uboot/fs/ubifs/replay.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file contains journal replay code. It runs when the file-system is being
  13 * mounted and requires no locking.
  14 *
  15 * The larger is the journal, the longer it takes to scan it, so the longer it
  16 * takes to mount UBIFS. This is why the journal has limited size which may be
  17 * changed depending on the system requirements. But a larger journal gives
  18 * faster I/O speed because it writes the index less frequently. So this is a
  19 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  20 * larger is the journal, the more memory its index may consume.
  21 */
  22
  23#ifdef __UBOOT__
  24#include <linux/compat.h>
  25#include <linux/err.h>
  26#endif
  27#include "ubifs.h"
  28#include <linux/bug.h>
  29#include <linux/list_sort.h>
  30
  31/**
  32 * struct replay_entry - replay list entry.
  33 * @lnum: logical eraseblock number of the node
  34 * @offs: node offset
  35 * @len: node length
  36 * @deletion: non-zero if this entry corresponds to a node deletion
  37 * @sqnum: node sequence number
  38 * @list: links the replay list
  39 * @key: node key
  40 * @nm: directory entry name
  41 * @old_size: truncation old size
  42 * @new_size: truncation new size
  43 *
  44 * The replay process first scans all buds and builds the replay list, then
  45 * sorts the replay list in nodes sequence number order, and then inserts all
  46 * the replay entries to the TNC.
  47 */
  48struct replay_entry {
  49        int lnum;
  50        int offs;
  51        int len;
  52        unsigned int deletion:1;
  53        unsigned long long sqnum;
  54        struct list_head list;
  55        union ubifs_key key;
  56        union {
  57                struct qstr nm;
  58                struct {
  59                        loff_t old_size;
  60                        loff_t new_size;
  61                };
  62        };
  63};
  64
  65/**
  66 * struct bud_entry - entry in the list of buds to replay.
  67 * @list: next bud in the list
  68 * @bud: bud description object
  69 * @sqnum: reference node sequence number
  70 * @free: free bytes in the bud
  71 * @dirty: dirty bytes in the bud
  72 */
  73struct bud_entry {
  74        struct list_head list;
  75        struct ubifs_bud *bud;
  76        unsigned long long sqnum;
  77        int free;
  78        int dirty;
  79};
  80
  81/**
  82 * set_bud_lprops - set free and dirty space used by a bud.
  83 * @c: UBIFS file-system description object
  84 * @b: bud entry which describes the bud
  85 *
  86 * This function makes sure the LEB properties of bud @b are set correctly
  87 * after the replay. Returns zero in case of success and a negative error code
  88 * in case of failure.
  89 */
  90static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  91{
  92        const struct ubifs_lprops *lp;
  93        int err = 0, dirty;
  94
  95        ubifs_get_lprops(c);
  96
  97        lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
  98        if (IS_ERR(lp)) {
  99                err = PTR_ERR(lp);
 100                goto out;
 101        }
 102
 103        dirty = lp->dirty;
 104        if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 105                /*
 106                 * The LEB was added to the journal with a starting offset of
 107                 * zero which means the LEB must have been empty. The LEB
 108                 * property values should be @lp->free == @c->leb_size and
 109                 * @lp->dirty == 0, but that is not the case. The reason is that
 110                 * the LEB had been garbage collected before it became the bud,
 111                 * and there was not commit inbetween. The garbage collector
 112                 * resets the free and dirty space without recording it
 113                 * anywhere except lprops, so if there was no commit then
 114                 * lprops does not have that information.
 115                 *
 116                 * We do not need to adjust free space because the scan has told
 117                 * us the exact value which is recorded in the replay entry as
 118                 * @b->free.
 119                 *
 120                 * However we do need to subtract from the dirty space the
 121                 * amount of space that the garbage collector reclaimed, which
 122                 * is the whole LEB minus the amount of space that was free.
 123                 */
 124                dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 125                        lp->free, lp->dirty);
 126                dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 127                        lp->free, lp->dirty);
 128                dirty -= c->leb_size - lp->free;
 129                /*
 130                 * If the replay order was perfect the dirty space would now be
 131                 * zero. The order is not perfect because the journal heads
 132                 * race with each other. This is not a problem but is does mean
 133                 * that the dirty space may temporarily exceed c->leb_size
 134                 * during the replay.
 135                 */
 136                if (dirty != 0)
 137                        dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
 138                                b->bud->lnum, lp->free, lp->dirty, b->free,
 139                                b->dirty);
 140        }
 141        lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 142                             lp->flags | LPROPS_TAKEN, 0);
 143        if (IS_ERR(lp)) {
 144                err = PTR_ERR(lp);
 145                goto out;
 146        }
 147
 148        /* Make sure the journal head points to the latest bud */
 149        err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 150                                     b->bud->lnum, c->leb_size - b->free);
 151
 152out:
 153        ubifs_release_lprops(c);
 154        return err;
 155}
 156
 157/**
 158 * set_buds_lprops - set free and dirty space for all replayed buds.
 159 * @c: UBIFS file-system description object
 160 *
 161 * This function sets LEB properties for all replayed buds. Returns zero in
 162 * case of success and a negative error code in case of failure.
 163 */
 164static int set_buds_lprops(struct ubifs_info *c)
 165{
 166        struct bud_entry *b;
 167        int err;
 168
 169        list_for_each_entry(b, &c->replay_buds, list) {
 170                err = set_bud_lprops(c, b);
 171                if (err)
 172                        return err;
 173        }
 174
 175        return 0;
 176}
 177
 178/**
 179 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 180 * @c: UBIFS file-system description object
 181 * @r: replay entry of truncation
 182 */
 183static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 184{
 185        unsigned min_blk, max_blk;
 186        union ubifs_key min_key, max_key;
 187        ino_t ino;
 188
 189        min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 190        if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 191                min_blk += 1;
 192
 193        max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 194        if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 195                max_blk -= 1;
 196
 197        ino = key_inum(c, &r->key);
 198
 199        data_key_init(c, &min_key, ino, min_blk);
 200        data_key_init(c, &max_key, ino, max_blk);
 201
 202        return ubifs_tnc_remove_range(c, &min_key, &max_key);
 203}
 204
 205/**
 206 * apply_replay_entry - apply a replay entry to the TNC.
 207 * @c: UBIFS file-system description object
 208 * @r: replay entry to apply
 209 *
 210 * Apply a replay entry to the TNC.
 211 */
 212static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 213{
 214        int err;
 215
 216        dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
 217                 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
 218
 219        /* Set c->replay_sqnum to help deal with dangling branches. */
 220        c->replay_sqnum = r->sqnum;
 221
 222        if (is_hash_key(c, &r->key)) {
 223                if (r->deletion)
 224                        err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 225                else
 226                        err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 227                                               r->len, &r->nm);
 228        } else {
 229                if (r->deletion)
 230                        switch (key_type(c, &r->key)) {
 231                        case UBIFS_INO_KEY:
 232                        {
 233                                ino_t inum = key_inum(c, &r->key);
 234
 235                                err = ubifs_tnc_remove_ino(c, inum);
 236                                break;
 237                        }
 238                        case UBIFS_TRUN_KEY:
 239                                err = trun_remove_range(c, r);
 240                                break;
 241                        default:
 242                                err = ubifs_tnc_remove(c, &r->key);
 243                                break;
 244                        }
 245                else
 246                        err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 247                                            r->len);
 248                if (err)
 249                        return err;
 250
 251                if (c->need_recovery)
 252                        err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 253                                                       r->new_size);
 254        }
 255
 256        return err;
 257}
 258
 259/**
 260 * replay_entries_cmp - compare 2 replay entries.
 261 * @priv: UBIFS file-system description object
 262 * @a: first replay entry
 263 * @a: second replay entry
 264 *
 265 * This is a comparios function for 'list_sort()' which compares 2 replay
 266 * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
 267 * greater sequence number and %-1 otherwise.
 268 */
 269static int replay_entries_cmp(void *priv, struct list_head *a,
 270                              struct list_head *b)
 271{
 272        struct replay_entry *ra, *rb;
 273
 274        cond_resched();
 275        if (a == b)
 276                return 0;
 277
 278        ra = list_entry(a, struct replay_entry, list);
 279        rb = list_entry(b, struct replay_entry, list);
 280        ubifs_assert(ra->sqnum != rb->sqnum);
 281        if (ra->sqnum > rb->sqnum)
 282                return 1;
 283        return -1;
 284}
 285
 286/**
 287 * apply_replay_list - apply the replay list to the TNC.
 288 * @c: UBIFS file-system description object
 289 *
 290 * Apply all entries in the replay list to the TNC. Returns zero in case of
 291 * success and a negative error code in case of failure.
 292 */
 293static int apply_replay_list(struct ubifs_info *c)
 294{
 295        struct replay_entry *r;
 296        int err;
 297
 298        list_sort(c, &c->replay_list, &replay_entries_cmp);
 299
 300        list_for_each_entry(r, &c->replay_list, list) {
 301                cond_resched();
 302
 303                err = apply_replay_entry(c, r);
 304                if (err)
 305                        return err;
 306        }
 307
 308        return 0;
 309}
 310
 311/**
 312 * destroy_replay_list - destroy the replay.
 313 * @c: UBIFS file-system description object
 314 *
 315 * Destroy the replay list.
 316 */
 317static void destroy_replay_list(struct ubifs_info *c)
 318{
 319        struct replay_entry *r, *tmp;
 320
 321        list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 322                if (is_hash_key(c, &r->key))
 323                        kfree(r->nm.name);
 324                list_del(&r->list);
 325                kfree(r);
 326        }
 327}
 328
 329/**
 330 * insert_node - insert a node to the replay list
 331 * @c: UBIFS file-system description object
 332 * @lnum: node logical eraseblock number
 333 * @offs: node offset
 334 * @len: node length
 335 * @key: node key
 336 * @sqnum: sequence number
 337 * @deletion: non-zero if this is a deletion
 338 * @used: number of bytes in use in a LEB
 339 * @old_size: truncation old size
 340 * @new_size: truncation new size
 341 *
 342 * This function inserts a scanned non-direntry node to the replay list. The
 343 * replay list contains @struct replay_entry elements, and we sort this list in
 344 * sequence number order before applying it. The replay list is applied at the
 345 * very end of the replay process. Since the list is sorted in sequence number
 346 * order, the older modifications are applied first. This function returns zero
 347 * in case of success and a negative error code in case of failure.
 348 */
 349static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 350                       union ubifs_key *key, unsigned long long sqnum,
 351                       int deletion, int *used, loff_t old_size,
 352                       loff_t new_size)
 353{
 354        struct replay_entry *r;
 355
 356        dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 357
 358        if (key_inum(c, key) >= c->highest_inum)
 359                c->highest_inum = key_inum(c, key);
 360
 361        r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 362        if (!r)
 363                return -ENOMEM;
 364
 365        if (!deletion)
 366                *used += ALIGN(len, 8);
 367        r->lnum = lnum;
 368        r->offs = offs;
 369        r->len = len;
 370        r->deletion = !!deletion;
 371        r->sqnum = sqnum;
 372        key_copy(c, key, &r->key);
 373        r->old_size = old_size;
 374        r->new_size = new_size;
 375
 376        list_add_tail(&r->list, &c->replay_list);
 377        return 0;
 378}
 379
 380/**
 381 * insert_dent - insert a directory entry node into the replay list.
 382 * @c: UBIFS file-system description object
 383 * @lnum: node logical eraseblock number
 384 * @offs: node offset
 385 * @len: node length
 386 * @key: node key
 387 * @name: directory entry name
 388 * @nlen: directory entry name length
 389 * @sqnum: sequence number
 390 * @deletion: non-zero if this is a deletion
 391 * @used: number of bytes in use in a LEB
 392 *
 393 * This function inserts a scanned directory entry node or an extended
 394 * attribute entry to the replay list. Returns zero in case of success and a
 395 * negative error code in case of failure.
 396 */
 397static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 398                       union ubifs_key *key, const char *name, int nlen,
 399                       unsigned long long sqnum, int deletion, int *used)
 400{
 401        struct replay_entry *r;
 402        char *nbuf;
 403
 404        dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 405        if (key_inum(c, key) >= c->highest_inum)
 406                c->highest_inum = key_inum(c, key);
 407
 408        r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 409        if (!r)
 410                return -ENOMEM;
 411
 412        nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 413        if (!nbuf) {
 414                kfree(r);
 415                return -ENOMEM;
 416        }
 417
 418        if (!deletion)
 419                *used += ALIGN(len, 8);
 420        r->lnum = lnum;
 421        r->offs = offs;
 422        r->len = len;
 423        r->deletion = !!deletion;
 424        r->sqnum = sqnum;
 425        key_copy(c, key, &r->key);
 426        r->nm.len = nlen;
 427        memcpy(nbuf, name, nlen);
 428        nbuf[nlen] = '\0';
 429        r->nm.name = nbuf;
 430
 431        list_add_tail(&r->list, &c->replay_list);
 432        return 0;
 433}
 434
 435/**
 436 * ubifs_validate_entry - validate directory or extended attribute entry node.
 437 * @c: UBIFS file-system description object
 438 * @dent: the node to validate
 439 *
 440 * This function validates directory or extended attribute entry node @dent.
 441 * Returns zero if the node is all right and a %-EINVAL if not.
 442 */
 443int ubifs_validate_entry(struct ubifs_info *c,
 444                         const struct ubifs_dent_node *dent)
 445{
 446        int key_type = key_type_flash(c, dent->key);
 447        int nlen = le16_to_cpu(dent->nlen);
 448
 449        if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 450            dent->type >= UBIFS_ITYPES_CNT ||
 451            nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 452            strnlen(dent->name, nlen) != nlen ||
 453            le64_to_cpu(dent->inum) > MAX_INUM) {
 454                ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
 455                          "directory entry" : "extended attribute entry");
 456                return -EINVAL;
 457        }
 458
 459        if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 460                ubifs_err(c, "bad key type %d", key_type);
 461                return -EINVAL;
 462        }
 463
 464        return 0;
 465}
 466
 467/**
 468 * is_last_bud - check if the bud is the last in the journal head.
 469 * @c: UBIFS file-system description object
 470 * @bud: bud description object
 471 *
 472 * This function checks if bud @bud is the last bud in its journal head. This
 473 * information is then used by 'replay_bud()' to decide whether the bud can
 474 * have corruptions or not. Indeed, only last buds can be corrupted by power
 475 * cuts. Returns %1 if this is the last bud, and %0 if not.
 476 */
 477static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 478{
 479        struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 480        struct ubifs_bud *next;
 481        uint32_t data;
 482        int err;
 483
 484        if (list_is_last(&bud->list, &jh->buds_list))
 485                return 1;
 486
 487        /*
 488         * The following is a quirk to make sure we work correctly with UBIFS
 489         * images used with older UBIFS.
 490         *
 491         * Normally, the last bud will be the last in the journal head's list
 492         * of bud. However, there is one exception if the UBIFS image belongs
 493         * to older UBIFS. This is fairly unlikely: one would need to use old
 494         * UBIFS, then have a power cut exactly at the right point, and then
 495         * try to mount this image with new UBIFS.
 496         *
 497         * The exception is: it is possible to have 2 buds A and B, A goes
 498         * before B, and B is the last, bud B is contains no data, and bud A is
 499         * corrupted at the end. The reason is that in older versions when the
 500         * journal code switched the next bud (from A to B), it first added a
 501         * log reference node for the new bud (B), and only after this it
 502         * synchronized the write-buffer of current bud (A). But later this was
 503         * changed and UBIFS started to always synchronize the write-buffer of
 504         * the bud (A) before writing the log reference for the new bud (B).
 505         *
 506         * But because older UBIFS always synchronized A's write-buffer before
 507         * writing to B, we can recognize this exceptional situation but
 508         * checking the contents of bud B - if it is empty, then A can be
 509         * treated as the last and we can recover it.
 510         *
 511         * TODO: remove this piece of code in a couple of years (today it is
 512         * 16.05.2011).
 513         */
 514        next = list_entry(bud->list.next, struct ubifs_bud, list);
 515        if (!list_is_last(&next->list, &jh->buds_list))
 516                return 0;
 517
 518        err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 519        if (err)
 520                return 0;
 521
 522        return data == 0xFFFFFFFF;
 523}
 524
 525/**
 526 * replay_bud - replay a bud logical eraseblock.
 527 * @c: UBIFS file-system description object
 528 * @b: bud entry which describes the bud
 529 *
 530 * This function replays bud @bud, recovers it if needed, and adds all nodes
 531 * from this bud to the replay list. Returns zero in case of success and a
 532 * negative error code in case of failure.
 533 */
 534static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 535{
 536        int is_last = is_last_bud(c, b->bud);
 537        int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 538        struct ubifs_scan_leb *sleb;
 539        struct ubifs_scan_node *snod;
 540
 541        dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 542                lnum, b->bud->jhead, offs, is_last);
 543
 544        if (c->need_recovery && is_last)
 545                /*
 546                 * Recover only last LEBs in the journal heads, because power
 547                 * cuts may cause corruptions only in these LEBs, because only
 548                 * these LEBs could possibly be written to at the power cut
 549                 * time.
 550                 */
 551                sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 552        else
 553                sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 554        if (IS_ERR(sleb))
 555                return PTR_ERR(sleb);
 556
 557        /*
 558         * The bud does not have to start from offset zero - the beginning of
 559         * the 'lnum' LEB may contain previously committed data. One of the
 560         * things we have to do in replay is to correctly update lprops with
 561         * newer information about this LEB.
 562         *
 563         * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 564         * bytes of free space because it only contain information about
 565         * committed data.
 566         *
 567         * But we know that real amount of free space is 'c->leb_size -
 568         * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 569         * 'sleb->endpt' is used by bud data. We have to correctly calculate
 570         * how much of these data are dirty and update lprops with this
 571         * information.
 572         *
 573         * The dirt in that LEB region is comprised of padding nodes, deletion
 574         * nodes, truncation nodes and nodes which are obsoleted by subsequent
 575         * nodes in this LEB. So instead of calculating clean space, we
 576         * calculate used space ('used' variable).
 577         */
 578
 579        list_for_each_entry(snod, &sleb->nodes, list) {
 580                int deletion = 0;
 581
 582                cond_resched();
 583
 584                if (snod->sqnum >= SQNUM_WATERMARK) {
 585                        ubifs_err(c, "file system's life ended");
 586                        goto out_dump;
 587                }
 588
 589                if (snod->sqnum > c->max_sqnum)
 590                        c->max_sqnum = snod->sqnum;
 591
 592                switch (snod->type) {
 593                case UBIFS_INO_NODE:
 594                {
 595                        struct ubifs_ino_node *ino = snod->node;
 596                        loff_t new_size = le64_to_cpu(ino->size);
 597
 598                        if (le32_to_cpu(ino->nlink) == 0)
 599                                deletion = 1;
 600                        err = insert_node(c, lnum, snod->offs, snod->len,
 601                                          &snod->key, snod->sqnum, deletion,
 602                                          &used, 0, new_size);
 603                        break;
 604                }
 605                case UBIFS_DATA_NODE:
 606                {
 607                        struct ubifs_data_node *dn = snod->node;
 608                        loff_t new_size = le32_to_cpu(dn->size) +
 609                                          key_block(c, &snod->key) *
 610                                          UBIFS_BLOCK_SIZE;
 611
 612                        err = insert_node(c, lnum, snod->offs, snod->len,
 613                                          &snod->key, snod->sqnum, deletion,
 614                                          &used, 0, new_size);
 615                        break;
 616                }
 617                case UBIFS_DENT_NODE:
 618                case UBIFS_XENT_NODE:
 619                {
 620                        struct ubifs_dent_node *dent = snod->node;
 621
 622                        err = ubifs_validate_entry(c, dent);
 623                        if (err)
 624                                goto out_dump;
 625
 626                        err = insert_dent(c, lnum, snod->offs, snod->len,
 627                                          &snod->key, dent->name,
 628                                          le16_to_cpu(dent->nlen), snod->sqnum,
 629                                          !le64_to_cpu(dent->inum), &used);
 630                        break;
 631                }
 632                case UBIFS_TRUN_NODE:
 633                {
 634                        struct ubifs_trun_node *trun = snod->node;
 635                        loff_t old_size = le64_to_cpu(trun->old_size);
 636                        loff_t new_size = le64_to_cpu(trun->new_size);
 637                        union ubifs_key key;
 638
 639                        /* Validate truncation node */
 640                        if (old_size < 0 || old_size > c->max_inode_sz ||
 641                            new_size < 0 || new_size > c->max_inode_sz ||
 642                            old_size <= new_size) {
 643                                ubifs_err(c, "bad truncation node");
 644                                goto out_dump;
 645                        }
 646
 647                        /*
 648                         * Create a fake truncation key just to use the same
 649                         * functions which expect nodes to have keys.
 650                         */
 651                        trun_key_init(c, &key, le32_to_cpu(trun->inum));
 652                        err = insert_node(c, lnum, snod->offs, snod->len,
 653                                          &key, snod->sqnum, 1, &used,
 654                                          old_size, new_size);
 655                        break;
 656                }
 657                default:
 658                        ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
 659                                  snod->type, lnum, snod->offs);
 660                        err = -EINVAL;
 661                        goto out_dump;
 662                }
 663                if (err)
 664                        goto out;
 665        }
 666
 667        ubifs_assert(ubifs_search_bud(c, lnum));
 668        ubifs_assert(sleb->endpt - offs >= used);
 669        ubifs_assert(sleb->endpt % c->min_io_size == 0);
 670
 671        b->dirty = sleb->endpt - offs - used;
 672        b->free = c->leb_size - sleb->endpt;
 673        dbg_mnt("bud LEB %d replied: dirty %d, free %d",
 674                lnum, b->dirty, b->free);
 675
 676out:
 677        ubifs_scan_destroy(sleb);
 678        return err;
 679
 680out_dump:
 681        ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
 682        ubifs_dump_node(c, snod->node);
 683        ubifs_scan_destroy(sleb);
 684        return -EINVAL;
 685}
 686
 687/**
 688 * replay_buds - replay all buds.
 689 * @c: UBIFS file-system description object
 690 *
 691 * This function returns zero in case of success and a negative error code in
 692 * case of failure.
 693 */
 694static int replay_buds(struct ubifs_info *c)
 695{
 696        struct bud_entry *b;
 697        int err;
 698        unsigned long long prev_sqnum = 0;
 699
 700        list_for_each_entry(b, &c->replay_buds, list) {
 701                err = replay_bud(c, b);
 702                if (err)
 703                        return err;
 704
 705                ubifs_assert(b->sqnum > prev_sqnum);
 706                prev_sqnum = b->sqnum;
 707        }
 708
 709        return 0;
 710}
 711
 712/**
 713 * destroy_bud_list - destroy the list of buds to replay.
 714 * @c: UBIFS file-system description object
 715 */
 716static void destroy_bud_list(struct ubifs_info *c)
 717{
 718        struct bud_entry *b;
 719
 720        while (!list_empty(&c->replay_buds)) {
 721                b = list_entry(c->replay_buds.next, struct bud_entry, list);
 722                list_del(&b->list);
 723                kfree(b);
 724        }
 725}
 726
 727/**
 728 * add_replay_bud - add a bud to the list of buds to replay.
 729 * @c: UBIFS file-system description object
 730 * @lnum: bud logical eraseblock number to replay
 731 * @offs: bud start offset
 732 * @jhead: journal head to which this bud belongs
 733 * @sqnum: reference node sequence number
 734 *
 735 * This function returns zero in case of success and a negative error code in
 736 * case of failure.
 737 */
 738static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 739                          unsigned long long sqnum)
 740{
 741        struct ubifs_bud *bud;
 742        struct bud_entry *b;
 743
 744        dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 745
 746        bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 747        if (!bud)
 748                return -ENOMEM;
 749
 750        b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 751        if (!b) {
 752                kfree(bud);
 753                return -ENOMEM;
 754        }
 755
 756        bud->lnum = lnum;
 757        bud->start = offs;
 758        bud->jhead = jhead;
 759        ubifs_add_bud(c, bud);
 760
 761        b->bud = bud;
 762        b->sqnum = sqnum;
 763        list_add_tail(&b->list, &c->replay_buds);
 764
 765        return 0;
 766}
 767
 768/**
 769 * validate_ref - validate a reference node.
 770 * @c: UBIFS file-system description object
 771 * @ref: the reference node to validate
 772 * @ref_lnum: LEB number of the reference node
 773 * @ref_offs: reference node offset
 774 *
 775 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 776 * returned if the reference node is new, otherwise %-EINVAL is returned if
 777 * validation failed.
 778 */
 779static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 780{
 781        struct ubifs_bud *bud;
 782        int lnum = le32_to_cpu(ref->lnum);
 783        unsigned int offs = le32_to_cpu(ref->offs);
 784        unsigned int jhead = le32_to_cpu(ref->jhead);
 785
 786        /*
 787         * ref->offs may point to the end of LEB when the journal head points
 788         * to the end of LEB and we write reference node for it during commit.
 789         * So this is why we require 'offs > c->leb_size'.
 790         */
 791        if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 792            lnum < c->main_first || offs > c->leb_size ||
 793            offs & (c->min_io_size - 1))
 794                return -EINVAL;
 795
 796        /* Make sure we have not already looked at this bud */
 797        bud = ubifs_search_bud(c, lnum);
 798        if (bud) {
 799                if (bud->jhead == jhead && bud->start <= offs)
 800                        return 1;
 801                ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
 802                return -EINVAL;
 803        }
 804
 805        return 0;
 806}
 807
 808/**
 809 * replay_log_leb - replay a log logical eraseblock.
 810 * @c: UBIFS file-system description object
 811 * @lnum: log logical eraseblock to replay
 812 * @offs: offset to start replaying from
 813 * @sbuf: scan buffer
 814 *
 815 * This function replays a log LEB and returns zero in case of success, %1 if
 816 * this is the last LEB in the log, and a negative error code in case of
 817 * failure.
 818 */
 819static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 820{
 821        int err;
 822        struct ubifs_scan_leb *sleb;
 823        struct ubifs_scan_node *snod;
 824        const struct ubifs_cs_node *node;
 825
 826        dbg_mnt("replay log LEB %d:%d", lnum, offs);
 827        sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 828        if (IS_ERR(sleb)) {
 829                if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 830                        return PTR_ERR(sleb);
 831                /*
 832                 * Note, the below function will recover this log LEB only if
 833                 * it is the last, because unclean reboots can possibly corrupt
 834                 * only the tail of the log.
 835                 */
 836                sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
 837                if (IS_ERR(sleb))
 838                        return PTR_ERR(sleb);
 839        }
 840
 841        if (sleb->nodes_cnt == 0) {
 842                err = 1;
 843                goto out;
 844        }
 845
 846        node = sleb->buf;
 847        snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 848        if (c->cs_sqnum == 0) {
 849                /*
 850                 * This is the first log LEB we are looking at, make sure that
 851                 * the first node is a commit start node. Also record its
 852                 * sequence number so that UBIFS can determine where the log
 853                 * ends, because all nodes which were have higher sequence
 854                 * numbers.
 855                 */
 856                if (snod->type != UBIFS_CS_NODE) {
 857                        ubifs_err(c, "first log node at LEB %d:%d is not CS node",
 858                                  lnum, offs);
 859                        goto out_dump;
 860                }
 861                if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
 862                        ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
 863                                  lnum, offs,
 864                                  (unsigned long long)le64_to_cpu(node->cmt_no),
 865                                  c->cmt_no);
 866                        goto out_dump;
 867                }
 868
 869                c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
 870                dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
 871        }
 872
 873        if (snod->sqnum < c->cs_sqnum) {
 874                /*
 875                 * This means that we reached end of log and now
 876                 * look to the older log data, which was already
 877                 * committed but the eraseblock was not erased (UBIFS
 878                 * only un-maps it). So this basically means we have to
 879                 * exit with "end of log" code.
 880                 */
 881                err = 1;
 882                goto out;
 883        }
 884
 885        /* Make sure the first node sits at offset zero of the LEB */
 886        if (snod->offs != 0) {
 887                ubifs_err(c, "first node is not at zero offset");
 888                goto out_dump;
 889        }
 890
 891        list_for_each_entry(snod, &sleb->nodes, list) {
 892                cond_resched();
 893
 894                if (snod->sqnum >= SQNUM_WATERMARK) {
 895                        ubifs_err(c, "file system's life ended");
 896                        goto out_dump;
 897                }
 898
 899                if (snod->sqnum < c->cs_sqnum) {
 900                        ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
 901                                  snod->sqnum, c->cs_sqnum);
 902                        goto out_dump;
 903                }
 904
 905                if (snod->sqnum > c->max_sqnum)
 906                        c->max_sqnum = snod->sqnum;
 907
 908                switch (snod->type) {
 909                case UBIFS_REF_NODE: {
 910                        const struct ubifs_ref_node *ref = snod->node;
 911
 912                        err = validate_ref(c, ref);
 913                        if (err == 1)
 914                                break; /* Already have this bud */
 915                        if (err)
 916                                goto out_dump;
 917
 918                        err = add_replay_bud(c, le32_to_cpu(ref->lnum),
 919                                             le32_to_cpu(ref->offs),
 920                                             le32_to_cpu(ref->jhead),
 921                                             snod->sqnum);
 922                        if (err)
 923                                goto out;
 924
 925                        break;
 926                }
 927                case UBIFS_CS_NODE:
 928                        /* Make sure it sits at the beginning of LEB */
 929                        if (snod->offs != 0) {
 930                                ubifs_err(c, "unexpected node in log");
 931                                goto out_dump;
 932                        }
 933                        break;
 934                default:
 935                        ubifs_err(c, "unexpected node in log");
 936                        goto out_dump;
 937                }
 938        }
 939
 940        if (sleb->endpt || c->lhead_offs >= c->leb_size) {
 941                c->lhead_lnum = lnum;
 942                c->lhead_offs = sleb->endpt;
 943        }
 944
 945        err = !sleb->endpt;
 946out:
 947        ubifs_scan_destroy(sleb);
 948        return err;
 949
 950out_dump:
 951        ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
 952                  lnum, offs + snod->offs);
 953        ubifs_dump_node(c, snod->node);
 954        ubifs_scan_destroy(sleb);
 955        return -EINVAL;
 956}
 957
 958/**
 959 * take_ihead - update the status of the index head in lprops to 'taken'.
 960 * @c: UBIFS file-system description object
 961 *
 962 * This function returns the amount of free space in the index head LEB or a
 963 * negative error code.
 964 */
 965static int take_ihead(struct ubifs_info *c)
 966{
 967        const struct ubifs_lprops *lp;
 968        int err, free;
 969
 970        ubifs_get_lprops(c);
 971
 972        lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
 973        if (IS_ERR(lp)) {
 974                err = PTR_ERR(lp);
 975                goto out;
 976        }
 977
 978        free = lp->free;
 979
 980        lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 981                             lp->flags | LPROPS_TAKEN, 0);
 982        if (IS_ERR(lp)) {
 983                err = PTR_ERR(lp);
 984                goto out;
 985        }
 986
 987        err = free;
 988out:
 989        ubifs_release_lprops(c);
 990        return err;
 991}
 992
 993/**
 994 * ubifs_replay_journal - replay journal.
 995 * @c: UBIFS file-system description object
 996 *
 997 * This function scans the journal, replays and cleans it up. It makes sure all
 998 * memory data structures related to uncommitted journal are built (dirty TNC
 999 * tree, tree of buds, modified lprops, etc).
1000 */
1001int ubifs_replay_journal(struct ubifs_info *c)
1002{
1003        int err, lnum, free;
1004
1005        BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1006
1007        /* Update the status of the index head in lprops to 'taken' */
1008        free = take_ihead(c);
1009        if (free < 0)
1010                return free; /* Error code */
1011
1012        if (c->ihead_offs != c->leb_size - free) {
1013                ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1014                          c->ihead_offs);
1015                return -EINVAL;
1016        }
1017
1018        dbg_mnt("start replaying the journal");
1019        c->replaying = 1;
1020        lnum = c->ltail_lnum = c->lhead_lnum;
1021
1022        do {
1023                err = replay_log_leb(c, lnum, 0, c->sbuf);
1024                if (err == 1) {
1025                        if (lnum != c->lhead_lnum)
1026                                /* We hit the end of the log */
1027                                break;
1028
1029                        /*
1030                         * The head of the log must always start with the
1031                         * "commit start" node on a properly formatted UBIFS.
1032                         * But we found no nodes at all, which means that
1033                         * someting went wrong and we cannot proceed mounting
1034                         * the file-system.
1035                         */
1036                        ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1037                                  lnum, 0);
1038                        err = -EINVAL;
1039                }
1040                if (err)
1041                        goto out;
1042                lnum = ubifs_next_log_lnum(c, lnum);
1043        } while (lnum != c->ltail_lnum);
1044
1045        err = replay_buds(c);
1046        if (err)
1047                goto out;
1048
1049        err = apply_replay_list(c);
1050        if (err)
1051                goto out;
1052
1053        err = set_buds_lprops(c);
1054        if (err)
1055                goto out;
1056
1057        /*
1058         * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1059         * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1060         * depend on it. This means we have to initialize it to make sure
1061         * budgeting works properly.
1062         */
1063        c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1064        c->bi.uncommitted_idx *= c->max_idx_node_sz;
1065
1066        ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1067        dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1068                c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1069                (unsigned long)c->highest_inum);
1070out:
1071        destroy_replay_list(c);
1072        destroy_bud_list(c);
1073        c->replaying = 0;
1074        return err;
1075}
1076