index, so we have to subtract the space which
 214         * is reserved for the index.
 215         */
 216        subtract_lebs = min_idx_lebs;
 217
 218        /* Take into account that GC reserves one LEB for its own needs */
 219        subtract_lebs += 1;
 220
 221        /*
 222         * The GC journal head LEB is not really accessible. And since
 223         * different write types go to different heads, we may count only on
 224         * one head's space.
 225         */
 226        subtract_lebs += c->jhead_cnt - 1;
 227
 228        /* We also reserve one LEB for deletions, which bypass budgeting */
 229        subtract_lebs += 1;
 230
 231        available -= (long long)subtract_lebs * c->leb_size;
 232
 233        /* Subtract the dead space which is not available for use */
 234        available -= c->lst.total_dead;
 235
 236        /*
 237         * Subtract dark space, which might or might not be usable - it depends
 238         * on the data which we have on the media and which will be written. If
 239         * this is a lot of uncompressed or not-compressible data, the dark
 240         * space cannot be used.
 241         */
 242        available -= c->lst.total_dark;
 243
 244        /*
 245         * However, there is more dark space. The index may be bigger than
 246         * @min_idx_lebs. Those extra LEBs are assumed to be available, but
 247         * their dark space is not included in total_dark, so it is subtracted
 248         * here.
 249         */
 250        if (c->lst.idx_lebs > min_idx_lebs) {
 251                subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
 252                available -= subtract_lebs * c->dark_wm;
 253        }
 254
 255        /* The calculations are rough and may end up with a negative number */
 256        return available > 0 ? available : 0;
 257}
 258
 259/**
 260 * can_use_rp - check whether the user is allowed to use reserved pool.
 261 * @c: UBIFS file-system description object
 262 *
 263 * UBIFS has so-called "reserved pool" which is flash space reserved
 264 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
 265 * This function checks whether current user is allowed to use reserved pool.
 266 * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
 267 */
 268static int can_use_rp(struct ubifs_info *c)
 269{
 270        if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
 271            (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
 272                return 1;
 273        return 0;
 274}
 275
 276/**
 277 * do_budget_space - reserve flash space for index and data growth.
 278 * @c: UBIFS file-system description object
 279 *
 280 * This function makes sure UBIFS has enough free LEBs for index growth and
 281 * data.
 282 *
 283 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
 284 * would take if it was consolidated and written to the flash. This guarantees
 285 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
 286 * be able to commit dirty index. So this function basically adds amount of
 287 * budgeted index space to the size of the current index, multiplies this by 3,
 288 * and makes sure this does not exceed the amount of free LEBs.
 289 *
 290 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
 291 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
 292 *    be large, because UBIFS does not do any index consolidation as long as
 293 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
 294 *    will contain a lot of dirt.
 295 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
 296 *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
 297 *
 298 * This function returns zero in case of success, and %-ENOSPC in case of
 299 * failure.
 300 */
 301static int do_budget_space(struct ubifs_info *c)
 302{
 303        long long outstanding, available;
 304        int lebs, rsvd_idx_lebs, min_idx_lebs;
 305
 306        /* First budget index space */
 307        min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 308
 309        /* Now 'min_idx_lebs' contains number of LEBs to reserve */
 310        if (min_idx_lebs > c->lst.idx_lebs)
 311                rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
 312        else
 313                rsvd_idx_lebs = 0;
 314
 315        /*
 316         * The number of LEBs that are available to be used by the index is:
 317         *
 318         *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
 319         *    @c->lst.taken_empty_lebs
 320         *
 321         * @c->lst.empty_lebs are available because they are empty.
 322         * @c->freeable_cnt are available because they contain only free and
 323         * dirty space, @c->idx_gc_cnt are available because they are index
 324         * LEBs that have been garbage collected and are awaiting the commit
 325         * before they can be used. And the in-the-gaps method will grab these
 326         * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
 327         * already been allocated for some purpose.
 328         *
 329         * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
 330         * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
 331         * are taken until after the commit).
 332         *
 333         * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
 334         * because of the way we serialize LEB allocations and budgeting. See a
 335         * comment in 'ubifs_find_free_space()'.
 336         */
 337        lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
 338               c->lst.taken_empty_lebs;
 339        if (unlikely(rsvd_idx_lebs > lebs)) {
 340                dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
 341                         min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
 342                return -ENOSPC;
 343        }
 344
 345        available = ubifs_calc_available(c, min_idx_lebs);
 346        outstanding = c->bi.data_growth + c->bi.dd_growth;
 347
 348        if (unlikely(available < outstanding)) {
 349                dbg_budg("out of data space: available %lld, outstanding %lld",
 350                         available, outstanding);
 351                return -ENOSPC;
 352        }
 353
 354        if (available - outstanding <= c->rp_size && !can_use_rp(c))
 355                return -ENOSPC;
 356
 357        c->bi.min_idx_lebs = min_idx_lebs;
 358        return 0;
 359}
 360
 361/**
 362 * calc_idx_growth - calculate approximate index growth from budgeting request.
 363 * @c: UBIFS file-system description object
 364 * @req: budgeting request
 365 *
 366 * For now we assume each new node adds one znode. But this is rather poor
 367 * approximation, though.
 368 */
 369static int calc_idx_growth(const struct ubifs_info *c,
 370                           const struct ubifs_budget_req *req)
 371{
 372        int znodes;
 373
 374        znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
 375                 req->new_dent;
 376        return znodes * c->max_idx_node_sz;
 377}
 378
 379/**
 380 * calc_data_growth - calculate approximate amount of new data from budgeting
 381 * request.
 382 * @c: UBIFS file-system description object
 383 * @req: budgeting request
 384 */
 385static int calc_data_growth(const struct ubifs_info *c,
 386                            const struct ubifs_budget_req *req)
 387{
 388        int data_growth;
 389
 390        data_growth = req->new_ino  ? c->bi.inode_budget : 0;
 391        if (req->new_page)
 392                data_growth += c->bi.page_budget;
 393        if (req->new_dent)
 394                data_growth += c->bi.dent_budget;
 395        data_growth += req->new_ino_d;
 396        return data_growth;
 397}
 398
 399/**
 400 * calc_dd_growth - calculate approximate amount of data which makes other data
 401 * dirty from budgeting request.
 402 * @c: UBIFS file-system description object
 403 * @req: budgeting request
 404 */
 405static int calc_dd_growth(const struct ubifs_info *c,
 406                          const struct ubifs_budget_req *req)
 407{
 408        int dd_growth;
 409
 410        dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
 411
 412        if (req->dirtied_ino)
 413                dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
 414        if (req->mod_dent)
 415                dd_growth += c->bi.dent_budget;
 416        dd_growth += req->dirtied_ino_d;
 417        return dd_growth;
 418}
 419
 420/**
 421 * ubifs_budget_space - ensure there is enough space to complete an operation.
 422 * @c: UBIFS file-system description object
 423 * @req: budget request
 424 *
 425 * This function allocates budget for an operation. It uses pessimistic
 426 * approximation of how much flash space the operation needs. The goal of this
 427 * function is to make sure UBIFS always has flash space to flush all dirty
 428 * pages, dirty inodes, and dirty znodes (liability). This function may force
 429 * commit, garbage-collection or write-back. Returns zero in case of success,
 430 * %-ENOSPC if there is no free space and other negative error codes in case of
 431 * failures.
 432 */
 433int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
 434{
 435        int err, idx_growth, data_growth, dd_growth, retried = 0;
 436
 437        ubifs_assert(req->new_page <= 1);
 438        ubifs_assert(req->dirtied_page <= 1);
 439        ubifs_assert(req->new_dent <= 1);
 440        ubifs_assert(req->mod_dent <= 1);
 441        ubifs_assert(req->new_ino <= 1);
 442        ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
 443        ubifs_assert(req->dirtied_ino <= 4);
 444        ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
 445        ubifs_assert(!(req->new_ino_d & 7));
 446        ubifs_assert(!(req->dirtied_ino_d & 7));
 447
 448        data_growth = calc_data_growth(c, req);
 449        dd_growth = calc_dd_growth(c, req);
 450        if (!data_growth && !dd_growth)
 451                return 0;
 452        idx_growth = calc_idx_growth(c, req);
 453
 454again:
 455        spin_lock(&c->space_lock);
 456        ubifs_assert(c->bi.idx_growth >= 0);
 457        ubifs_assert(c->bi.data_growth >= 0);
 458        ubifs_assert(c->bi.dd_growth >= 0);
 459
 460        if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
 461                dbg_budg("no space");
 462                spin_unlock(&c->space_lock);
 463                return -ENOSPC;
 464        }
 465
 466        c->bi.idx_growth += idx_growth;
 467        c->bi.data_growth += data_growth;
 468        c->bi.dd_growth += dd_growth;
 469
 470        err = do_budget_space(c);
 471        if (likely(!err)) {
 472                req->idx_growth = idx_growth;
 473                req->data_growth = data_growth;
 474                req->dd_growth = dd_growth;
 475                spin_unlock(&c->space_lock);
 476                return 0;
 477        }
 478
 479        /* Restore the old values */
 480        c->bi.idx_growth -= idx_growth;
 481        c->bi.data_growth -= data_growth;
 482        c->bi.dd_growth -= dd_growth;
 483        spin_unlock(&c->space_lock);
 484
 485        if (req->fast) {
 486                dbg_budg("no space for fast budgeting");
 487                return err;
 488        }
 489
 490        err = make_free_space(c);
 491        cond_resched();
 492        if (err == -EAGAIN) {
 493                dbg_budg("try again");
 494                goto again;
 495        } else if (err == -ENOSPC) {
 496                if (!retried) {
 497                        retried = 1;
 498                        dbg_budg("-ENOSPC, but anyway try once again");
 499                        goto again;
 500                }
 501                dbg_budg("FS is full, -ENOSPC");
 502                c->bi.nospace = 1;
 503                if (can_use_rp(c) || c->rp_size == 0)
 504                        c->bi.nospace_rp = 1;
 505                smp_wmb();
 506        } else
 507                ubifs_err(c, "cannot budget space, error %d", err);
 508        return err;
 509}
 510
 511/**
 512 * ubifs_release_budget - release budgeted free space.
 513 * @c: UBIFS file-system description object
 514 * @req: budget request
 515 *
 516 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
 517 * since the index changes (which were budgeted for in @req->idx_growth) will
 518 * only be written to the media on commit, this function moves the index budget
 519 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
 520 * by the commit operation.
 521 */
 522void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
 523{
 524        ubifs_assert(req->new_page <= 1);
 525        ubifs_assert(req->dirtied_page <= 1);
 526        ubifs_assert(req->new_dent <= 1);
 527        ubifs_assert(req->mod_dent <= 1);
 528        ubifs_assert(req->new_ino <= 1);
 529        ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
 530        ubifs_assert(req->dirtied_ino <= 4);
 531        ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
 532        ubifs_assert(!(req->new_ino_d & 7));
 533        ubifs_assert(!(req->dirtied_ino_d & 7));
 534        if (!req->recalculate) {
 535                ubifs_assert(req->idx_growth >= 0);
 536                ubifs_assert(req->data_growth >= 0);
 537                ubifs_assert(req->dd_growth >= 0);
 538        }
 539
 540        if (req->recalculate) {
 541                req->data_growth = calc_data_growth(c, req);
 542                req->dd_growth = calc_dd_growth(c, req);
 543                req->idx_growth = calc_idx_growth(c, req);
 544        }
 545
 546        if (!req->data_growth && !req->dd_growth)
 547                return;
 548
 549        c->bi.nospace = c->bi.nospace_rp = 0;
 550        smp_wmb();
 551
 552        spin_lock(&c->space_lock);
 553        c->bi.idx_growth -= req->idx_growth;
 554        c->bi.uncommitted_idx += req->idx_growth;
 555        c->bi.data_growth -= req->data_growth;
 556        c->bi.dd_growth -= req->dd_growth;
 557        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 558
 559        ubifs_assert(c->bi.idx_growth >= 0);
 560        ubifs_assert(c->bi.data_growth >= 0);
 561        ubifs_assert(c->bi.dd_growth >= 0);
 562        ubifs_assert(c->bi.min_idx_lebs < c->main_lebs);
 563        ubifs_assert(!(c->bi.idx_growth & 7));
 564        ubifs_assert(!(c->bi.data_growth & 7));
 565        ubifs_assert(!(c->bi.dd_growth & 7));
 566        spin_unlock(&c->space_lock);
 567}
 568
 569/**
 570 * ubifs_convert_page_budget - convert budget of a new page.
 571 * @c: UBIFS file-system description object
 572 *
 573 * This function converts budget which was allocated for a new page of data to
 574 * the budget of changing an existing page of data. The latter is smaller than
 575 * the former, so this function only does simple re-calculation and does not
 576 * involve any write-back.
 577 */
 578void ubifs_convert_page_budget(struct ubifs_info *c)
 579{
 580        spin_lock(&c->space_lock);
 581        /* Release the index growth reservation */
 582        c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
 583        /* Release the data growth reservation */
 584        c->bi.data_growth -= c->bi.page_budget;
 585        /* Increase the dirty data growth reservation instead */
 586        c->bi.dd_growth += c->bi.page_budget;
 587        /* And re-calculate the indexing space reservation */
 588        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 589        spin_unlock(&c->space_lock);
 590}
 591
 592/**
 593 * ubifs_release_dirty_inode_budget - release dirty inode budget.
 594 * @c: UBIFS file-system description object
 595 * @ui: UBIFS inode to release the budget for
 596 *
 597 * This function releases budget corresponding to a dirty inode. It is usually
 598 * called when after the inode has been written to the media and marked as
 599 * clean. It also causes the "no space" flags to be cleared.
 600 */
 601void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
 602                                      struct ubifs_inode *ui)
 603{
 604        struct ubifs_budget_req req;
 605
 606        memset(&req, 0, sizeof(struct ubifs_budget_req));
 607        /* The "no space" flags will be cleared because dd_growth is > 0 */
 608        req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
 609        ubifs_release_budget(c, &req);
 610}
 611#endif
 612
 613/**
 614 * ubifs_reported_space - calculate reported free space.
 615 * @c: the UBIFS file-system description object
 616 * @free: amount of free space
 617 *
 618 * This function calculates amount of free space which will be reported to
 619 * user-space. User-space application tend to expect that if the file-system
 620 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
 621 * are able to write a file of size N. UBIFS attaches node headers to each data
 622 * node and it has to write indexing nodes as well. This introduces additional
 623 * overhead, and UBIFS has to report slightly less free space to meet the above
 624 * expectations.
 625 *
 626 * This function assumes free space is made up of uncompressed data nodes and
 627 * full index nodes (one per data node, tripled because we always allow enough
 628 * space to write the index thrice).
 629 *
 630 * Note, the calculation is pessimistic, which means that most of the time
 631 * UBIFS reports less space than it actually has.
 632 */
 633long long ubifs_reported_space(const struct ubifs_info *c, long long free)
 634{
 635        int divisor, factor, f;
 636
 637        /*
 638         * Reported space size is @free * X, where X is UBIFS block size
 639         * divided by UBIFS block size + all overhead one data block
 640         * introduces. The overhead is the node header + indexing overhead.
 641         *
 642         * Indexing overhead calculations are based on the following formula:
 643         * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
 644         * of data nodes, f - fanout. Because effective UBIFS fanout is twice
 645         * as less than maximum fanout, we assume that each data node
 646         * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
 647         * Note, the multiplier 3 is because UBIFS reserves thrice as more space
 648         * for the index.
 649         */
 650        f = c->fanout > 3 ? c->fanout >> 1 : 2;
 651        factor = UBIFS_BLOCK_SIZE;
 652        divisor = UBIFS_MAX_DATA_NODE_SZ;
 653        divisor += (c->max_idx_node_sz * 3) / (f - 1);
 654        free *= factor;
 655        return div_u64(free, divisor);
 656}
 657
 658#ifndef __UBOOT__
 659/**
 660 * ubifs_get_free_space_nolock - return amount of free space.
 661 * @c: UBIFS file-system description object
 662 *
 663 * This function calculates amount of free space to report to user-space.
 664 *
 665 * Because UBIFS may introduce substantial overhead (the index, node headers,
 666 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
 667 * free flash space it has (well, because not all dirty space is reclaimable,
 668 * UBIFS does not actually know the real amount). If UBIFS did so, it would
 669 * bread user expectations about what free space is. Users seem to accustomed
 670 * to assume that if the file-system reports N bytes of free space, they would
 671 * be able to fit a file of N bytes to the FS. This almost works for
 672 * traditional file-systems, because they have way less overhead than UBIFS.
 673 * So, to keep users happy, UBIFS tries to take the overhead into account.
 674 */
 675long long ubifs_get_free_space_nolock(struct ubifs_info *c)
 676{
 677        int rsvd_idx_lebs, lebs;
 678        long long available, outstanding, free;
 679
 680        ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
 681        outstanding = c->bi.data_growth + c->bi.dd_growth;
 682        available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 683
 684        /*
 685         * When reporting free space to user-space, UBIFS guarantees that it is
 686         * possible to write a file of free space size. This means that for
 687         * empty LEBs we may use more precise calculations than
 688         * 'ubifs_calc_available()' is using. Namely, we know that in empty
 689         * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
 690         * Thus, amend the available space.
 691         *
 692         * Note, the calculations below are similar to what we have in
 693         * 'do_budget_space()', so refer there for comments.
 694         */
 695        if (c->bi.min_idx_lebs > c->lst.idx_lebs)
 696                rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
 697        else
 698                rsvd_idx_lebs = 0;
 699        lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
 700               c->lst.taken_empty_lebs;
 701        lebs -= rsvd_idx_lebs;
 702        available += lebs * (c->dark_wm - c->leb_overhead);
 703
 704        if (available > outstanding)
 705                free = ubifs_reported_space(c, available - outstanding);
 706        else
 707                free = 0;
 708        return free;
 709}
 710
 711/**
 712 * ubifs_get_free_space - return amount of free space.
 713 * @c: UBIFS file-system description object
 714 *
 715 * This function calculates and returns amount of free space to report to
 716 * user-space.
 717 */
 718long long ubifs_get_free_space(struct ubifs_info *c)
 719{
 720        long long free;
 721
 722        spin_lock(&c->space_lock);
 723        free = ubifs_get_free_space_nolock(c);
 724        spin_unlock(&c->space_lock);
 725
 726        return free;
 727}
 728#endif
 729