uboot/post/drivers/memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright 2002
   4 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
   5 */
   6
   7#include <common.h>
   8
   9/* Memory test
  10 *
  11 * General observations:
  12 * o The recommended test sequence is to test the data lines: if they are
  13 *   broken, nothing else will work properly.  Then test the address
  14 *   lines.  Finally, test the cells in the memory now that the test
  15 *   program knows that the address and data lines work properly.
  16 *   This sequence also helps isolate and identify what is faulty.
  17 *
  18 * o For the address line test, it is a good idea to use the base
  19 *   address of the lowest memory location, which causes a '1' bit to
  20 *   walk through a field of zeros on the address lines and the highest
  21 *   memory location, which causes a '0' bit to walk through a field of
  22 *   '1's on the address line.
  23 *
  24 * o Floating buses can fool memory tests if the test routine writes
  25 *   a value and then reads it back immediately.  The problem is, the
  26 *   write will charge the residual capacitance on the data bus so the
  27 *   bus retains its state briefely.  When the test program reads the
  28 *   value back immediately, the capacitance of the bus can allow it
  29 *   to read back what was written, even though the memory circuitry
  30 *   is broken.  To avoid this, the test program should write a test
  31 *   pattern to the target location, write a different pattern elsewhere
  32 *   to charge the residual capacitance in a differnt manner, then read
  33 *   the target location back.
  34 *
  35 * o Always read the target location EXACTLY ONCE and save it in a local
  36 *   variable.  The problem with reading the target location more than
  37 *   once is that the second and subsequent reads may work properly,
  38 *   resulting in a failed test that tells the poor technician that
  39 *   "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
  40 *   doesn't help him one bit and causes puzzled phone calls.  Been there,
  41 *   done that.
  42 *
  43 * Data line test:
  44 * ---------------
  45 * This tests data lines for shorts and opens by forcing adjacent data
  46 * to opposite states. Because the data lines could be routed in an
  47 * arbitrary manner the must ensure test patterns ensure that every case
  48 * is tested. By using the following series of binary patterns every
  49 * combination of adjacent bits is test regardless of routing.
  50 *
  51 *     ...101010101010101010101010
  52 *     ...110011001100110011001100
  53 *     ...111100001111000011110000
  54 *     ...111111110000000011111111
  55 *
  56 * Carrying this out, gives us six hex patterns as follows:
  57 *
  58 *     0xaaaaaaaaaaaaaaaa
  59 *     0xcccccccccccccccc
  60 *     0xf0f0f0f0f0f0f0f0
  61 *     0xff00ff00ff00ff00
  62 *     0xffff0000ffff0000
  63 *     0xffffffff00000000
  64 *
  65 * To test for short and opens to other signals on our boards, we
  66 * simply test with the 1's complemnt of the paterns as well, resulting
  67 * in twelve patterns total.
  68 *
  69 * After writing a test pattern. a special pattern 0x0123456789ABCDEF is
  70 * written to a different address in case the data lines are floating.
  71 * Thus, if a byte lane fails, you will see part of the special
  72 * pattern in that byte lane when the test runs.  For example, if the
  73 * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
  74 * (for the 'a' test pattern).
  75 *
  76 * Address line test:
  77 * ------------------
  78 *  This function performs a test to verify that all the address lines
  79 *  hooked up to the RAM work properly.  If there is an address line
  80 *  fault, it usually shows up as two different locations in the address
  81 *  map (related by the faulty address line) mapping to one physical
  82 *  memory storage location.  The artifact that shows up is writing to
  83 *  the first location "changes" the second location.
  84 *
  85 * To test all address lines, we start with the given base address and
  86 * xor the address with a '1' bit to flip one address line.  For each
  87 * test, we shift the '1' bit left to test the next address line.
  88 *
  89 * In the actual code, we start with address sizeof(ulong) since our
  90 * test pattern we use is a ulong and thus, if we tried to test lower
  91 * order address bits, it wouldn't work because our pattern would
  92 * overwrite itself.
  93 *
  94 * Example for a 4 bit address space with the base at 0000:
  95 *   0000 <- base
  96 *   0001 <- test 1
  97 *   0010 <- test 2
  98 *   0100 <- test 3
  99 *   1000 <- test 4
 100 * Example for a 4 bit address space with the base at 0010:
 101 *   0010 <- base
 102 *   0011 <- test 1
 103 *   0000 <- (below the base address, skipped)
 104 *   0110 <- test 2
 105 *   1010 <- test 3
 106 *
 107 * The test locations are successively tested to make sure that they are
 108 * not "mirrored" onto the base address due to a faulty address line.
 109 * Note that the base and each test location are related by one address
 110 * line flipped.  Note that the base address need not be all zeros.
 111 *
 112 * Memory tests 1-4:
 113 * -----------------
 114 * These tests verify RAM using sequential writes and reads
 115 * to/from RAM. There are several test cases that use different patterns to
 116 * verify RAM. Each test case fills a region of RAM with one pattern and
 117 * then reads the region back and compares its contents with the pattern.
 118 * The following patterns are used:
 119 *
 120 *  1a) zero pattern (0x00000000)
 121 *  1b) negative pattern (0xffffffff)
 122 *  1c) checkerboard pattern (0x55555555)
 123 *  1d) checkerboard pattern (0xaaaaaaaa)
 124 *  2)  bit-flip pattern ((1 << (offset % 32))
 125 *  3)  address pattern (offset)
 126 *  4)  address pattern (~offset)
 127 *
 128 * Being run in normal mode, the test verifies only small 4Kb
 129 * regions of RAM around each 1Mb boundary. For example, for 64Mb
 130 * RAM the following areas are verified: 0x00000000-0x00000800,
 131 * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
 132 * 0x04000000. If the test is run in slow-test mode, it verifies
 133 * the whole RAM.
 134 */
 135
 136#include <post.h>
 137#include <watchdog.h>
 138
 139#if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS)
 140
 141DECLARE_GLOBAL_DATA_PTR;
 142
 143/*
 144 * Define INJECT_*_ERRORS for testing error detection in the presence of
 145 * _good_ hardware.
 146 */
 147#undef  INJECT_DATA_ERRORS
 148#undef  INJECT_ADDRESS_ERRORS
 149
 150#ifdef INJECT_DATA_ERRORS
 151#warning "Injecting data line errors for testing purposes"
 152#endif
 153
 154#ifdef INJECT_ADDRESS_ERRORS
 155#warning "Injecting address line errors for testing purposes"
 156#endif
 157
 158
 159/*
 160 * This function performs a double word move from the data at
 161 * the source pointer to the location at the destination pointer.
 162 * This is helpful for testing memory on processors which have a 64 bit
 163 * wide data bus.
 164 *
 165 * On those PowerPC with FPU, use assembly and a floating point move:
 166 * this does a 64 bit move.
 167 *
 168 * For other processors, let the compiler generate the best code it can.
 169 */
 170static void move64(const unsigned long long *src, unsigned long long *dest)
 171{
 172        *dest = *src;
 173}
 174
 175/*
 176 * This is 64 bit wide test patterns.  Note that they reside in ROM
 177 * (which presumably works) and the tests write them to RAM which may
 178 * not work.
 179 *
 180 * The "otherpattern" is written to drive the data bus to values other
 181 * than the test pattern.  This is for detecting floating bus lines.
 182 *
 183 */
 184const static unsigned long long pattern[] = {
 185        0xaaaaaaaaaaaaaaaaULL,
 186        0xccccccccccccccccULL,
 187        0xf0f0f0f0f0f0f0f0ULL,
 188        0xff00ff00ff00ff00ULL,
 189        0xffff0000ffff0000ULL,
 190        0xffffffff00000000ULL,
 191        0x00000000ffffffffULL,
 192        0x0000ffff0000ffffULL,
 193        0x00ff00ff00ff00ffULL,
 194        0x0f0f0f0f0f0f0f0fULL,
 195        0x3333333333333333ULL,
 196        0x5555555555555555ULL
 197};
 198const unsigned long long otherpattern = 0x0123456789abcdefULL;
 199
 200
 201static int memory_post_dataline(unsigned long long * pmem)
 202{
 203        unsigned long long temp64 = 0;
 204        int num_patterns = ARRAY_SIZE(pattern);
 205        int i;
 206        unsigned int hi, lo, pathi, patlo;
 207        int ret = 0;
 208
 209        for ( i = 0; i < num_patterns; i++) {
 210                move64(&(pattern[i]), pmem++);
 211                /*
 212                 * Put a different pattern on the data lines: otherwise they
 213                 * may float long enough to read back what we wrote.
 214                 */
 215                move64(&otherpattern, pmem--);
 216                move64(pmem, &temp64);
 217
 218#ifdef INJECT_DATA_ERRORS
 219                temp64 ^= 0x00008000;
 220#endif
 221
 222                if (temp64 != pattern[i]){
 223                        pathi = (pattern[i]>>32) & 0xffffffff;
 224                        patlo = pattern[i] & 0xffffffff;
 225
 226                        hi = (temp64>>32) & 0xffffffff;
 227                        lo = temp64 & 0xffffffff;
 228
 229                        post_log("Memory (data line) error at %08x, "
 230                                  "wrote %08x%08x, read %08x%08x !\n",
 231                                          pmem, pathi, patlo, hi, lo);
 232                        ret = -1;
 233                }
 234        }
 235        return ret;
 236}
 237
 238static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
 239{
 240        ulong *target;
 241        ulong *end;
 242        ulong readback;
 243        ulong xor;
 244        int   ret = 0;
 245
 246        end = (ulong *)((ulong)base + size);    /* pointer arith! */
 247        xor = 0;
 248        for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
 249                target = (ulong *)((ulong)testaddr ^ xor);
 250                if((target >= base) && (target < end)) {
 251                        *testaddr = ~*target;
 252                        readback  = *target;
 253
 254#ifdef INJECT_ADDRESS_ERRORS
 255                        if(xor == 0x00008000) {
 256                                readback = *testaddr;
 257                        }
 258#endif
 259                        if(readback == *testaddr) {
 260                                post_log("Memory (address line) error at %08x<->%08x, "
 261                                        "XOR value %08x !\n",
 262                                        testaddr, target, xor);
 263                                ret = -1;
 264                        }
 265                }
 266        }
 267        return ret;
 268}
 269
 270static int memory_post_test1(unsigned long start,
 271                              unsigned long size,
 272                              unsigned long val)
 273{
 274        unsigned long i;
 275        ulong *mem = (ulong *) start;
 276        ulong readback;
 277        int ret = 0;
 278
 279        for (i = 0; i < size / sizeof (ulong); i++) {
 280                mem[i] = val;
 281                if (i % 1024 == 0)
 282                        WATCHDOG_RESET();
 283        }
 284
 285        for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
 286                readback = mem[i];
 287                if (readback != val) {
 288                        post_log("Memory error at %08x, "
 289                                  "wrote %08x, read %08x !\n",
 290                                          mem + i, val, readback);
 291
 292                        ret = -1;
 293                        break;
 294                }
 295                if (i % 1024 == 0)
 296                        WATCHDOG_RESET();
 297        }
 298
 299        return ret;
 300}
 301
 302static int memory_post_test2(unsigned long start, unsigned long size)
 303{
 304        unsigned long i;
 305        ulong *mem = (ulong *) start;
 306        ulong readback;
 307        int ret = 0;
 308
 309        for (i = 0; i < size / sizeof (ulong); i++) {
 310                mem[i] = 1 << (i % 32);
 311                if (i % 1024 == 0)
 312                        WATCHDOG_RESET();
 313        }
 314
 315        for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
 316                readback = mem[i];
 317                if (readback != (1 << (i % 32))) {
 318                        post_log("Memory error at %08x, "
 319                                  "wrote %08x, read %08x !\n",
 320                                          mem + i, 1 << (i % 32), readback);
 321
 322                        ret = -1;
 323                        break;
 324                }
 325                if (i % 1024 == 0)
 326                        WATCHDOG_RESET();
 327        }
 328
 329        return ret;
 330}
 331
 332static int memory_post_test3(unsigned long start, unsigned long size)
 333{
 334        unsigned long i;
 335        ulong *mem = (ulong *) start;
 336        ulong readback;
 337        int ret = 0;
 338
 339        for (i = 0; i < size / sizeof (ulong); i++) {
 340                mem[i] = i;
 341                if (i % 1024 == 0)
 342                        WATCHDOG_RESET();
 343        }
 344
 345        for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
 346                readback = mem[i];
 347                if (readback != i) {
 348                        post_log("Memory error at %08x, "
 349                                  "wrote %08x, read %08x !\n",
 350                                          mem + i, i, readback);
 351
 352                        ret = -1;
 353                        break;
 354                }
 355                if (i % 1024 == 0)
 356                        WATCHDOG_RESET();
 357        }
 358
 359        return ret;
 360}
 361
 362static int memory_post_test4(unsigned long start, unsigned long size)
 363{
 364        unsigned long i;
 365        ulong *mem = (ulong *) start;
 366        ulong readback;
 367        int ret = 0;
 368
 369        for (i = 0; i < size / sizeof (ulong); i++) {
 370                mem[i] = ~i;
 371                if (i % 1024 == 0)
 372                        WATCHDOG_RESET();
 373        }
 374
 375        for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
 376                readback = mem[i];
 377                if (readback != ~i) {
 378                        post_log("Memory error at %08x, "
 379                                  "wrote %08x, read %08x !\n",
 380                                          mem + i, ~i, readback);
 381
 382                        ret = -1;
 383                        break;
 384                }
 385                if (i % 1024 == 0)
 386                        WATCHDOG_RESET();
 387        }
 388
 389        return ret;
 390}
 391
 392static int memory_post_test_lines(unsigned long start, unsigned long size)
 393{
 394        int ret = 0;
 395
 396        ret = memory_post_dataline((unsigned long long *)start);
 397        WATCHDOG_RESET();
 398        if (!ret)
 399                ret = memory_post_addrline((ulong *)start, (ulong *)start,
 400                                size);
 401        WATCHDOG_RESET();
 402        if (!ret)
 403                ret = memory_post_addrline((ulong *)(start+size-8),
 404                                (ulong *)start, size);
 405        WATCHDOG_RESET();
 406
 407        return ret;
 408}
 409
 410static int memory_post_test_patterns(unsigned long start, unsigned long size)
 411{
 412        int ret = 0;
 413
 414        ret = memory_post_test1(start, size, 0x00000000);
 415        WATCHDOG_RESET();
 416        if (!ret)
 417                ret = memory_post_test1(start, size, 0xffffffff);
 418        WATCHDOG_RESET();
 419        if (!ret)
 420                ret = memory_post_test1(start, size, 0x55555555);
 421        WATCHDOG_RESET();
 422        if (!ret)
 423                ret = memory_post_test1(start, size, 0xaaaaaaaa);
 424        WATCHDOG_RESET();
 425        if (!ret)
 426                ret = memory_post_test2(start, size);
 427        WATCHDOG_RESET();
 428        if (!ret)
 429                ret = memory_post_test3(start, size);
 430        WATCHDOG_RESET();
 431        if (!ret)
 432                ret = memory_post_test4(start, size);
 433        WATCHDOG_RESET();
 434
 435        return ret;
 436}
 437
 438static int memory_post_test_regions(unsigned long start, unsigned long size)
 439{
 440        unsigned long i;
 441        int ret = 0;
 442
 443        for (i = 0; i < (size >> 20) && (!ret); i++) {
 444                if (!ret)
 445                        ret = memory_post_test_patterns(start + (i << 20),
 446                                0x800);
 447                if (!ret)
 448                        ret = memory_post_test_patterns(start + (i << 20) +
 449                                0xff800, 0x800);
 450        }
 451
 452        return ret;
 453}
 454
 455static int memory_post_tests(unsigned long start, unsigned long size)
 456{
 457        int ret = 0;
 458
 459        ret = memory_post_test_lines(start, size);
 460        if (!ret)
 461                ret = memory_post_test_patterns(start, size);
 462
 463        return ret;
 464}
 465
 466/*
 467 * !! this is only valid, if you have contiguous memory banks !!
 468 */
 469__attribute__((weak))
 470int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
 471{
 472        bd_t *bd = gd->bd;
 473
 474        *vstart = CONFIG_SYS_SDRAM_BASE;
 475        *size = (gd->ram_size >= 256 << 20 ?
 476                        256 << 20 : gd->ram_size) - (1 << 20);
 477
 478        /* Limit area to be tested with the board info struct */
 479        if ((*vstart) + (*size) > (ulong)bd)
 480                *size = (ulong)bd - *vstart;
 481
 482        return 0;
 483}
 484
 485__attribute__((weak))
 486int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
 487{
 488        return 1;
 489}
 490
 491__attribute__((weak))
 492int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
 493{
 494        return 0;
 495}
 496
 497__attribute__((weak))
 498void arch_memory_failure_handle(void)
 499{
 500        return;
 501}
 502
 503int memory_regions_post_test(int flags)
 504{
 505        int ret = 0;
 506        phys_addr_t phys_offset = 0;
 507        u32 memsize, vstart;
 508
 509        arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
 510
 511        ret = memory_post_test_lines(vstart, memsize);
 512        if (!ret)
 513                ret = memory_post_test_regions(vstart, memsize);
 514
 515        return ret;
 516}
 517
 518int memory_post_test(int flags)
 519{
 520        int ret = 0;
 521        phys_addr_t phys_offset = 0;
 522        u32 memsize, vstart;
 523
 524        arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
 525
 526        do {
 527                if (flags & POST_SLOWTEST) {
 528                        ret = memory_post_tests(vstart, memsize);
 529                } else {                        /* POST_NORMAL */
 530                        ret = memory_post_test_regions(vstart, memsize);
 531                }
 532        } while (!ret &&
 533                !arch_memory_test_advance(&vstart, &memsize, &phys_offset));
 534
 535        arch_memory_test_cleanup(&vstart, &memsize, &phys_offset);
 536        if (ret)
 537                arch_memory_failure_handle();
 538
 539        return ret;
 540}
 541
 542#endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */
 543