uboot/fs/ubifs/lpt_commit.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements commit-related functionality of the LEB properties
  13 * subsystem.
  14 */
  15
  16#ifndef __UBOOT__
  17#include <linux/crc16.h>
  18#include <linux/slab.h>
  19#include <linux/random.h>
  20#else
  21#include <linux/compat.h>
  22#include <linux/err.h>
  23#include "crc16.h"
  24#endif
  25#include "ubifs.h"
  26
  27#ifndef __UBOOT__
  28static int dbg_populate_lsave(struct ubifs_info *c);
  29#endif
  30
  31/**
  32 * first_dirty_cnode - find first dirty cnode.
  33 * @c: UBIFS file-system description object
  34 * @nnode: nnode at which to start
  35 *
  36 * This function returns the first dirty cnode or %NULL if there is not one.
  37 */
  38static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
  39{
  40        ubifs_assert(nnode);
  41        while (1) {
  42                int i, cont = 0;
  43
  44                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
  45                        struct ubifs_cnode *cnode;
  46
  47                        cnode = nnode->nbranch[i].cnode;
  48                        if (cnode &&
  49                            test_bit(DIRTY_CNODE, &cnode->flags)) {
  50                                if (cnode->level == 0)
  51                                        return cnode;
  52                                nnode = (struct ubifs_nnode *)cnode;
  53                                cont = 1;
  54                                break;
  55                        }
  56                }
  57                if (!cont)
  58                        return (struct ubifs_cnode *)nnode;
  59        }
  60}
  61
  62/**
  63 * next_dirty_cnode - find next dirty cnode.
  64 * @cnode: cnode from which to begin searching
  65 *
  66 * This function returns the next dirty cnode or %NULL if there is not one.
  67 */
  68static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
  69{
  70        struct ubifs_nnode *nnode;
  71        int i;
  72
  73        ubifs_assert(cnode);
  74        nnode = cnode->parent;
  75        if (!nnode)
  76                return NULL;
  77        for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
  78                cnode = nnode->nbranch[i].cnode;
  79                if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
  80                        if (cnode->level == 0)
  81                                return cnode; /* cnode is a pnode */
  82                        /* cnode is a nnode */
  83                        return first_dirty_cnode((struct ubifs_nnode *)cnode);
  84                }
  85        }
  86        return (struct ubifs_cnode *)nnode;
  87}
  88
  89/**
  90 * get_cnodes_to_commit - create list of dirty cnodes to commit.
  91 * @c: UBIFS file-system description object
  92 *
  93 * This function returns the number of cnodes to commit.
  94 */
  95static int get_cnodes_to_commit(struct ubifs_info *c)
  96{
  97        struct ubifs_cnode *cnode, *cnext;
  98        int cnt = 0;
  99
 100        if (!c->nroot)
 101                return 0;
 102
 103        if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
 104                return 0;
 105
 106        c->lpt_cnext = first_dirty_cnode(c->nroot);
 107        cnode = c->lpt_cnext;
 108        if (!cnode)
 109                return 0;
 110        cnt += 1;
 111        while (1) {
 112                ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
 113                __set_bit(COW_CNODE, &cnode->flags);
 114                cnext = next_dirty_cnode(cnode);
 115                if (!cnext) {
 116                        cnode->cnext = c->lpt_cnext;
 117                        break;
 118                }
 119                cnode->cnext = cnext;
 120                cnode = cnext;
 121                cnt += 1;
 122        }
 123        dbg_cmt("committing %d cnodes", cnt);
 124        dbg_lp("committing %d cnodes", cnt);
 125        ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
 126        return cnt;
 127}
 128
 129/**
 130 * upd_ltab - update LPT LEB properties.
 131 * @c: UBIFS file-system description object
 132 * @lnum: LEB number
 133 * @free: amount of free space
 134 * @dirty: amount of dirty space to add
 135 */
 136static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
 137{
 138        dbg_lp("LEB %d free %d dirty %d to %d +%d",
 139               lnum, c->ltab[lnum - c->lpt_first].free,
 140               c->ltab[lnum - c->lpt_first].dirty, free, dirty);
 141        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 142        c->ltab[lnum - c->lpt_first].free = free;
 143        c->ltab[lnum - c->lpt_first].dirty += dirty;
 144}
 145
 146/**
 147 * alloc_lpt_leb - allocate an LPT LEB that is empty.
 148 * @c: UBIFS file-system description object
 149 * @lnum: LEB number is passed and returned here
 150 *
 151 * This function finds the next empty LEB in the ltab starting from @lnum. If a
 152 * an empty LEB is found it is returned in @lnum and the function returns %0.
 153 * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
 154 * never to run out of space.
 155 */
 156static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
 157{
 158        int i, n;
 159
 160        n = *lnum - c->lpt_first + 1;
 161        for (i = n; i < c->lpt_lebs; i++) {
 162                if (c->ltab[i].tgc || c->ltab[i].cmt)
 163                        continue;
 164                if (c->ltab[i].free == c->leb_size) {
 165                        c->ltab[i].cmt = 1;
 166                        *lnum = i + c->lpt_first;
 167                        return 0;
 168                }
 169        }
 170
 171        for (i = 0; i < n; i++) {
 172                if (c->ltab[i].tgc || c->ltab[i].cmt)
 173                        continue;
 174                if (c->ltab[i].free == c->leb_size) {
 175                        c->ltab[i].cmt = 1;
 176                        *lnum = i + c->lpt_first;
 177                        return 0;
 178                }
 179        }
 180        return -ENOSPC;
 181}
 182
 183/**
 184 * layout_cnodes - layout cnodes for commit.
 185 * @c: UBIFS file-system description object
 186 *
 187 * This function returns %0 on success and a negative error code on failure.
 188 */
 189static int layout_cnodes(struct ubifs_info *c)
 190{
 191        int lnum, offs, len, alen, done_lsave, done_ltab, err;
 192        struct ubifs_cnode *cnode;
 193
 194        err = dbg_chk_lpt_sz(c, 0, 0);
 195        if (err)
 196                return err;
 197        cnode = c->lpt_cnext;
 198        if (!cnode)
 199                return 0;
 200        lnum = c->nhead_lnum;
 201        offs = c->nhead_offs;
 202        /* Try to place lsave and ltab nicely */
 203        done_lsave = !c->big_lpt;
 204        done_ltab = 0;
 205        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 206                done_lsave = 1;
 207                c->lsave_lnum = lnum;
 208                c->lsave_offs = offs;
 209                offs += c->lsave_sz;
 210                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 211        }
 212
 213        if (offs + c->ltab_sz <= c->leb_size) {
 214                done_ltab = 1;
 215                c->ltab_lnum = lnum;
 216                c->ltab_offs = offs;
 217                offs += c->ltab_sz;
 218                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 219        }
 220
 221        do {
 222                if (cnode->level) {
 223                        len = c->nnode_sz;
 224                        c->dirty_nn_cnt -= 1;
 225                } else {
 226                        len = c->pnode_sz;
 227                        c->dirty_pn_cnt -= 1;
 228                }
 229                while (offs + len > c->leb_size) {
 230                        alen = ALIGN(offs, c->min_io_size);
 231                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 232                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 233                        err = alloc_lpt_leb(c, &lnum);
 234                        if (err)
 235                                goto no_space;
 236                        offs = 0;
 237                        ubifs_assert(lnum >= c->lpt_first &&
 238                                     lnum <= c->lpt_last);
 239                        /* Try to place lsave and ltab nicely */
 240                        if (!done_lsave) {
 241                                done_lsave = 1;
 242                                c->lsave_lnum = lnum;
 243                                c->lsave_offs = offs;
 244                                offs += c->lsave_sz;
 245                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 246                                continue;
 247                        }
 248                        if (!done_ltab) {
 249                                done_ltab = 1;
 250                                c->ltab_lnum = lnum;
 251                                c->ltab_offs = offs;
 252                                offs += c->ltab_sz;
 253                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 254                                continue;
 255                        }
 256                        break;
 257                }
 258                if (cnode->parent) {
 259                        cnode->parent->nbranch[cnode->iip].lnum = lnum;
 260                        cnode->parent->nbranch[cnode->iip].offs = offs;
 261                } else {
 262                        c->lpt_lnum = lnum;
 263                        c->lpt_offs = offs;
 264                }
 265                offs += len;
 266                dbg_chk_lpt_sz(c, 1, len);
 267                cnode = cnode->cnext;
 268        } while (cnode && cnode != c->lpt_cnext);
 269
 270        /* Make sure to place LPT's save table */
 271        if (!done_lsave) {
 272                if (offs + c->lsave_sz > c->leb_size) {
 273                        alen = ALIGN(offs, c->min_io_size);
 274                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 275                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 276                        err = alloc_lpt_leb(c, &lnum);
 277                        if (err)
 278                                goto no_space;
 279                        offs = 0;
 280                        ubifs_assert(lnum >= c->lpt_first &&
 281                                     lnum <= c->lpt_last);
 282                }
 283                done_lsave = 1;
 284                c->lsave_lnum = lnum;
 285                c->lsave_offs = offs;
 286                offs += c->lsave_sz;
 287                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 288        }
 289
 290        /* Make sure to place LPT's own lprops table */
 291        if (!done_ltab) {
 292                if (offs + c->ltab_sz > c->leb_size) {
 293                        alen = ALIGN(offs, c->min_io_size);
 294                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 295                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 296                        err = alloc_lpt_leb(c, &lnum);
 297                        if (err)
 298                                goto no_space;
 299                        offs = 0;
 300                        ubifs_assert(lnum >= c->lpt_first &&
 301                                     lnum <= c->lpt_last);
 302                }
 303                c->ltab_lnum = lnum;
 304                c->ltab_offs = offs;
 305                offs += c->ltab_sz;
 306                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 307        }
 308
 309        alen = ALIGN(offs, c->min_io_size);
 310        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 311        dbg_chk_lpt_sz(c, 4, alen - offs);
 312        err = dbg_chk_lpt_sz(c, 3, alen);
 313        if (err)
 314                return err;
 315        return 0;
 316
 317no_space:
 318        ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
 319                  lnum, offs, len, done_ltab, done_lsave);
 320        ubifs_dump_lpt_info(c);
 321        ubifs_dump_lpt_lebs(c);
 322        dump_stack();
 323        return err;
 324}
 325
 326#ifndef __UBOOT__
 327/**
 328 * realloc_lpt_leb - allocate an LPT LEB that is empty.
 329 * @c: UBIFS file-system description object
 330 * @lnum: LEB number is passed and returned here
 331 *
 332 * This function duplicates exactly the results of the function alloc_lpt_leb.
 333 * It is used during end commit to reallocate the same LEB numbers that were
 334 * allocated by alloc_lpt_leb during start commit.
 335 *
 336 * This function finds the next LEB that was allocated by the alloc_lpt_leb
 337 * function starting from @lnum. If a LEB is found it is returned in @lnum and
 338 * the function returns %0. Otherwise the function returns -ENOSPC.
 339 * Note however, that LPT is designed never to run out of space.
 340 */
 341static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
 342{
 343        int i, n;
 344
 345        n = *lnum - c->lpt_first + 1;
 346        for (i = n; i < c->lpt_lebs; i++)
 347                if (c->ltab[i].cmt) {
 348                        c->ltab[i].cmt = 0;
 349                        *lnum = i + c->lpt_first;
 350                        return 0;
 351                }
 352
 353        for (i = 0; i < n; i++)
 354                if (c->ltab[i].cmt) {
 355                        c->ltab[i].cmt = 0;
 356                        *lnum = i + c->lpt_first;
 357                        return 0;
 358                }
 359        return -ENOSPC;
 360}
 361
 362/**
 363 * write_cnodes - write cnodes for commit.
 364 * @c: UBIFS file-system description object
 365 *
 366 * This function returns %0 on success and a negative error code on failure.
 367 */
 368static int write_cnodes(struct ubifs_info *c)
 369{
 370        int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
 371        struct ubifs_cnode *cnode;
 372        void *buf = c->lpt_buf;
 373
 374        cnode = c->lpt_cnext;
 375        if (!cnode)
 376                return 0;
 377        lnum = c->nhead_lnum;
 378        offs = c->nhead_offs;
 379        from = offs;
 380        /* Ensure empty LEB is unmapped */
 381        if (offs == 0) {
 382                err = ubifs_leb_unmap(c, lnum);
 383                if (err)
 384                        return err;
 385        }
 386        /* Try to place lsave and ltab nicely */
 387        done_lsave = !c->big_lpt;
 388        done_ltab = 0;
 389        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 390                done_lsave = 1;
 391                ubifs_pack_lsave(c, buf + offs, c->lsave);
 392                offs += c->lsave_sz;
 393                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 394        }
 395
 396        if (offs + c->ltab_sz <= c->leb_size) {
 397                done_ltab = 1;
 398                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 399                offs += c->ltab_sz;
 400                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 401        }
 402
 403        /* Loop for each cnode */
 404        do {
 405                if (cnode->level)
 406                        len = c->nnode_sz;
 407                else
 408                        len = c->pnode_sz;
 409                while (offs + len > c->leb_size) {
 410                        wlen = offs - from;
 411                        if (wlen) {
 412                                alen = ALIGN(wlen, c->min_io_size);
 413                                memset(buf + offs, 0xff, alen - wlen);
 414                                err = ubifs_leb_write(c, lnum, buf + from, from,
 415                                                       alen);
 416                                if (err)
 417                                        return err;
 418                        }
 419                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 420                        err = realloc_lpt_leb(c, &lnum);
 421                        if (err)
 422                                goto no_space;
 423                        offs = from = 0;
 424                        ubifs_assert(lnum >= c->lpt_first &&
 425                                     lnum <= c->lpt_last);
 426                        err = ubifs_leb_unmap(c, lnum);
 427                        if (err)
 428                                return err;
 429                        /* Try to place lsave and ltab nicely */
 430                        if (!done_lsave) {
 431                                done_lsave = 1;
 432                                ubifs_pack_lsave(c, buf + offs, c->lsave);
 433                                offs += c->lsave_sz;
 434                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 435                                continue;
 436                        }
 437                        if (!done_ltab) {
 438                                done_ltab = 1;
 439                                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 440                                offs += c->ltab_sz;
 441                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 442                                continue;
 443                        }
 444                        break;
 445                }
 446                if (cnode->level)
 447                        ubifs_pack_nnode(c, buf + offs,
 448                                         (struct ubifs_nnode *)cnode);
 449                else
 450                        ubifs_pack_pnode(c, buf + offs,
 451                                         (struct ubifs_pnode *)cnode);
 452                /*
 453                 * The reason for the barriers is the same as in case of TNC.
 454                 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
 455                 * 'dirty_cow_pnode()' are the functions for which this is
 456                 * important.
 457                 */
 458                clear_bit(DIRTY_CNODE, &cnode->flags);
 459                smp_mb__before_atomic();
 460                clear_bit(COW_CNODE, &cnode->flags);
 461                smp_mb__after_atomic();
 462                offs += len;
 463                dbg_chk_lpt_sz(c, 1, len);
 464                cnode = cnode->cnext;
 465        } while (cnode && cnode != c->lpt_cnext);
 466
 467        /* Make sure to place LPT's save table */
 468        if (!done_lsave) {
 469                if (offs + c->lsave_sz > c->leb_size) {
 470                        wlen = offs - from;
 471                        alen = ALIGN(wlen, c->min_io_size);
 472                        memset(buf + offs, 0xff, alen - wlen);
 473                        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 474                        if (err)
 475                                return err;
 476                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 477                        err = realloc_lpt_leb(c, &lnum);
 478                        if (err)
 479                                goto no_space;
 480                        offs = from = 0;
 481                        ubifs_assert(lnum >= c->lpt_first &&
 482                                     lnum <= c->lpt_last);
 483                        err = ubifs_leb_unmap(c, lnum);
 484                        if (err)
 485                                return err;
 486                }
 487                done_lsave = 1;
 488                ubifs_pack_lsave(c, buf + offs, c->lsave);
 489                offs += c->lsave_sz;
 490                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 491        }
 492
 493        /* Make sure to place LPT's own lprops table */
 494        if (!done_ltab) {
 495                if (offs + c->ltab_sz > c->leb_size) {
 496                        wlen = offs - from;
 497                        alen = ALIGN(wlen, c->min_io_size);
 498                        memset(buf + offs, 0xff, alen - wlen);
 499                        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 500                        if (err)
 501                                return err;
 502                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 503                        err = realloc_lpt_leb(c, &lnum);
 504                        if (err)
 505                                goto no_space;
 506                        offs = from = 0;
 507                        ubifs_assert(lnum >= c->lpt_first &&
 508                                     lnum <= c->lpt_last);
 509                        err = ubifs_leb_unmap(c, lnum);
 510                        if (err)
 511                                return err;
 512                }
 513                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 514                offs += c->ltab_sz;
 515                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 516        }
 517
 518        /* Write remaining data in buffer */
 519        wlen = offs - from;
 520        alen = ALIGN(wlen, c->min_io_size);
 521        memset(buf + offs, 0xff, alen - wlen);
 522        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 523        if (err)
 524                return err;
 525
 526        dbg_chk_lpt_sz(c, 4, alen - wlen);
 527        err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
 528        if (err)
 529                return err;
 530
 531        c->nhead_lnum = lnum;
 532        c->nhead_offs = ALIGN(offs, c->min_io_size);
 533
 534        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
 535        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
 536        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
 537        if (c->big_lpt)
 538                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
 539
 540        return 0;
 541
 542no_space:
 543        ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
 544                  lnum, offs, len, done_ltab, done_lsave);
 545        ubifs_dump_lpt_info(c);
 546        ubifs_dump_lpt_lebs(c);
 547        dump_stack();
 548        return err;
 549}
 550#endif
 551
 552/**
 553 * next_pnode_to_dirty - find next pnode to dirty.
 554 * @c: UBIFS file-system description object
 555 * @pnode: pnode
 556 *
 557 * This function returns the next pnode to dirty or %NULL if there are no more
 558 * pnodes.  Note that pnodes that have never been written (lnum == 0) are
 559 * skipped.
 560 */
 561static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
 562                                               struct ubifs_pnode *pnode)
 563{
 564        struct ubifs_nnode *nnode;
 565        int iip;
 566
 567        /* Try to go right */
 568        nnode = pnode->parent;
 569        for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
 570                if (nnode->nbranch[iip].lnum)
 571                        return ubifs_get_pnode(c, nnode, iip);
 572        }
 573
 574        /* Go up while can't go right */
 575        do {
 576                iip = nnode->iip + 1;
 577                nnode = nnode->parent;
 578                if (!nnode)
 579                        return NULL;
 580                for (; iip < UBIFS_LPT_FANOUT; iip++) {
 581                        if (nnode->nbranch[iip].lnum)
 582                                break;
 583                }
 584        } while (iip >= UBIFS_LPT_FANOUT);
 585
 586        /* Go right */
 587        nnode = ubifs_get_nnode(c, nnode, iip);
 588        if (IS_ERR(nnode))
 589                return (void *)nnode;
 590
 591        /* Go down to level 1 */
 592        while (nnode->level > 1) {
 593                for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
 594                        if (nnode->nbranch[iip].lnum)
 595                                break;
 596                }
 597                if (iip >= UBIFS_LPT_FANOUT) {
 598                        /*
 599                         * Should not happen, but we need to keep going
 600                         * if it does.
 601                         */
 602                        iip = 0;
 603                }
 604                nnode = ubifs_get_nnode(c, nnode, iip);
 605                if (IS_ERR(nnode))
 606                        return (void *)nnode;
 607        }
 608
 609        for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
 610                if (nnode->nbranch[iip].lnum)
 611                        break;
 612        if (iip >= UBIFS_LPT_FANOUT)
 613                /* Should not happen, but we need to keep going if it does */
 614                iip = 0;
 615        return ubifs_get_pnode(c, nnode, iip);
 616}
 617
 618/**
 619 * pnode_lookup - lookup a pnode in the LPT.
 620 * @c: UBIFS file-system description object
 621 * @i: pnode number (0 to main_lebs - 1)
 622 *
 623 * This function returns a pointer to the pnode on success or a negative
 624 * error code on failure.
 625 */
 626static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
 627{
 628        int err, h, iip, shft;
 629        struct ubifs_nnode *nnode;
 630
 631        if (!c->nroot) {
 632                err = ubifs_read_nnode(c, NULL, 0);
 633                if (err)
 634                        return ERR_PTR(err);
 635        }
 636        i <<= UBIFS_LPT_FANOUT_SHIFT;
 637        nnode = c->nroot;
 638        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
 639        for (h = 1; h < c->lpt_hght; h++) {
 640                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 641                shft -= UBIFS_LPT_FANOUT_SHIFT;
 642                nnode = ubifs_get_nnode(c, nnode, iip);
 643                if (IS_ERR(nnode))
 644                        return ERR_CAST(nnode);
 645        }
 646        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 647        return ubifs_get_pnode(c, nnode, iip);
 648}
 649
 650/**
 651 * add_pnode_dirt - add dirty space to LPT LEB properties.
 652 * @c: UBIFS file-system description object
 653 * @pnode: pnode for which to add dirt
 654 */
 655static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
 656{
 657        ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
 658                           c->pnode_sz);
 659}
 660
 661/**
 662 * do_make_pnode_dirty - mark a pnode dirty.
 663 * @c: UBIFS file-system description object
 664 * @pnode: pnode to mark dirty
 665 */
 666static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
 667{
 668        /* Assumes cnext list is empty i.e. not called during commit */
 669        if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
 670                struct ubifs_nnode *nnode;
 671
 672                c->dirty_pn_cnt += 1;
 673                add_pnode_dirt(c, pnode);
 674                /* Mark parent and ancestors dirty too */
 675                nnode = pnode->parent;
 676                while (nnode) {
 677                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 678                                c->dirty_nn_cnt += 1;
 679                                ubifs_add_nnode_dirt(c, nnode);
 680                                nnode = nnode->parent;
 681                        } else
 682                                break;
 683                }
 684        }
 685}
 686
 687/**
 688 * make_tree_dirty - mark the entire LEB properties tree dirty.
 689 * @c: UBIFS file-system description object
 690 *
 691 * This function is used by the "small" LPT model to cause the entire LEB
 692 * properties tree to be written.  The "small" LPT model does not use LPT
 693 * garbage collection because it is more efficient to write the entire tree
 694 * (because it is small).
 695 *
 696 * This function returns %0 on success and a negative error code on failure.
 697 */
 698static int make_tree_dirty(struct ubifs_info *c)
 699{
 700        struct ubifs_pnode *pnode;
 701
 702        pnode = pnode_lookup(c, 0);
 703        if (IS_ERR(pnode))
 704                return PTR_ERR(pnode);
 705
 706        while (pnode) {
 707                do_make_pnode_dirty(c, pnode);
 708                pnode = next_pnode_to_dirty(c, pnode);
 709                if (IS_ERR(pnode))
 710                        return PTR_ERR(pnode);
 711        }
 712        return 0;
 713}
 714
 715/**
 716 * need_write_all - determine if the LPT area is running out of free space.
 717 * @c: UBIFS file-system description object
 718 *
 719 * This function returns %1 if the LPT area is running out of free space and %0
 720 * if it is not.
 721 */
 722static int need_write_all(struct ubifs_info *c)
 723{
 724        long long free = 0;
 725        int i;
 726
 727        for (i = 0; i < c->lpt_lebs; i++) {
 728                if (i + c->lpt_first == c->nhead_lnum)
 729                        free += c->leb_size - c->nhead_offs;
 730                else if (c->ltab[i].free == c->leb_size)
 731                        free += c->leb_size;
 732                else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
 733                        free += c->leb_size;
 734        }
 735        /* Less than twice the size left */
 736        if (free <= c->lpt_sz * 2)
 737                return 1;
 738        return 0;
 739}
 740
 741/**
 742 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
 743 * @c: UBIFS file-system description object
 744 *
 745 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 746 * free space and so may be reused as soon as the next commit is completed.
 747 * This function is called during start commit to mark LPT LEBs for trivial GC.
 748 */
 749static void lpt_tgc_start(struct ubifs_info *c)
 750{
 751        int i;
 752
 753        for (i = 0; i < c->lpt_lebs; i++) {
 754                if (i + c->lpt_first == c->nhead_lnum)
 755                        continue;
 756                if (c->ltab[i].dirty > 0 &&
 757                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
 758                        c->ltab[i].tgc = 1;
 759                        c->ltab[i].free = c->leb_size;
 760                        c->ltab[i].dirty = 0;
 761                        dbg_lp("LEB %d", i + c->lpt_first);
 762                }
 763        }
 764}
 765
 766/**
 767 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
 768 * @c: UBIFS file-system description object
 769 *
 770 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 771 * free space and so may be reused as soon as the next commit is completed.
 772 * This function is called after the commit is completed (master node has been
 773 * written) and un-maps LPT LEBs that were marked for trivial GC.
 774 */
 775static int lpt_tgc_end(struct ubifs_info *c)
 776{
 777        int i, err;
 778
 779        for (i = 0; i < c->lpt_lebs; i++)
 780                if (c->ltab[i].tgc) {
 781                        err = ubifs_leb_unmap(c, i + c->lpt_first);
 782                        if (err)
 783                                return err;
 784                        c->ltab[i].tgc = 0;
 785                        dbg_lp("LEB %d", i + c->lpt_first);
 786                }
 787        return 0;
 788}
 789
 790/**
 791 * populate_lsave - fill the lsave array with important LEB numbers.
 792 * @c: the UBIFS file-system description object
 793 *
 794 * This function is only called for the "big" model. It records a small number
 795 * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
 796 * most important to least important): empty, freeable, freeable index, dirty
 797 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
 798 * their pnodes into memory.  That will stop us from having to scan the LPT
 799 * straight away. For the "small" model we assume that scanning the LPT is no
 800 * big deal.
 801 */
 802static void populate_lsave(struct ubifs_info *c)
 803{
 804        struct ubifs_lprops *lprops;
 805        struct ubifs_lpt_heap *heap;
 806        int i, cnt = 0;
 807
 808        ubifs_assert(c->big_lpt);
 809        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
 810                c->lpt_drty_flgs |= LSAVE_DIRTY;
 811                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
 812        }
 813
 814#ifndef __UBOOT__
 815        if (dbg_populate_lsave(c))
 816                return;
 817#endif
 818
 819        list_for_each_entry(lprops, &c->empty_list, list) {
 820                c->lsave[cnt++] = lprops->lnum;
 821                if (cnt >= c->lsave_cnt)
 822                        return;
 823        }
 824        list_for_each_entry(lprops, &c->freeable_list, list) {
 825                c->lsave[cnt++] = lprops->lnum;
 826                if (cnt >= c->lsave_cnt)
 827                        return;
 828        }
 829        list_for_each_entry(lprops, &c->frdi_idx_list, list) {
 830                c->lsave[cnt++] = lprops->lnum;
 831                if (cnt >= c->lsave_cnt)
 832                        return;
 833        }
 834        heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
 835        for (i = 0; i < heap->cnt; i++) {
 836                c->lsave[cnt++] = heap->arr[i]->lnum;
 837                if (cnt >= c->lsave_cnt)
 838                        return;
 839        }
 840        heap = &c->lpt_heap[LPROPS_DIRTY - 1];
 841        for (i = 0; i < heap->cnt; i++) {
 842                c->lsave[cnt++] = heap->arr[i]->lnum;
 843                if (cnt >= c->lsave_cnt)
 844                        return;
 845        }
 846        heap = &c->lpt_heap[LPROPS_FREE - 1];
 847        for (i = 0; i < heap->cnt; i++) {
 848                c->lsave[cnt++] = heap->arr[i]->lnum;
 849                if (cnt >= c->lsave_cnt)
 850                        return;
 851        }
 852        /* Fill it up completely */
 853        while (cnt < c->lsave_cnt)
 854                c->lsave[cnt++] = c->main_first;
 855}
 856
 857/**
 858 * nnode_lookup - lookup a nnode in the LPT.
 859 * @c: UBIFS file-system description object
 860 * @i: nnode number
 861 *
 862 * This function returns a pointer to the nnode on success or a negative
 863 * error code on failure.
 864 */
 865static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
 866{
 867        int err, iip;
 868        struct ubifs_nnode *nnode;
 869
 870        if (!c->nroot) {
 871                err = ubifs_read_nnode(c, NULL, 0);
 872                if (err)
 873                        return ERR_PTR(err);
 874        }
 875        nnode = c->nroot;
 876        while (1) {
 877                iip = i & (UBIFS_LPT_FANOUT - 1);
 878                i >>= UBIFS_LPT_FANOUT_SHIFT;
 879                if (!i)
 880                        break;
 881                nnode = ubifs_get_nnode(c, nnode, iip);
 882                if (IS_ERR(nnode))
 883                        return nnode;
 884        }
 885        return nnode;
 886}
 887
 888/**
 889 * make_nnode_dirty - find a nnode and, if found, make it dirty.
 890 * @c: UBIFS file-system description object
 891 * @node_num: nnode number of nnode to make dirty
 892 * @lnum: LEB number where nnode was written
 893 * @offs: offset where nnode was written
 894 *
 895 * This function is used by LPT garbage collection.  LPT garbage collection is
 896 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 897 * simply involves marking all the nodes in the LEB being garbage-collected as
 898 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 899 * to be reused.
 900 *
 901 * This function returns %0 on success and a negative error code on failure.
 902 */
 903static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 904                            int offs)
 905{
 906        struct ubifs_nnode *nnode;
 907
 908        nnode = nnode_lookup(c, node_num);
 909        if (IS_ERR(nnode))
 910                return PTR_ERR(nnode);
 911        if (nnode->parent) {
 912                struct ubifs_nbranch *branch;
 913
 914                branch = &nnode->parent->nbranch[nnode->iip];
 915                if (branch->lnum != lnum || branch->offs != offs)
 916                        return 0; /* nnode is obsolete */
 917        } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
 918                        return 0; /* nnode is obsolete */
 919        /* Assumes cnext list is empty i.e. not called during commit */
 920        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 921                c->dirty_nn_cnt += 1;
 922                ubifs_add_nnode_dirt(c, nnode);
 923                /* Mark parent and ancestors dirty too */
 924                nnode = nnode->parent;
 925                while (nnode) {
 926                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 927                                c->dirty_nn_cnt += 1;
 928                                ubifs_add_nnode_dirt(c, nnode);
 929                                nnode = nnode->parent;
 930                        } else
 931                                break;
 932                }
 933        }
 934        return 0;
 935}
 936
 937/**
 938 * make_pnode_dirty - find a pnode and, if found, make it dirty.
 939 * @c: UBIFS file-system description object
 940 * @node_num: pnode number of pnode to make dirty
 941 * @lnum: LEB number where pnode was written
 942 * @offs: offset where pnode was written
 943 *
 944 * This function is used by LPT garbage collection.  LPT garbage collection is
 945 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 946 * simply involves marking all the nodes in the LEB being garbage-collected as
 947 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 948 * to be reused.
 949 *
 950 * This function returns %0 on success and a negative error code on failure.
 951 */
 952static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 953                            int offs)
 954{
 955        struct ubifs_pnode *pnode;
 956        struct ubifs_nbranch *branch;
 957
 958        pnode = pnode_lookup(c, node_num);
 959        if (IS_ERR(pnode))
 960                return PTR_ERR(pnode);
 961        branch = &pnode->parent->nbranch[pnode->iip];
 962        if (branch->lnum != lnum || branch->offs != offs)
 963                return 0;
 964        do_make_pnode_dirty(c, pnode);
 965        return 0;
 966}
 967
 968/**
 969 * make_ltab_dirty - make ltab node dirty.
 970 * @c: UBIFS file-system description object
 971 * @lnum: LEB number where ltab was written
 972 * @offs: offset where ltab was written
 973 *
 974 * This function is used by LPT garbage collection.  LPT garbage collection is
 975 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 976 * simply involves marking all the nodes in the LEB being garbage-collected as
 977 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 978 * to be reused.
 979 *
 980 * This function returns %0 on success and a negative error code on failure.
 981 */
 982static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
 983{
 984        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
 985                return 0; /* This ltab node is obsolete */
 986        if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
 987                c->lpt_drty_flgs |= LTAB_DIRTY;
 988                ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
 989        }
 990        return 0;
 991}
 992
 993/**
 994 * make_lsave_dirty - make lsave node dirty.
 995 * @c: UBIFS file-system description object
 996 * @lnum: LEB number where lsave was written
 997 * @offs: offset where lsave was written
 998 *
 999 * This function is used by LPT garbage collection.  LPT garbage collection is
1000 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1001 * simply involves marking all the nodes in the LEB being garbage-collected as
1002 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1003 * to be reused.
1004 *
1005 * This function returns %0 on success and a negative error code on failure.
1006 */
1007static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1008{
1009        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1010                return 0; /* This lsave node is obsolete */
1011        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1012                c->lpt_drty_flgs |= LSAVE_DIRTY;
1013                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1014        }
1015        return 0;
1016}
1017
1018/**
1019 * make_node_dirty - make node dirty.
1020 * @c: UBIFS file-system description object
1021 * @node_type: LPT node type
1022 * @node_num: node number
1023 * @lnum: LEB number where node was written
1024 * @offs: offset where node was written
1025 *
1026 * This function is used by LPT garbage collection.  LPT garbage collection is
1027 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1028 * simply involves marking all the nodes in the LEB being garbage-collected as
1029 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1030 * to be reused.
1031 *
1032 * This function returns %0 on success and a negative error code on failure.
1033 */
1034static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1035                           int lnum, int offs)
1036{
1037        switch (node_type) {
1038        case UBIFS_LPT_NNODE:
1039                return make_nnode_dirty(c, node_num, lnum, offs);
1040        case UBIFS_LPT_PNODE:
1041                return make_pnode_dirty(c, node_num, lnum, offs);
1042        case UBIFS_LPT_LTAB:
1043                return make_ltab_dirty(c, lnum, offs);
1044        case UBIFS_LPT_LSAVE:
1045                return make_lsave_dirty(c, lnum, offs);
1046        }
1047        return -EINVAL;
1048}
1049
1050/**
1051 * get_lpt_node_len - return the length of a node based on its type.
1052 * @c: UBIFS file-system description object
1053 * @node_type: LPT node type
1054 */
1055static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1056{
1057        switch (node_type) {
1058        case UBIFS_LPT_NNODE:
1059                return c->nnode_sz;
1060        case UBIFS_LPT_PNODE:
1061                return c->pnode_sz;
1062        case UBIFS_LPT_LTAB:
1063                return c->ltab_sz;
1064        case UBIFS_LPT_LSAVE:
1065                return c->lsave_sz;
1066        }
1067        return 0;
1068}
1069
1070/**
1071 * get_pad_len - return the length of padding in a buffer.
1072 * @c: UBIFS file-system description object
1073 * @buf: buffer
1074 * @len: length of buffer
1075 */
1076static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1077{
1078        int offs, pad_len;
1079
1080        if (c->min_io_size == 1)
1081                return 0;
1082        offs = c->leb_size - len;
1083        pad_len = ALIGN(offs, c->min_io_size) - offs;
1084        return pad_len;
1085}
1086
1087/**
1088 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1089 * @c: UBIFS file-system description object
1090 * @buf: buffer
1091 * @node_num: node number is returned here
1092 */
1093static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1094                             int *node_num)
1095{
1096        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1097        int pos = 0, node_type;
1098
1099        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1100        *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1101        return node_type;
1102}
1103
1104/**
1105 * is_a_node - determine if a buffer contains a node.
1106 * @c: UBIFS file-system description object
1107 * @buf: buffer
1108 * @len: length of buffer
1109 *
1110 * This function returns %1 if the buffer contains a node or %0 if it does not.
1111 */
1112static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1113{
1114        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1115        int pos = 0, node_type, node_len;
1116        uint16_t crc, calc_crc;
1117
1118        if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1119                return 0;
1120        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1121        if (node_type == UBIFS_LPT_NOT_A_NODE)
1122                return 0;
1123        node_len = get_lpt_node_len(c, node_type);
1124        if (!node_len || node_len > len)
1125                return 0;
1126        pos = 0;
1127        addr = buf;
1128        crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1129        calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1130                         node_len - UBIFS_LPT_CRC_BYTES);
1131        if (crc != calc_crc)
1132                return 0;
1133        return 1;
1134}
1135
1136/**
1137 * lpt_gc_lnum - garbage collect a LPT LEB.
1138 * @c: UBIFS file-system description object
1139 * @lnum: LEB number to garbage collect
1140 *
1141 * LPT garbage collection is used only for the "big" LPT model
1142 * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1143 * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1144 * next commit, after which the LEB is free to be reused.
1145 *
1146 * This function returns %0 on success and a negative error code on failure.
1147 */
1148static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1149{
1150        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1151        void *buf = c->lpt_buf;
1152
1153        dbg_lp("LEB %d", lnum);
1154
1155        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1156        if (err)
1157                return err;
1158
1159        while (1) {
1160                if (!is_a_node(c, buf, len)) {
1161                        int pad_len;
1162
1163                        pad_len = get_pad_len(c, buf, len);
1164                        if (pad_len) {
1165                                buf += pad_len;
1166                                len -= pad_len;
1167                                continue;
1168                        }
1169                        return 0;
1170                }
1171                node_type = get_lpt_node_type(c, buf, &node_num);
1172                node_len = get_lpt_node_len(c, node_type);
1173                offs = c->leb_size - len;
1174                ubifs_assert(node_len != 0);
1175                mutex_lock(&c->lp_mutex);
1176                err = make_node_dirty(c, node_type, node_num, lnum, offs);
1177                mutex_unlock(&c->lp_mutex);
1178                if (err)
1179                        return err;
1180                buf += node_len;
1181                len -= node_len;
1182        }
1183        return 0;
1184}
1185
1186/**
1187 * lpt_gc - LPT garbage collection.
1188 * @c: UBIFS file-system description object
1189 *
1190 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1191 * Returns %0 on success and a negative error code on failure.
1192 */
1193static int lpt_gc(struct ubifs_info *c)
1194{
1195        int i, lnum = -1, dirty = 0;
1196
1197        mutex_lock(&c->lp_mutex);
1198        for (i = 0; i < c->lpt_lebs; i++) {
1199                ubifs_assert(!c->ltab[i].tgc);
1200                if (i + c->lpt_first == c->nhead_lnum ||
1201                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1202                        continue;
1203                if (c->ltab[i].dirty > dirty) {
1204                        dirty = c->ltab[i].dirty;
1205                        lnum = i + c->lpt_first;
1206                }
1207        }
1208        mutex_unlock(&c->lp_mutex);
1209        if (lnum == -1)
1210                return -ENOSPC;
1211        return lpt_gc_lnum(c, lnum);
1212}
1213
1214/**
1215 * ubifs_lpt_start_commit - UBIFS commit starts.
1216 * @c: the UBIFS file-system description object
1217 *
1218 * This function has to be called when UBIFS starts the commit operation.
1219 * This function "freezes" all currently dirty LEB properties and does not
1220 * change them anymore. Further changes are saved and tracked separately
1221 * because they are not part of this commit. This function returns zero in case
1222 * of success and a negative error code in case of failure.
1223 */
1224int ubifs_lpt_start_commit(struct ubifs_info *c)
1225{
1226        int err, cnt;
1227
1228        dbg_lp("");
1229
1230        mutex_lock(&c->lp_mutex);
1231        err = dbg_chk_lpt_free_spc(c);
1232        if (err)
1233                goto out;
1234        err = dbg_check_ltab(c);
1235        if (err)
1236                goto out;
1237
1238        if (c->check_lpt_free) {
1239                /*
1240                 * We ensure there is enough free space in
1241                 * ubifs_lpt_post_commit() by marking nodes dirty. That
1242                 * information is lost when we unmount, so we also need
1243                 * to check free space once after mounting also.
1244                 */
1245                c->check_lpt_free = 0;
1246                while (need_write_all(c)) {
1247                        mutex_unlock(&c->lp_mutex);
1248                        err = lpt_gc(c);
1249                        if (err)
1250                                return err;
1251                        mutex_lock(&c->lp_mutex);
1252                }
1253        }
1254
1255        lpt_tgc_start(c);
1256
1257        if (!c->dirty_pn_cnt) {
1258                dbg_cmt("no cnodes to commit");
1259                err = 0;
1260                goto out;
1261        }
1262
1263        if (!c->big_lpt && need_write_all(c)) {
1264                /* If needed, write everything */
1265                err = make_tree_dirty(c);
1266                if (err)
1267                        goto out;
1268                lpt_tgc_start(c);
1269        }
1270
1271        if (c->big_lpt)
1272                populate_lsave(c);
1273
1274        cnt = get_cnodes_to_commit(c);
1275        ubifs_assert(cnt != 0);
1276
1277        err = layout_cnodes(c);
1278        if (err)
1279                goto out;
1280
1281        /* Copy the LPT's own lprops for end commit to write */
1282        memcpy(c->ltab_cmt, c->ltab,
1283               sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1284        c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1285
1286out:
1287        mutex_unlock(&c->lp_mutex);
1288        return err;
1289}
1290
1291/**
1292 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1293 * @c: UBIFS file-system description object
1294 */
1295static void free_obsolete_cnodes(struct ubifs_info *c)
1296{
1297        struct ubifs_cnode *cnode, *cnext;
1298
1299        cnext = c->lpt_cnext;
1300        if (!cnext)
1301                return;
1302        do {
1303                cnode = cnext;
1304                cnext = cnode->cnext;
1305                if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1306                        kfree(cnode);
1307                else
1308                        cnode->cnext = NULL;
1309        } while (cnext != c->lpt_cnext);
1310        c->lpt_cnext = NULL;
1311}
1312
1313#ifndef __UBOOT__
1314/**
1315 * ubifs_lpt_end_commit - finish the commit operation.
1316 * @c: the UBIFS file-system description object
1317 *
1318 * This function has to be called when the commit operation finishes. It
1319 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1320 * the media. Returns zero in case of success and a negative error code in case
1321 * of failure.
1322 */
1323int ubifs_lpt_end_commit(struct ubifs_info *c)
1324{
1325        int err;
1326
1327        dbg_lp("");
1328
1329        if (!c->lpt_cnext)
1330                return 0;
1331
1332        err = write_cnodes(c);
1333        if (err)
1334                return err;
1335
1336        mutex_lock(&c->lp_mutex);
1337        free_obsolete_cnodes(c);
1338        mutex_unlock(&c->lp_mutex);
1339
1340        return 0;
1341}
1342#endif
1343
1344/**
1345 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1346 * @c: UBIFS file-system description object
1347 *
1348 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1349 * commit for the "big" LPT model.
1350 */
1351int ubifs_lpt_post_commit(struct ubifs_info *c)
1352{
1353        int err;
1354
1355        mutex_lock(&c->lp_mutex);
1356        err = lpt_tgc_end(c);
1357        if (err)
1358                goto out;
1359        if (c->big_lpt)
1360                while (need_write_all(c)) {
1361                        mutex_unlock(&c->lp_mutex);
1362                        err = lpt_gc(c);
1363                        if (err)
1364                                return err;
1365                        mutex_lock(&c->lp_mutex);
1366                }
1367out:
1368        mutex_unlock(&c->lp_mutex);
1369        return err;
1370}
1371
1372/**
1373 * first_nnode - find the first nnode in memory.
1374 * @c: UBIFS file-system description object
1375 * @hght: height of tree where nnode found is returned here
1376 *
1377 * This function returns a pointer to the nnode found or %NULL if no nnode is
1378 * found. This function is a helper to 'ubifs_lpt_free()'.
1379 */
1380static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1381{
1382        struct ubifs_nnode *nnode;
1383        int h, i, found;
1384
1385        nnode = c->nroot;
1386        *hght = 0;
1387        if (!nnode)
1388                return NULL;
1389        for (h = 1; h < c->lpt_hght; h++) {
1390                found = 0;
1391                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1392                        if (nnode->nbranch[i].nnode) {
1393                                found = 1;
1394                                nnode = nnode->nbranch[i].nnode;
1395                                *hght = h;
1396                                break;
1397                        }
1398                }
1399                if (!found)
1400                        break;
1401        }
1402        return nnode;
1403}
1404
1405/**
1406 * next_nnode - find the next nnode in memory.
1407 * @c: UBIFS file-system description object
1408 * @nnode: nnode from which to start.
1409 * @hght: height of tree where nnode is, is passed and returned here
1410 *
1411 * This function returns a pointer to the nnode found or %NULL if no nnode is
1412 * found. This function is a helper to 'ubifs_lpt_free()'.
1413 */
1414static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1415                                      struct ubifs_nnode *nnode, int *hght)
1416{
1417        struct ubifs_nnode *parent;
1418        int iip, h, i, found;
1419
1420        parent = nnode->parent;
1421        if (!parent)
1422                return NULL;
1423        if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1424                *hght -= 1;
1425                return parent;
1426        }
1427        for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1428                nnode = parent->nbranch[iip].nnode;
1429                if (nnode)
1430                        break;
1431        }
1432        if (!nnode) {
1433                *hght -= 1;
1434                return parent;
1435        }
1436        for (h = *hght + 1; h < c->lpt_hght; h++) {
1437                found = 0;
1438                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1439                        if (nnode->nbranch[i].nnode) {
1440                                found = 1;
1441                                nnode = nnode->nbranch[i].nnode;
1442                                *hght = h;
1443                                break;
1444                        }
1445                }
1446                if (!found)
1447                        break;
1448        }
1449        return nnode;
1450}
1451
1452/**
1453 * ubifs_lpt_free - free resources owned by the LPT.
1454 * @c: UBIFS file-system description object
1455 * @wr_only: free only resources used for writing
1456 */
1457void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1458{
1459        struct ubifs_nnode *nnode;
1460        int i, hght;
1461
1462        /* Free write-only things first */
1463
1464        free_obsolete_cnodes(c); /* Leftover from a failed commit */
1465
1466        vfree(c->ltab_cmt);
1467        c->ltab_cmt = NULL;
1468        vfree(c->lpt_buf);
1469        c->lpt_buf = NULL;
1470        kfree(c->lsave);
1471        c->lsave = NULL;
1472
1473        if (wr_only)
1474                return;
1475
1476        /* Now free the rest */
1477
1478        nnode = first_nnode(c, &hght);
1479        while (nnode) {
1480                for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1481                        kfree(nnode->nbranch[i].nnode);
1482                nnode = next_nnode(c, nnode, &hght);
1483        }
1484        for (i = 0; i < LPROPS_HEAP_CNT; i++)
1485                kfree(c->lpt_heap[i].arr);
1486        kfree(c->dirty_idx.arr);
1487        kfree(c->nroot);
1488        vfree(c->ltab);
1489        kfree(c->lpt_nod_buf);
1490}
1491
1492#ifndef __UBOOT__
1493/*
1494 * Everything below is related to debugging.
1495 */
1496
1497/**
1498 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1499 * @buf: buffer
1500 * @len: buffer length
1501 */
1502static int dbg_is_all_ff(uint8_t *buf, int len)
1503{
1504        int i;
1505
1506        for (i = 0; i < len; i++)
1507                if (buf[i] != 0xff)
1508                        return 0;
1509        return 1;
1510}
1511
1512/**
1513 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1514 * @c: the UBIFS file-system description object
1515 * @lnum: LEB number where nnode was written
1516 * @offs: offset where nnode was written
1517 */
1518static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1519{
1520        struct ubifs_nnode *nnode;
1521        int hght;
1522
1523        /* Entire tree is in memory so first_nnode / next_nnode are OK */
1524        nnode = first_nnode(c, &hght);
1525        for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1526                struct ubifs_nbranch *branch;
1527
1528                cond_resched();
1529                if (nnode->parent) {
1530                        branch = &nnode->parent->nbranch[nnode->iip];
1531                        if (branch->lnum != lnum || branch->offs != offs)
1532                                continue;
1533                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1534                                return 1;
1535                        return 0;
1536                } else {
1537                        if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1538                                continue;
1539                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1540                                return 1;
1541                        return 0;
1542                }
1543        }
1544        return 1;
1545}
1546
1547/**
1548 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1549 * @c: the UBIFS file-system description object
1550 * @lnum: LEB number where pnode was written
1551 * @offs: offset where pnode was written
1552 */
1553static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1554{
1555        int i, cnt;
1556
1557        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1558        for (i = 0; i < cnt; i++) {
1559                struct ubifs_pnode *pnode;
1560                struct ubifs_nbranch *branch;
1561
1562                cond_resched();
1563                pnode = pnode_lookup(c, i);
1564                if (IS_ERR(pnode))
1565                        return PTR_ERR(pnode);
1566                branch = &pnode->parent->nbranch[pnode->iip];
1567                if (branch->lnum != lnum || branch->offs != offs)
1568                        continue;
1569                if (test_bit(DIRTY_CNODE, &pnode->flags))
1570                        return 1;
1571                return 0;
1572        }
1573        return 1;
1574}
1575
1576/**
1577 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1578 * @c: the UBIFS file-system description object
1579 * @lnum: LEB number where ltab node was written
1580 * @offs: offset where ltab node was written
1581 */
1582static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1583{
1584        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1585                return 1;
1586        return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1587}
1588
1589/**
1590 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1591 * @c: the UBIFS file-system description object
1592 * @lnum: LEB number where lsave node was written
1593 * @offs: offset where lsave node was written
1594 */
1595static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1596{
1597        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1598                return 1;
1599        return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1600}
1601
1602/**
1603 * dbg_is_node_dirty - determine if a node is dirty.
1604 * @c: the UBIFS file-system description object
1605 * @node_type: node type
1606 * @lnum: LEB number where node was written
1607 * @offs: offset where node was written
1608 */
1609static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1610                             int offs)
1611{
1612        switch (node_type) {
1613        case UBIFS_LPT_NNODE:
1614                return dbg_is_nnode_dirty(c, lnum, offs);
1615        case UBIFS_LPT_PNODE:
1616                return dbg_is_pnode_dirty(c, lnum, offs);
1617        case UBIFS_LPT_LTAB:
1618                return dbg_is_ltab_dirty(c, lnum, offs);
1619        case UBIFS_LPT_LSAVE:
1620                return dbg_is_lsave_dirty(c, lnum, offs);
1621        }
1622        return 1;
1623}
1624
1625/**
1626 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1627 * @c: the UBIFS file-system description object
1628 * @lnum: LEB number where node was written
1629 * @offs: offset where node was written
1630 *
1631 * This function returns %0 on success and a negative error code on failure.
1632 */
1633static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1634{
1635        int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1636        int ret;
1637        void *buf, *p;
1638
1639        if (!dbg_is_chk_lprops(c))
1640                return 0;
1641
1642        buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1643        if (!buf) {
1644                ubifs_err(c, "cannot allocate memory for ltab checking");
1645                return 0;
1646        }
1647
1648        dbg_lp("LEB %d", lnum);
1649
1650        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1651        if (err)
1652                goto out;
1653
1654        while (1) {
1655                if (!is_a_node(c, p, len)) {
1656                        int i, pad_len;
1657
1658                        pad_len = get_pad_len(c, p, len);
1659                        if (pad_len) {
1660                                p += pad_len;
1661                                len -= pad_len;
1662                                dirty += pad_len;
1663                                continue;
1664                        }
1665                        if (!dbg_is_all_ff(p, len)) {
1666                                ubifs_err(c, "invalid empty space in LEB %d at %d",
1667                                          lnum, c->leb_size - len);
1668                                err = -EINVAL;
1669                        }
1670                        i = lnum - c->lpt_first;
1671                        if (len != c->ltab[i].free) {
1672                                ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)",
1673                                          lnum, len, c->ltab[i].free);
1674                                err = -EINVAL;
1675                        }
1676                        if (dirty != c->ltab[i].dirty) {
1677                                ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1678                                          lnum, dirty, c->ltab[i].dirty);
1679                                err = -EINVAL;
1680                        }
1681                        goto out;
1682                }
1683                node_type = get_lpt_node_type(c, p, &node_num);
1684                node_len = get_lpt_node_len(c, node_type);
1685                ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1686                if (ret == 1)
1687                        dirty += node_len;
1688                p += node_len;
1689                len -= node_len;
1690        }
1691
1692        err = 0;
1693out:
1694        vfree(buf);
1695        return err;
1696}
1697
1698/**
1699 * dbg_check_ltab - check the free and dirty space in the ltab.
1700 * @c: the UBIFS file-system description object
1701 *
1702 * This function returns %0 on success and a negative error code on failure.
1703 */
1704int dbg_check_ltab(struct ubifs_info *c)
1705{
1706        int lnum, err, i, cnt;
1707
1708        if (!dbg_is_chk_lprops(c))
1709                return 0;
1710
1711        /* Bring the entire tree into memory */
1712        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1713        for (i = 0; i < cnt; i++) {
1714                struct ubifs_pnode *pnode;
1715
1716                pnode = pnode_lookup(c, i);
1717                if (IS_ERR(pnode))
1718                        return PTR_ERR(pnode);
1719                cond_resched();
1720        }
1721
1722        /* Check nodes */
1723        err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1724        if (err)
1725                return err;
1726
1727        /* Check each LEB */
1728        for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1729                err = dbg_check_ltab_lnum(c, lnum);
1730                if (err) {
1731                        ubifs_err(c, "failed at LEB %d", lnum);
1732                        return err;
1733                }
1734        }
1735
1736        dbg_lp("succeeded");
1737        return 0;
1738}
1739
1740/**
1741 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1742 * @c: the UBIFS file-system description object
1743 *
1744 * This function returns %0 on success and a negative error code on failure.
1745 */
1746int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1747{
1748        long long free = 0;
1749        int i;
1750
1751        if (!dbg_is_chk_lprops(c))
1752                return 0;
1753
1754        for (i = 0; i < c->lpt_lebs; i++) {
1755                if (c->ltab[i].tgc || c->ltab[i].cmt)
1756                        continue;
1757                if (i + c->lpt_first == c->nhead_lnum)
1758                        free += c->leb_size - c->nhead_offs;
1759                else if (c->ltab[i].free == c->leb_size)
1760                        free += c->leb_size;
1761        }
1762        if (free < c->lpt_sz) {
1763                ubifs_err(c, "LPT space error: free %lld lpt_sz %lld",
1764                          free, c->lpt_sz);
1765                ubifs_dump_lpt_info(c);
1766                ubifs_dump_lpt_lebs(c);
1767                dump_stack();
1768                return -EINVAL;
1769        }
1770        return 0;
1771}
1772
1773/**
1774 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1775 * @c: the UBIFS file-system description object
1776 * @action: what to do
1777 * @len: length written
1778 *
1779 * This function returns %0 on success and a negative error code on failure.
1780 * The @action argument may be one of:
1781 *   o %0 - LPT debugging checking starts, initialize debugging variables;
1782 *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1783 *   o %2 - switched to a different LEB and wasted @len bytes;
1784 *   o %3 - check that we've written the right number of bytes.
1785 *   o %4 - wasted @len bytes;
1786 */
1787int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1788{
1789        struct ubifs_debug_info *d = c->dbg;
1790        long long chk_lpt_sz, lpt_sz;
1791        int err = 0;
1792
1793        if (!dbg_is_chk_lprops(c))
1794                return 0;
1795
1796        switch (action) {
1797        case 0:
1798                d->chk_lpt_sz = 0;
1799                d->chk_lpt_sz2 = 0;
1800                d->chk_lpt_lebs = 0;
1801                d->chk_lpt_wastage = 0;
1802                if (c->dirty_pn_cnt > c->pnode_cnt) {
1803                        ubifs_err(c, "dirty pnodes %d exceed max %d",
1804                                  c->dirty_pn_cnt, c->pnode_cnt);
1805                        err = -EINVAL;
1806                }
1807                if (c->dirty_nn_cnt > c->nnode_cnt) {
1808                        ubifs_err(c, "dirty nnodes %d exceed max %d",
1809                                  c->dirty_nn_cnt, c->nnode_cnt);
1810                        err = -EINVAL;
1811                }
1812                return err;
1813        case 1:
1814                d->chk_lpt_sz += len;
1815                return 0;
1816        case 2:
1817                d->chk_lpt_sz += len;
1818                d->chk_lpt_wastage += len;
1819                d->chk_lpt_lebs += 1;
1820                return 0;
1821        case 3:
1822                chk_lpt_sz = c->leb_size;
1823                chk_lpt_sz *= d->chk_lpt_lebs;
1824                chk_lpt_sz += len - c->nhead_offs;
1825                if (d->chk_lpt_sz != chk_lpt_sz) {
1826                        ubifs_err(c, "LPT wrote %lld but space used was %lld",
1827                                  d->chk_lpt_sz, chk_lpt_sz);
1828                        err = -EINVAL;
1829                }
1830                if (d->chk_lpt_sz > c->lpt_sz) {
1831                        ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld",
1832                                  d->chk_lpt_sz, c->lpt_sz);
1833                        err = -EINVAL;
1834                }
1835                if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1836                        ubifs_err(c, "LPT layout size %lld but wrote %lld",
1837                                  d->chk_lpt_sz, d->chk_lpt_sz2);
1838                        err = -EINVAL;
1839                }
1840                if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1841                        ubifs_err(c, "LPT new nhead offs: expected %d was %d",
1842                                  d->new_nhead_offs, len);
1843                        err = -EINVAL;
1844                }
1845                lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1846                lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1847                lpt_sz += c->ltab_sz;
1848                if (c->big_lpt)
1849                        lpt_sz += c->lsave_sz;
1850                if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1851                        ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1852                                  d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1853                        err = -EINVAL;
1854                }
1855                if (err) {
1856                        ubifs_dump_lpt_info(c);
1857                        ubifs_dump_lpt_lebs(c);
1858                        dump_stack();
1859                }
1860                d->chk_lpt_sz2 = d->chk_lpt_sz;
1861                d->chk_lpt_sz = 0;
1862                d->chk_lpt_wastage = 0;
1863                d->chk_lpt_lebs = 0;
1864                d->new_nhead_offs = len;
1865                return err;
1866        case 4:
1867                d->chk_lpt_sz += len;
1868                d->chk_lpt_wastage += len;
1869                return 0;
1870        default:
1871                return -EINVAL;
1872        }
1873}
1874
1875/**
1876 * ubifs_dump_lpt_leb - dump an LPT LEB.
1877 * @c: UBIFS file-system description object
1878 * @lnum: LEB number to dump
1879 *
1880 * This function dumps an LEB from LPT area. Nodes in this area are very
1881 * different to nodes in the main area (e.g., they do not have common headers,
1882 * they do not have 8-byte alignments, etc), so we have a separate function to
1883 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1884 */
1885static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1886{
1887        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1888        void *buf, *p;
1889
1890        pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1891        buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1892        if (!buf) {
1893                ubifs_err(c, "cannot allocate memory to dump LPT");
1894                return;
1895        }
1896
1897        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1898        if (err)
1899                goto out;
1900
1901        while (1) {
1902                offs = c->leb_size - len;
1903                if (!is_a_node(c, p, len)) {
1904                        int pad_len;
1905
1906                        pad_len = get_pad_len(c, p, len);
1907                        if (pad_len) {
1908                                pr_err("LEB %d:%d, pad %d bytes\n",
1909                                       lnum, offs, pad_len);
1910                                p += pad_len;
1911                                len -= pad_len;
1912                                continue;
1913                        }
1914                        if (len)
1915                                pr_err("LEB %d:%d, free %d bytes\n",
1916                                       lnum, offs, len);
1917                        break;
1918                }
1919
1920                node_type = get_lpt_node_type(c, p, &node_num);
1921                switch (node_type) {
1922                case UBIFS_LPT_PNODE:
1923                {
1924                        node_len = c->pnode_sz;
1925                        if (c->big_lpt)
1926                                pr_err("LEB %d:%d, pnode num %d\n",
1927                                       lnum, offs, node_num);
1928                        else
1929                                pr_err("LEB %d:%d, pnode\n", lnum, offs);
1930                        break;
1931                }
1932                case UBIFS_LPT_NNODE:
1933                {
1934                        int i;
1935                        struct ubifs_nnode nnode;
1936
1937                        node_len = c->nnode_sz;
1938                        if (c->big_lpt)
1939                                pr_err("LEB %d:%d, nnode num %d, ",
1940                                       lnum, offs, node_num);
1941                        else
1942                                pr_err("LEB %d:%d, nnode, ",
1943                                       lnum, offs);
1944                        err = ubifs_unpack_nnode(c, p, &nnode);
1945                        if (err) {
1946                                pr_err("failed to unpack_node, error %d\n",
1947                                       err);
1948                                break;
1949                        }
1950                        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1951                                pr_cont("%d:%d", nnode.nbranch[i].lnum,
1952                                       nnode.nbranch[i].offs);
1953                                if (i != UBIFS_LPT_FANOUT - 1)
1954                                        pr_cont(", ");
1955                        }
1956                        pr_cont("\n");
1957                        break;
1958                }
1959                case UBIFS_LPT_LTAB:
1960                        node_len = c->ltab_sz;
1961                        pr_err("LEB %d:%d, ltab\n", lnum, offs);
1962                        break;
1963                case UBIFS_LPT_LSAVE:
1964                        node_len = c->lsave_sz;
1965                        pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1966                        break;
1967                default:
1968                        ubifs_err(c, "LPT node type %d not recognized", node_type);
1969                        goto out;
1970                }
1971
1972                p += node_len;
1973                len -= node_len;
1974        }
1975
1976        pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1977out:
1978        vfree(buf);
1979        return;
1980}
1981
1982/**
1983 * ubifs_dump_lpt_lebs - dump LPT lebs.
1984 * @c: UBIFS file-system description object
1985 *
1986 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1987 * locked.
1988 */
1989void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1990{
1991        int i;
1992
1993        pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1994        for (i = 0; i < c->lpt_lebs; i++)
1995                dump_lpt_leb(c, i + c->lpt_first);
1996        pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1997}
1998
1999/**
2000 * dbg_populate_lsave - debugging version of 'populate_lsave()'
2001 * @c: UBIFS file-system description object
2002 *
2003 * This is a debugging version for 'populate_lsave()' which populates lsave
2004 * with random LEBs instead of useful LEBs, which is good for test coverage.
2005 * Returns zero if lsave has not been populated (this debugging feature is
2006 * disabled) an non-zero if lsave has been populated.
2007 */
2008static int dbg_populate_lsave(struct ubifs_info *c)
2009{
2010        struct ubifs_lprops *lprops;
2011        struct ubifs_lpt_heap *heap;
2012        int i;
2013
2014        if (!dbg_is_chk_gen(c))
2015                return 0;
2016        if (prandom_u32() & 3)
2017                return 0;
2018
2019        for (i = 0; i < c->lsave_cnt; i++)
2020                c->lsave[i] = c->main_first;
2021
2022        list_for_each_entry(lprops, &c->empty_list, list)
2023                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2024        list_for_each_entry(lprops, &c->freeable_list, list)
2025                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2026        list_for_each_entry(lprops, &c->frdi_idx_list, list)
2027                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2028
2029        heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2030        for (i = 0; i < heap->cnt; i++)
2031                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2032        heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2033        for (i = 0; i < heap->cnt; i++)
2034                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2035        heap = &c->lpt_heap[LPROPS_FREE - 1];
2036        for (i = 0; i < heap->cnt; i++)
2037                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2038
2039        return 1;
2040}
2041#endif
2042