uboot/fs/ubifs/lpt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements the LEB properties tree (LPT) area. The LPT area
  13 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
  14 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
  15 * between the log and the orphan area.
  16 *
  17 * The LPT area is like a miniature self-contained file system. It is required
  18 * that it never runs out of space, is fast to access and update, and scales
  19 * logarithmically. The LEB properties tree is implemented as a wandering tree
  20 * much like the TNC, and the LPT area has its own garbage collection.
  21 *
  22 * The LPT has two slightly different forms called the "small model" and the
  23 * "big model". The small model is used when the entire LEB properties table
  24 * can be written into a single eraseblock. In that case, garbage collection
  25 * consists of just writing the whole table, which therefore makes all other
  26 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
  27 * selected for garbage collection, which consists of marking the clean nodes in
  28 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
  29 * the case of the big model, a table of LEB numbers is saved so that the entire
  30 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
  31 * mounted.
  32 */
  33
  34#include "ubifs.h"
  35#ifndef __UBOOT__
  36#include <linux/crc16.h>
  37#include <linux/math64.h>
  38#include <linux/slab.h>
  39#else
  40#include <linux/compat.h>
  41#include <linux/err.h>
  42#include <ubi_uboot.h>
  43#include "crc16.h"
  44#endif
  45
  46/**
  47 * do_calc_lpt_geom - calculate sizes for the LPT area.
  48 * @c: the UBIFS file-system description object
  49 *
  50 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
  51 * properties of the flash and whether LPT is "big" (c->big_lpt).
  52 */
  53static void do_calc_lpt_geom(struct ubifs_info *c)
  54{
  55        int i, n, bits, per_leb_wastage, max_pnode_cnt;
  56        long long sz, tot_wastage;
  57
  58        n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
  59        max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
  60
  61        c->lpt_hght = 1;
  62        n = UBIFS_LPT_FANOUT;
  63        while (n < max_pnode_cnt) {
  64                c->lpt_hght += 1;
  65                n <<= UBIFS_LPT_FANOUT_SHIFT;
  66        }
  67
  68        c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
  69
  70        n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
  71        c->nnode_cnt = n;
  72        for (i = 1; i < c->lpt_hght; i++) {
  73                n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
  74                c->nnode_cnt += n;
  75        }
  76
  77        c->space_bits = fls(c->leb_size) - 3;
  78        c->lpt_lnum_bits = fls(c->lpt_lebs);
  79        c->lpt_offs_bits = fls(c->leb_size - 1);
  80        c->lpt_spc_bits = fls(c->leb_size);
  81
  82        n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
  83        c->pcnt_bits = fls(n - 1);
  84
  85        c->lnum_bits = fls(c->max_leb_cnt - 1);
  86
  87        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  88               (c->big_lpt ? c->pcnt_bits : 0) +
  89               (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
  90        c->pnode_sz = (bits + 7) / 8;
  91
  92        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  93               (c->big_lpt ? c->pcnt_bits : 0) +
  94               (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
  95        c->nnode_sz = (bits + 7) / 8;
  96
  97        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  98               c->lpt_lebs * c->lpt_spc_bits * 2;
  99        c->ltab_sz = (bits + 7) / 8;
 100
 101        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
 102               c->lnum_bits * c->lsave_cnt;
 103        c->lsave_sz = (bits + 7) / 8;
 104
 105        /* Calculate the minimum LPT size */
 106        c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
 107        c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
 108        c->lpt_sz += c->ltab_sz;
 109        if (c->big_lpt)
 110                c->lpt_sz += c->lsave_sz;
 111
 112        /* Add wastage */
 113        sz = c->lpt_sz;
 114        per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
 115        sz += per_leb_wastage;
 116        tot_wastage = per_leb_wastage;
 117        while (sz > c->leb_size) {
 118                sz += per_leb_wastage;
 119                sz -= c->leb_size;
 120                tot_wastage += per_leb_wastage;
 121        }
 122        tot_wastage += ALIGN(sz, c->min_io_size) - sz;
 123        c->lpt_sz += tot_wastage;
 124}
 125
 126/**
 127 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
 128 * @c: the UBIFS file-system description object
 129 *
 130 * This function returns %0 on success and a negative error code on failure.
 131 */
 132int ubifs_calc_lpt_geom(struct ubifs_info *c)
 133{
 134        int lebs_needed;
 135        long long sz;
 136
 137        do_calc_lpt_geom(c);
 138
 139        /* Verify that lpt_lebs is big enough */
 140        sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
 141        lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
 142        if (lebs_needed > c->lpt_lebs) {
 143                ubifs_err(c, "too few LPT LEBs");
 144                return -EINVAL;
 145        }
 146
 147        /* Verify that ltab fits in a single LEB (since ltab is a single node */
 148        if (c->ltab_sz > c->leb_size) {
 149                ubifs_err(c, "LPT ltab too big");
 150                return -EINVAL;
 151        }
 152
 153        c->check_lpt_free = c->big_lpt;
 154        return 0;
 155}
 156
 157/**
 158 * calc_dflt_lpt_geom - calculate default LPT geometry.
 159 * @c: the UBIFS file-system description object
 160 * @main_lebs: number of main area LEBs is passed and returned here
 161 * @big_lpt: whether the LPT area is "big" is returned here
 162 *
 163 * The size of the LPT area depends on parameters that themselves are dependent
 164 * on the size of the LPT area. This function, successively recalculates the LPT
 165 * area geometry until the parameters and resultant geometry are consistent.
 166 *
 167 * This function returns %0 on success and a negative error code on failure.
 168 */
 169static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
 170                              int *big_lpt)
 171{
 172        int i, lebs_needed;
 173        long long sz;
 174
 175        /* Start by assuming the minimum number of LPT LEBs */
 176        c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
 177        c->main_lebs = *main_lebs - c->lpt_lebs;
 178        if (c->main_lebs <= 0)
 179                return -EINVAL;
 180
 181        /* And assume we will use the small LPT model */
 182        c->big_lpt = 0;
 183
 184        /*
 185         * Calculate the geometry based on assumptions above and then see if it
 186         * makes sense
 187         */
 188        do_calc_lpt_geom(c);
 189
 190        /* Small LPT model must have lpt_sz < leb_size */
 191        if (c->lpt_sz > c->leb_size) {
 192                /* Nope, so try again using big LPT model */
 193                c->big_lpt = 1;
 194                do_calc_lpt_geom(c);
 195        }
 196
 197        /* Now check there are enough LPT LEBs */
 198        for (i = 0; i < 64 ; i++) {
 199                sz = c->lpt_sz * 4; /* Allow 4 times the size */
 200                lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
 201                if (lebs_needed > c->lpt_lebs) {
 202                        /* Not enough LPT LEBs so try again with more */
 203                        c->lpt_lebs = lebs_needed;
 204                        c->main_lebs = *main_lebs - c->lpt_lebs;
 205                        if (c->main_lebs <= 0)
 206                                return -EINVAL;
 207                        do_calc_lpt_geom(c);
 208                        continue;
 209                }
 210                if (c->ltab_sz > c->leb_size) {
 211                        ubifs_err(c, "LPT ltab too big");
 212                        return -EINVAL;
 213                }
 214                *main_lebs = c->main_lebs;
 215                *big_lpt = c->big_lpt;
 216                return 0;
 217        }
 218        return -EINVAL;
 219}
 220
 221/**
 222 * pack_bits - pack bit fields end-to-end.
 223 * @addr: address at which to pack (passed and next address returned)
 224 * @pos: bit position at which to pack (passed and next position returned)
 225 * @val: value to pack
 226 * @nrbits: number of bits of value to pack (1-32)
 227 */
 228static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
 229{
 230        uint8_t *p = *addr;
 231        int b = *pos;
 232
 233        ubifs_assert(nrbits > 0);
 234        ubifs_assert(nrbits <= 32);
 235        ubifs_assert(*pos >= 0);
 236        ubifs_assert(*pos < 8);
 237        ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
 238        if (b) {
 239                *p |= ((uint8_t)val) << b;
 240                nrbits += b;
 241                if (nrbits > 8) {
 242                        *++p = (uint8_t)(val >>= (8 - b));
 243                        if (nrbits > 16) {
 244                                *++p = (uint8_t)(val >>= 8);
 245                                if (nrbits > 24) {
 246                                        *++p = (uint8_t)(val >>= 8);
 247                                        if (nrbits > 32)
 248                                                *++p = (uint8_t)(val >>= 8);
 249                                }
 250                        }
 251                }
 252        } else {
 253                *p = (uint8_t)val;
 254                if (nrbits > 8) {
 255                        *++p = (uint8_t)(val >>= 8);
 256                        if (nrbits > 16) {
 257                                *++p = (uint8_t)(val >>= 8);
 258                                if (nrbits > 24)
 259                                        *++p = (uint8_t)(val >>= 8);
 260                        }
 261                }
 262        }
 263        b = nrbits & 7;
 264        if (b == 0)
 265                p++;
 266        *addr = p;
 267        *pos = b;
 268}
 269
 270/**
 271 * ubifs_unpack_bits - unpack bit fields.
 272 * @addr: address at which to unpack (passed and next address returned)
 273 * @pos: bit position at which to unpack (passed and next position returned)
 274 * @nrbits: number of bits of value to unpack (1-32)
 275 *
 276 * This functions returns the value unpacked.
 277 */
 278uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
 279{
 280        const int k = 32 - nrbits;
 281        uint8_t *p = *addr;
 282        int b = *pos;
 283        uint32_t uninitialized_var(val);
 284        const int bytes = (nrbits + b + 7) >> 3;
 285
 286        ubifs_assert(nrbits > 0);
 287        ubifs_assert(nrbits <= 32);
 288        ubifs_assert(*pos >= 0);
 289        ubifs_assert(*pos < 8);
 290        if (b) {
 291                switch (bytes) {
 292                case 2:
 293                        val = p[1];
 294                        break;
 295                case 3:
 296                        val = p[1] | ((uint32_t)p[2] << 8);
 297                        break;
 298                case 4:
 299                        val = p[1] | ((uint32_t)p[2] << 8) |
 300                                     ((uint32_t)p[3] << 16);
 301                        break;
 302                case 5:
 303                        val = p[1] | ((uint32_t)p[2] << 8) |
 304                                     ((uint32_t)p[3] << 16) |
 305                                     ((uint32_t)p[4] << 24);
 306                }
 307                val <<= (8 - b);
 308                val |= *p >> b;
 309                nrbits += b;
 310        } else {
 311                switch (bytes) {
 312                case 1:
 313                        val = p[0];
 314                        break;
 315                case 2:
 316                        val = p[0] | ((uint32_t)p[1] << 8);
 317                        break;
 318                case 3:
 319                        val = p[0] | ((uint32_t)p[1] << 8) |
 320                                     ((uint32_t)p[2] << 16);
 321                        break;
 322                case 4:
 323                        val = p[0] | ((uint32_t)p[1] << 8) |
 324                                     ((uint32_t)p[2] << 16) |
 325                                     ((uint32_t)p[3] << 24);
 326                        break;
 327                }
 328        }
 329        val <<= k;
 330        val >>= k;
 331        b = nrbits & 7;
 332        p += nrbits >> 3;
 333        *addr = p;
 334        *pos = b;
 335        ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
 336        return val;
 337}
 338
 339/**
 340 * ubifs_pack_pnode - pack all the bit fields of a pnode.
 341 * @c: UBIFS file-system description object
 342 * @buf: buffer into which to pack
 343 * @pnode: pnode to pack
 344 */
 345void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
 346                      struct ubifs_pnode *pnode)
 347{
 348        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 349        int i, pos = 0;
 350        uint16_t crc;
 351
 352        pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
 353        if (c->big_lpt)
 354                pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
 355        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 356                pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
 357                          c->space_bits);
 358                pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
 359                          c->space_bits);
 360                if (pnode->lprops[i].flags & LPROPS_INDEX)
 361                        pack_bits(&addr, &pos, 1, 1);
 362                else
 363                        pack_bits(&addr, &pos, 0, 1);
 364        }
 365        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 366                    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
 367        addr = buf;
 368        pos = 0;
 369        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 370}
 371
 372/**
 373 * ubifs_pack_nnode - pack all the bit fields of a nnode.
 374 * @c: UBIFS file-system description object
 375 * @buf: buffer into which to pack
 376 * @nnode: nnode to pack
 377 */
 378void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
 379                      struct ubifs_nnode *nnode)
 380{
 381        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 382        int i, pos = 0;
 383        uint16_t crc;
 384
 385        pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
 386        if (c->big_lpt)
 387                pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
 388        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 389                int lnum = nnode->nbranch[i].lnum;
 390
 391                if (lnum == 0)
 392                        lnum = c->lpt_last + 1;
 393                pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
 394                pack_bits(&addr, &pos, nnode->nbranch[i].offs,
 395                          c->lpt_offs_bits);
 396        }
 397        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 398                    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
 399        addr = buf;
 400        pos = 0;
 401        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 402}
 403
 404/**
 405 * ubifs_pack_ltab - pack the LPT's own lprops table.
 406 * @c: UBIFS file-system description object
 407 * @buf: buffer into which to pack
 408 * @ltab: LPT's own lprops table to pack
 409 */
 410void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
 411                     struct ubifs_lpt_lprops *ltab)
 412{
 413        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 414        int i, pos = 0;
 415        uint16_t crc;
 416
 417        pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
 418        for (i = 0; i < c->lpt_lebs; i++) {
 419                pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
 420                pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
 421        }
 422        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 423                    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
 424        addr = buf;
 425        pos = 0;
 426        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 427}
 428
 429/**
 430 * ubifs_pack_lsave - pack the LPT's save table.
 431 * @c: UBIFS file-system description object
 432 * @buf: buffer into which to pack
 433 * @lsave: LPT's save table to pack
 434 */
 435void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
 436{
 437        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 438        int i, pos = 0;
 439        uint16_t crc;
 440
 441        pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
 442        for (i = 0; i < c->lsave_cnt; i++)
 443                pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
 444        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 445                    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
 446        addr = buf;
 447        pos = 0;
 448        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 449}
 450
 451/**
 452 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
 453 * @c: UBIFS file-system description object
 454 * @lnum: LEB number to which to add dirty space
 455 * @dirty: amount of dirty space to add
 456 */
 457void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
 458{
 459        if (!dirty || !lnum)
 460                return;
 461        dbg_lp("LEB %d add %d to %d",
 462               lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
 463        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 464        c->ltab[lnum - c->lpt_first].dirty += dirty;
 465}
 466
 467/**
 468 * set_ltab - set LPT LEB properties.
 469 * @c: UBIFS file-system description object
 470 * @lnum: LEB number
 471 * @free: amount of free space
 472 * @dirty: amount of dirty space
 473 */
 474static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
 475{
 476        dbg_lp("LEB %d free %d dirty %d to %d %d",
 477               lnum, c->ltab[lnum - c->lpt_first].free,
 478               c->ltab[lnum - c->lpt_first].dirty, free, dirty);
 479        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 480        c->ltab[lnum - c->lpt_first].free = free;
 481        c->ltab[lnum - c->lpt_first].dirty = dirty;
 482}
 483
 484/**
 485 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
 486 * @c: UBIFS file-system description object
 487 * @nnode: nnode for which to add dirt
 488 */
 489void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
 490{
 491        struct ubifs_nnode *np = nnode->parent;
 492
 493        if (np)
 494                ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
 495                                   c->nnode_sz);
 496        else {
 497                ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
 498                if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
 499                        c->lpt_drty_flgs |= LTAB_DIRTY;
 500                        ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
 501                }
 502        }
 503}
 504
 505/**
 506 * add_pnode_dirt - add dirty space to LPT LEB properties.
 507 * @c: UBIFS file-system description object
 508 * @pnode: pnode for which to add dirt
 509 */
 510static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
 511{
 512        ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
 513                           c->pnode_sz);
 514}
 515
 516/**
 517 * calc_nnode_num - calculate nnode number.
 518 * @row: the row in the tree (root is zero)
 519 * @col: the column in the row (leftmost is zero)
 520 *
 521 * The nnode number is a number that uniquely identifies a nnode and can be used
 522 * easily to traverse the tree from the root to that nnode.
 523 *
 524 * This function calculates and returns the nnode number for the nnode at @row
 525 * and @col.
 526 */
 527static int calc_nnode_num(int row, int col)
 528{
 529        int num, bits;
 530
 531        num = 1;
 532        while (row--) {
 533                bits = (col & (UBIFS_LPT_FANOUT - 1));
 534                col >>= UBIFS_LPT_FANOUT_SHIFT;
 535                num <<= UBIFS_LPT_FANOUT_SHIFT;
 536                num |= bits;
 537        }
 538        return num;
 539}
 540
 541/**
 542 * calc_nnode_num_from_parent - calculate nnode number.
 543 * @c: UBIFS file-system description object
 544 * @parent: parent nnode
 545 * @iip: index in parent
 546 *
 547 * The nnode number is a number that uniquely identifies a nnode and can be used
 548 * easily to traverse the tree from the root to that nnode.
 549 *
 550 * This function calculates and returns the nnode number based on the parent's
 551 * nnode number and the index in parent.
 552 */
 553static int calc_nnode_num_from_parent(const struct ubifs_info *c,
 554                                      struct ubifs_nnode *parent, int iip)
 555{
 556        int num, shft;
 557
 558        if (!parent)
 559                return 1;
 560        shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
 561        num = parent->num ^ (1 << shft);
 562        num |= (UBIFS_LPT_FANOUT + iip) << shft;
 563        return num;
 564}
 565
 566/**
 567 * calc_pnode_num_from_parent - calculate pnode number.
 568 * @c: UBIFS file-system description object
 569 * @parent: parent nnode
 570 * @iip: index in parent
 571 *
 572 * The pnode number is a number that uniquely identifies a pnode and can be used
 573 * easily to traverse the tree from the root to that pnode.
 574 *
 575 * This function calculates and returns the pnode number based on the parent's
 576 * nnode number and the index in parent.
 577 */
 578static int calc_pnode_num_from_parent(const struct ubifs_info *c,
 579                                      struct ubifs_nnode *parent, int iip)
 580{
 581        int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
 582
 583        for (i = 0; i < n; i++) {
 584                num <<= UBIFS_LPT_FANOUT_SHIFT;
 585                num |= pnum & (UBIFS_LPT_FANOUT - 1);
 586                pnum >>= UBIFS_LPT_FANOUT_SHIFT;
 587        }
 588        num <<= UBIFS_LPT_FANOUT_SHIFT;
 589        num |= iip;
 590        return num;
 591}
 592
 593/**
 594 * ubifs_create_dflt_lpt - create default LPT.
 595 * @c: UBIFS file-system description object
 596 * @main_lebs: number of main area LEBs is passed and returned here
 597 * @lpt_first: LEB number of first LPT LEB
 598 * @lpt_lebs: number of LEBs for LPT is passed and returned here
 599 * @big_lpt: use big LPT model is passed and returned here
 600 *
 601 * This function returns %0 on success and a negative error code on failure.
 602 */
 603int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
 604                          int *lpt_lebs, int *big_lpt)
 605{
 606        int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
 607        int blnum, boffs, bsz, bcnt;
 608        struct ubifs_pnode *pnode = NULL;
 609        struct ubifs_nnode *nnode = NULL;
 610        void *buf = NULL, *p;
 611        struct ubifs_lpt_lprops *ltab = NULL;
 612        int *lsave = NULL;
 613
 614        err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
 615        if (err)
 616                return err;
 617        *lpt_lebs = c->lpt_lebs;
 618
 619        /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
 620        c->lpt_first = lpt_first;
 621        /* Needed by 'set_ltab()' */
 622        c->lpt_last = lpt_first + c->lpt_lebs - 1;
 623        /* Needed by 'ubifs_pack_lsave()' */
 624        c->main_first = c->leb_cnt - *main_lebs;
 625
 626        lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
 627        pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
 628        nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
 629        buf = vmalloc(c->leb_size);
 630        ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
 631        if (!pnode || !nnode || !buf || !ltab || !lsave) {
 632                err = -ENOMEM;
 633                goto out;
 634        }
 635
 636        ubifs_assert(!c->ltab);
 637        c->ltab = ltab; /* Needed by set_ltab */
 638
 639        /* Initialize LPT's own lprops */
 640        for (i = 0; i < c->lpt_lebs; i++) {
 641                ltab[i].free = c->leb_size;
 642                ltab[i].dirty = 0;
 643                ltab[i].tgc = 0;
 644                ltab[i].cmt = 0;
 645        }
 646
 647        lnum = lpt_first;
 648        p = buf;
 649        /* Number of leaf nodes (pnodes) */
 650        cnt = c->pnode_cnt;
 651
 652        /*
 653         * The first pnode contains the LEB properties for the LEBs that contain
 654         * the root inode node and the root index node of the index tree.
 655         */
 656        node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
 657        iopos = ALIGN(node_sz, c->min_io_size);
 658        pnode->lprops[0].free = c->leb_size - iopos;
 659        pnode->lprops[0].dirty = iopos - node_sz;
 660        pnode->lprops[0].flags = LPROPS_INDEX;
 661
 662        node_sz = UBIFS_INO_NODE_SZ;
 663        iopos = ALIGN(node_sz, c->min_io_size);
 664        pnode->lprops[1].free = c->leb_size - iopos;
 665        pnode->lprops[1].dirty = iopos - node_sz;
 666
 667        for (i = 2; i < UBIFS_LPT_FANOUT; i++)
 668                pnode->lprops[i].free = c->leb_size;
 669
 670        /* Add first pnode */
 671        ubifs_pack_pnode(c, p, pnode);
 672        p += c->pnode_sz;
 673        len = c->pnode_sz;
 674        pnode->num += 1;
 675
 676        /* Reset pnode values for remaining pnodes */
 677        pnode->lprops[0].free = c->leb_size;
 678        pnode->lprops[0].dirty = 0;
 679        pnode->lprops[0].flags = 0;
 680
 681        pnode->lprops[1].free = c->leb_size;
 682        pnode->lprops[1].dirty = 0;
 683
 684        /*
 685         * To calculate the internal node branches, we keep information about
 686         * the level below.
 687         */
 688        blnum = lnum; /* LEB number of level below */
 689        boffs = 0; /* Offset of level below */
 690        bcnt = cnt; /* Number of nodes in level below */
 691        bsz = c->pnode_sz; /* Size of nodes in level below */
 692
 693        /* Add all remaining pnodes */
 694        for (i = 1; i < cnt; i++) {
 695                if (len + c->pnode_sz > c->leb_size) {
 696                        alen = ALIGN(len, c->min_io_size);
 697                        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 698                        memset(p, 0xff, alen - len);
 699                        err = ubifs_leb_change(c, lnum++, buf, alen);
 700                        if (err)
 701                                goto out;
 702                        p = buf;
 703                        len = 0;
 704                }
 705                ubifs_pack_pnode(c, p, pnode);
 706                p += c->pnode_sz;
 707                len += c->pnode_sz;
 708                /*
 709                 * pnodes are simply numbered left to right starting at zero,
 710                 * which means the pnode number can be used easily to traverse
 711                 * down the tree to the corresponding pnode.
 712                 */
 713                pnode->num += 1;
 714        }
 715
 716        row = 0;
 717        for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
 718                row += 1;
 719        /* Add all nnodes, one level at a time */
 720        while (1) {
 721                /* Number of internal nodes (nnodes) at next level */
 722                cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
 723                for (i = 0; i < cnt; i++) {
 724                        if (len + c->nnode_sz > c->leb_size) {
 725                                alen = ALIGN(len, c->min_io_size);
 726                                set_ltab(c, lnum, c->leb_size - alen,
 727                                            alen - len);
 728                                memset(p, 0xff, alen - len);
 729                                err = ubifs_leb_change(c, lnum++, buf, alen);
 730                                if (err)
 731                                        goto out;
 732                                p = buf;
 733                                len = 0;
 734                        }
 735                        /* Only 1 nnode at this level, so it is the root */
 736                        if (cnt == 1) {
 737                                c->lpt_lnum = lnum;
 738                                c->lpt_offs = len;
 739                        }
 740                        /* Set branches to the level below */
 741                        for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
 742                                if (bcnt) {
 743                                        if (boffs + bsz > c->leb_size) {
 744                                                blnum += 1;
 745                                                boffs = 0;
 746                                        }
 747                                        nnode->nbranch[j].lnum = blnum;
 748                                        nnode->nbranch[j].offs = boffs;
 749                                        boffs += bsz;
 750                                        bcnt--;
 751                                } else {
 752                                        nnode->nbranch[j].lnum = 0;
 753                                        nnode->nbranch[j].offs = 0;
 754                                }
 755                        }
 756                        nnode->num = calc_nnode_num(row, i);
 757                        ubifs_pack_nnode(c, p, nnode);
 758                        p += c->nnode_sz;
 759                        len += c->nnode_sz;
 760                }
 761                /* Only 1 nnode at this level, so it is the root */
 762                if (cnt == 1)
 763                        break;
 764                /* Update the information about the level below */
 765                bcnt = cnt;
 766                bsz = c->nnode_sz;
 767                row -= 1;
 768        }
 769
 770        if (*big_lpt) {
 771                /* Need to add LPT's save table */
 772                if (len + c->lsave_sz > c->leb_size) {
 773                        alen = ALIGN(len, c->min_io_size);
 774                        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 775                        memset(p, 0xff, alen - len);
 776                        err = ubifs_leb_change(c, lnum++, buf, alen);
 777                        if (err)
 778                                goto out;
 779                        p = buf;
 780                        len = 0;
 781                }
 782
 783                c->lsave_lnum = lnum;
 784                c->lsave_offs = len;
 785
 786                for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
 787                        lsave[i] = c->main_first + i;
 788                for (; i < c->lsave_cnt; i++)
 789                        lsave[i] = c->main_first;
 790
 791                ubifs_pack_lsave(c, p, lsave);
 792                p += c->lsave_sz;
 793                len += c->lsave_sz;
 794        }
 795
 796        /* Need to add LPT's own LEB properties table */
 797        if (len + c->ltab_sz > c->leb_size) {
 798                alen = ALIGN(len, c->min_io_size);
 799                set_ltab(c, lnum, c->leb_size - alen, alen - len);
 800                memset(p, 0xff, alen - len);
 801                err = ubifs_leb_change(c, lnum++, buf, alen);
 802                if (err)
 803                        goto out;
 804                p = buf;
 805                len = 0;
 806        }
 807
 808        c->ltab_lnum = lnum;
 809        c->ltab_offs = len;
 810
 811        /* Update ltab before packing it */
 812        len += c->ltab_sz;
 813        alen = ALIGN(len, c->min_io_size);
 814        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 815
 816        ubifs_pack_ltab(c, p, ltab);
 817        p += c->ltab_sz;
 818
 819        /* Write remaining buffer */
 820        memset(p, 0xff, alen - len);
 821        err = ubifs_leb_change(c, lnum, buf, alen);
 822        if (err)
 823                goto out;
 824
 825        c->nhead_lnum = lnum;
 826        c->nhead_offs = ALIGN(len, c->min_io_size);
 827
 828        dbg_lp("space_bits %d", c->space_bits);
 829        dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
 830        dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
 831        dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
 832        dbg_lp("pcnt_bits %d", c->pcnt_bits);
 833        dbg_lp("lnum_bits %d", c->lnum_bits);
 834        dbg_lp("pnode_sz %d", c->pnode_sz);
 835        dbg_lp("nnode_sz %d", c->nnode_sz);
 836        dbg_lp("ltab_sz %d", c->ltab_sz);
 837        dbg_lp("lsave_sz %d", c->lsave_sz);
 838        dbg_lp("lsave_cnt %d", c->lsave_cnt);
 839        dbg_lp("lpt_hght %d", c->lpt_hght);
 840        dbg_lp("big_lpt %d", c->big_lpt);
 841        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
 842        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
 843        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
 844        if (c->big_lpt)
 845                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
 846out:
 847        c->ltab = NULL;
 848        kfree(lsave);
 849        vfree(ltab);
 850        vfree(buf);
 851        kfree(nnode);
 852        kfree(pnode);
 853        return err;
 854}
 855
 856/**
 857 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
 858 * @c: UBIFS file-system description object
 859 * @pnode: pnode
 860 *
 861 * When a pnode is loaded into memory, the LEB properties it contains are added,
 862 * by this function, to the LEB category lists and heaps.
 863 */
 864static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
 865{
 866        int i;
 867
 868        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 869                int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
 870                int lnum = pnode->lprops[i].lnum;
 871
 872                if (!lnum)
 873                        return;
 874                ubifs_add_to_cat(c, &pnode->lprops[i], cat);
 875        }
 876}
 877
 878/**
 879 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
 880 * @c: UBIFS file-system description object
 881 * @old_pnode: pnode copied
 882 * @new_pnode: pnode copy
 883 *
 884 * During commit it is sometimes necessary to copy a pnode
 885 * (see dirty_cow_pnode).  When that happens, references in
 886 * category lists and heaps must be replaced.  This function does that.
 887 */
 888static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
 889                         struct ubifs_pnode *new_pnode)
 890{
 891        int i;
 892
 893        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 894                if (!new_pnode->lprops[i].lnum)
 895                        return;
 896                ubifs_replace_cat(c, &old_pnode->lprops[i],
 897                                  &new_pnode->lprops[i]);
 898        }
 899}
 900
 901/**
 902 * check_lpt_crc - check LPT node crc is correct.
 903 * @c: UBIFS file-system description object
 904 * @buf: buffer containing node
 905 * @len: length of node
 906 *
 907 * This function returns %0 on success and a negative error code on failure.
 908 */
 909static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
 910{
 911        int pos = 0;
 912        uint8_t *addr = buf;
 913        uint16_t crc, calc_crc;
 914
 915        crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
 916        calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 917                         len - UBIFS_LPT_CRC_BYTES);
 918        if (crc != calc_crc) {
 919                ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
 920                          crc, calc_crc);
 921                dump_stack();
 922                return -EINVAL;
 923        }
 924        return 0;
 925}
 926
 927/**
 928 * check_lpt_type - check LPT node type is correct.
 929 * @c: UBIFS file-system description object
 930 * @addr: address of type bit field is passed and returned updated here
 931 * @pos: position of type bit field is passed and returned updated here
 932 * @type: expected type
 933 *
 934 * This function returns %0 on success and a negative error code on failure.
 935 */
 936static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
 937                          int *pos, int type)
 938{
 939        int node_type;
 940
 941        node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
 942        if (node_type != type) {
 943                ubifs_err(c, "invalid type (%d) in LPT node type %d",
 944                          node_type, type);
 945                dump_stack();
 946                return -EINVAL;
 947        }
 948        return 0;
 949}
 950
 951/**
 952 * unpack_pnode - unpack a pnode.
 953 * @c: UBIFS file-system description object
 954 * @buf: buffer containing packed pnode to unpack
 955 * @pnode: pnode structure to fill
 956 *
 957 * This function returns %0 on success and a negative error code on failure.
 958 */
 959static int unpack_pnode(const struct ubifs_info *c, void *buf,
 960                        struct ubifs_pnode *pnode)
 961{
 962        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 963        int i, pos = 0, err;
 964
 965        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
 966        if (err)
 967                return err;
 968        if (c->big_lpt)
 969                pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
 970        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 971                struct ubifs_lprops * const lprops = &pnode->lprops[i];
 972
 973                lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
 974                lprops->free <<= 3;
 975                lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
 976                lprops->dirty <<= 3;
 977
 978                if (ubifs_unpack_bits(&addr, &pos, 1))
 979                        lprops->flags = LPROPS_INDEX;
 980                else
 981                        lprops->flags = 0;
 982                lprops->flags |= ubifs_categorize_lprops(c, lprops);
 983        }
 984        err = check_lpt_crc(c, buf, c->pnode_sz);
 985        return err;
 986}
 987
 988/**
 989 * ubifs_unpack_nnode - unpack a nnode.
 990 * @c: UBIFS file-system description object
 991 * @buf: buffer containing packed nnode to unpack
 992 * @nnode: nnode structure to fill
 993 *
 994 * This function returns %0 on success and a negative error code on failure.
 995 */
 996int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
 997                       struct ubifs_nnode *nnode)
 998{
 999        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1000        int i, pos = 0, err;
1001
1002        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1003        if (err)
1004                return err;
1005        if (c->big_lpt)
1006                nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1007        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1008                int lnum;
1009
1010                lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1011                       c->lpt_first;
1012                if (lnum == c->lpt_last + 1)
1013                        lnum = 0;
1014                nnode->nbranch[i].lnum = lnum;
1015                nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1016                                                     c->lpt_offs_bits);
1017        }
1018        err = check_lpt_crc(c, buf, c->nnode_sz);
1019        return err;
1020}
1021
1022/**
1023 * unpack_ltab - unpack the LPT's own lprops table.
1024 * @c: UBIFS file-system description object
1025 * @buf: buffer from which to unpack
1026 *
1027 * This function returns %0 on success and a negative error code on failure.
1028 */
1029static int unpack_ltab(const struct ubifs_info *c, void *buf)
1030{
1031        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1032        int i, pos = 0, err;
1033
1034        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1035        if (err)
1036                return err;
1037        for (i = 0; i < c->lpt_lebs; i++) {
1038                int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1039                int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1040
1041                if (free < 0 || free > c->leb_size || dirty < 0 ||
1042                    dirty > c->leb_size || free + dirty > c->leb_size)
1043                        return -EINVAL;
1044
1045                c->ltab[i].free = free;
1046                c->ltab[i].dirty = dirty;
1047                c->ltab[i].tgc = 0;
1048                c->ltab[i].cmt = 0;
1049        }
1050        err = check_lpt_crc(c, buf, c->ltab_sz);
1051        return err;
1052}
1053
1054#ifndef __UBOOT__
1055/**
1056 * unpack_lsave - unpack the LPT's save table.
1057 * @c: UBIFS file-system description object
1058 * @buf: buffer from which to unpack
1059 *
1060 * This function returns %0 on success and a negative error code on failure.
1061 */
1062static int unpack_lsave(const struct ubifs_info *c, void *buf)
1063{
1064        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1065        int i, pos = 0, err;
1066
1067        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1068        if (err)
1069                return err;
1070        for (i = 0; i < c->lsave_cnt; i++) {
1071                int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1072
1073                if (lnum < c->main_first || lnum >= c->leb_cnt)
1074                        return -EINVAL;
1075                c->lsave[i] = lnum;
1076        }
1077        err = check_lpt_crc(c, buf, c->lsave_sz);
1078        return err;
1079}
1080#endif
1081
1082/**
1083 * validate_nnode - validate a nnode.
1084 * @c: UBIFS file-system description object
1085 * @nnode: nnode to validate
1086 * @parent: parent nnode (or NULL for the root nnode)
1087 * @iip: index in parent
1088 *
1089 * This function returns %0 on success and a negative error code on failure.
1090 */
1091static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1092                          struct ubifs_nnode *parent, int iip)
1093{
1094        int i, lvl, max_offs;
1095
1096        if (c->big_lpt) {
1097                int num = calc_nnode_num_from_parent(c, parent, iip);
1098
1099                if (nnode->num != num)
1100                        return -EINVAL;
1101        }
1102        lvl = parent ? parent->level - 1 : c->lpt_hght;
1103        if (lvl < 1)
1104                return -EINVAL;
1105        if (lvl == 1)
1106                max_offs = c->leb_size - c->pnode_sz;
1107        else
1108                max_offs = c->leb_size - c->nnode_sz;
1109        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1110                int lnum = nnode->nbranch[i].lnum;
1111                int offs = nnode->nbranch[i].offs;
1112
1113                if (lnum == 0) {
1114                        if (offs != 0)
1115                                return -EINVAL;
1116                        continue;
1117                }
1118                if (lnum < c->lpt_first || lnum > c->lpt_last)
1119                        return -EINVAL;
1120                if (offs < 0 || offs > max_offs)
1121                        return -EINVAL;
1122        }
1123        return 0;
1124}
1125
1126/**
1127 * validate_pnode - validate a pnode.
1128 * @c: UBIFS file-system description object
1129 * @pnode: pnode to validate
1130 * @parent: parent nnode
1131 * @iip: index in parent
1132 *
1133 * This function returns %0 on success and a negative error code on failure.
1134 */
1135static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1136                          struct ubifs_nnode *parent, int iip)
1137{
1138        int i;
1139
1140        if (c->big_lpt) {
1141                int num = calc_pnode_num_from_parent(c, parent, iip);
1142
1143                if (pnode->num != num)
1144                        return -EINVAL;
1145        }
1146        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1147                int free = pnode->lprops[i].free;
1148                int dirty = pnode->lprops[i].dirty;
1149
1150                if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1151                    (free & 7))
1152                        return -EINVAL;
1153                if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1154                        return -EINVAL;
1155                if (dirty + free > c->leb_size)
1156                        return -EINVAL;
1157        }
1158        return 0;
1159}
1160
1161/**
1162 * set_pnode_lnum - set LEB numbers on a pnode.
1163 * @c: UBIFS file-system description object
1164 * @pnode: pnode to update
1165 *
1166 * This function calculates the LEB numbers for the LEB properties it contains
1167 * based on the pnode number.
1168 */
1169static void set_pnode_lnum(const struct ubifs_info *c,
1170                           struct ubifs_pnode *pnode)
1171{
1172        int i, lnum;
1173
1174        lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1175        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1176                if (lnum >= c->leb_cnt)
1177                        return;
1178                pnode->lprops[i].lnum = lnum++;
1179        }
1180}
1181
1182/**
1183 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1184 * @c: UBIFS file-system description object
1185 * @parent: parent nnode (or NULL for the root)
1186 * @iip: index in parent
1187 *
1188 * This function returns %0 on success and a negative error code on failure.
1189 */
1190int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1191{
1192        struct ubifs_nbranch *branch = NULL;
1193        struct ubifs_nnode *nnode = NULL;
1194        void *buf = c->lpt_nod_buf;
1195        int err, lnum, offs;
1196
1197        if (parent) {
1198                branch = &parent->nbranch[iip];
1199                lnum = branch->lnum;
1200                offs = branch->offs;
1201        } else {
1202                lnum = c->lpt_lnum;
1203                offs = c->lpt_offs;
1204        }
1205        nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1206        if (!nnode) {
1207                err = -ENOMEM;
1208                goto out;
1209        }
1210        if (lnum == 0) {
1211                /*
1212                 * This nnode was not written which just means that the LEB
1213                 * properties in the subtree below it describe empty LEBs. We
1214                 * make the nnode as though we had read it, which in fact means
1215                 * doing almost nothing.
1216                 */
1217                if (c->big_lpt)
1218                        nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1219        } else {
1220                err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1221                if (err)
1222                        goto out;
1223                err = ubifs_unpack_nnode(c, buf, nnode);
1224                if (err)
1225                        goto out;
1226        }
1227        err = validate_nnode(c, nnode, parent, iip);
1228        if (err)
1229                goto out;
1230        if (!c->big_lpt)
1231                nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1232        if (parent) {
1233                branch->nnode = nnode;
1234                nnode->level = parent->level - 1;
1235        } else {
1236                c->nroot = nnode;
1237                nnode->level = c->lpt_hght;
1238        }
1239        nnode->parent = parent;
1240        nnode->iip = iip;
1241        return 0;
1242
1243out:
1244        ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1245        dump_stack();
1246        kfree(nnode);
1247        return err;
1248}
1249
1250/**
1251 * read_pnode - read a pnode from flash and link it to the tree in memory.
1252 * @c: UBIFS file-system description object
1253 * @parent: parent nnode
1254 * @iip: index in parent
1255 *
1256 * This function returns %0 on success and a negative error code on failure.
1257 */
1258static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1259{
1260        struct ubifs_nbranch *branch;
1261        struct ubifs_pnode *pnode = NULL;
1262        void *buf = c->lpt_nod_buf;
1263        int err, lnum, offs;
1264
1265        branch = &parent->nbranch[iip];
1266        lnum = branch->lnum;
1267        offs = branch->offs;
1268        pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1269        if (!pnode)
1270                return -ENOMEM;
1271
1272        if (lnum == 0) {
1273                /*
1274                 * This pnode was not written which just means that the LEB
1275                 * properties in it describe empty LEBs. We make the pnode as
1276                 * though we had read it.
1277                 */
1278                int i;
1279
1280                if (c->big_lpt)
1281                        pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1282                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1283                        struct ubifs_lprops * const lprops = &pnode->lprops[i];
1284
1285                        lprops->free = c->leb_size;
1286                        lprops->flags = ubifs_categorize_lprops(c, lprops);
1287                }
1288        } else {
1289                err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1290                if (err)
1291                        goto out;
1292                err = unpack_pnode(c, buf, pnode);
1293                if (err)
1294                        goto out;
1295        }
1296        err = validate_pnode(c, pnode, parent, iip);
1297        if (err)
1298                goto out;
1299        if (!c->big_lpt)
1300                pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1301        branch->pnode = pnode;
1302        pnode->parent = parent;
1303        pnode->iip = iip;
1304        set_pnode_lnum(c, pnode);
1305        c->pnodes_have += 1;
1306        return 0;
1307
1308out:
1309        ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1310        ubifs_dump_pnode(c, pnode, parent, iip);
1311        dump_stack();
1312        ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1313        kfree(pnode);
1314        return err;
1315}
1316
1317/**
1318 * read_ltab - read LPT's own lprops table.
1319 * @c: UBIFS file-system description object
1320 *
1321 * This function returns %0 on success and a negative error code on failure.
1322 */
1323static int read_ltab(struct ubifs_info *c)
1324{
1325        int err;
1326        void *buf;
1327
1328        buf = vmalloc(c->ltab_sz);
1329        if (!buf)
1330                return -ENOMEM;
1331        err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1332        if (err)
1333                goto out;
1334        err = unpack_ltab(c, buf);
1335out:
1336        vfree(buf);
1337        return err;
1338}
1339
1340#ifndef __UBOOT__
1341/**
1342 * read_lsave - read LPT's save table.
1343 * @c: UBIFS file-system description object
1344 *
1345 * This function returns %0 on success and a negative error code on failure.
1346 */
1347static int read_lsave(struct ubifs_info *c)
1348{
1349        int err, i;
1350        void *buf;
1351
1352        buf = vmalloc(c->lsave_sz);
1353        if (!buf)
1354                return -ENOMEM;
1355        err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1356                             c->lsave_sz, 1);
1357        if (err)
1358                goto out;
1359        err = unpack_lsave(c, buf);
1360        if (err)
1361                goto out;
1362        for (i = 0; i < c->lsave_cnt; i++) {
1363                int lnum = c->lsave[i];
1364                struct ubifs_lprops *lprops;
1365
1366                /*
1367                 * Due to automatic resizing, the values in the lsave table
1368                 * could be beyond the volume size - just ignore them.
1369                 */
1370                if (lnum >= c->leb_cnt)
1371                        continue;
1372                lprops = ubifs_lpt_lookup(c, lnum);
1373                if (IS_ERR(lprops)) {
1374                        err = PTR_ERR(lprops);
1375                        goto out;
1376                }
1377        }
1378out:
1379        vfree(buf);
1380        return err;
1381}
1382#endif
1383
1384/**
1385 * ubifs_get_nnode - get a nnode.
1386 * @c: UBIFS file-system description object
1387 * @parent: parent nnode (or NULL for the root)
1388 * @iip: index in parent
1389 *
1390 * This function returns a pointer to the nnode on success or a negative error
1391 * code on failure.
1392 */
1393struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1394                                    struct ubifs_nnode *parent, int iip)
1395{
1396        struct ubifs_nbranch *branch;
1397        struct ubifs_nnode *nnode;
1398        int err;
1399
1400        branch = &parent->nbranch[iip];
1401        nnode = branch->nnode;
1402        if (nnode)
1403                return nnode;
1404        err = ubifs_read_nnode(c, parent, iip);
1405        if (err)
1406                return ERR_PTR(err);
1407        return branch->nnode;
1408}
1409
1410/**
1411 * ubifs_get_pnode - get a pnode.
1412 * @c: UBIFS file-system description object
1413 * @parent: parent nnode
1414 * @iip: index in parent
1415 *
1416 * This function returns a pointer to the pnode on success or a negative error
1417 * code on failure.
1418 */
1419struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1420                                    struct ubifs_nnode *parent, int iip)
1421{
1422        struct ubifs_nbranch *branch;
1423        struct ubifs_pnode *pnode;
1424        int err;
1425
1426        branch = &parent->nbranch[iip];
1427        pnode = branch->pnode;
1428        if (pnode)
1429                return pnode;
1430        err = read_pnode(c, parent, iip);
1431        if (err)
1432                return ERR_PTR(err);
1433        update_cats(c, branch->pnode);
1434        return branch->pnode;
1435}
1436
1437/**
1438 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1439 * @c: UBIFS file-system description object
1440 * @lnum: LEB number to lookup
1441 *
1442 * This function returns a pointer to the LEB properties on success or a
1443 * negative error code on failure.
1444 */
1445struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1446{
1447        int err, i, h, iip, shft;
1448        struct ubifs_nnode *nnode;
1449        struct ubifs_pnode *pnode;
1450
1451        if (!c->nroot) {
1452                err = ubifs_read_nnode(c, NULL, 0);
1453                if (err)
1454                        return ERR_PTR(err);
1455        }
1456        nnode = c->nroot;
1457        i = lnum - c->main_first;
1458        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1459        for (h = 1; h < c->lpt_hght; h++) {
1460                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1461                shft -= UBIFS_LPT_FANOUT_SHIFT;
1462                nnode = ubifs_get_nnode(c, nnode, iip);
1463                if (IS_ERR(nnode))
1464                        return ERR_CAST(nnode);
1465        }
1466        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1467        pnode = ubifs_get_pnode(c, nnode, iip);
1468        if (IS_ERR(pnode))
1469                return ERR_CAST(pnode);
1470        iip = (i & (UBIFS_LPT_FANOUT - 1));
1471        dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1472               pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1473               pnode->lprops[iip].flags);
1474        return &pnode->lprops[iip];
1475}
1476
1477/**
1478 * dirty_cow_nnode - ensure a nnode is not being committed.
1479 * @c: UBIFS file-system description object
1480 * @nnode: nnode to check
1481 *
1482 * Returns dirtied nnode on success or negative error code on failure.
1483 */
1484static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1485                                           struct ubifs_nnode *nnode)
1486{
1487        struct ubifs_nnode *n;
1488        int i;
1489
1490        if (!test_bit(COW_CNODE, &nnode->flags)) {
1491                /* nnode is not being committed */
1492                if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1493                        c->dirty_nn_cnt += 1;
1494                        ubifs_add_nnode_dirt(c, nnode);
1495                }
1496                return nnode;
1497        }
1498
1499        /* nnode is being committed, so copy it */
1500        n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1501        if (unlikely(!n))
1502                return ERR_PTR(-ENOMEM);
1503
1504        memcpy(n, nnode, sizeof(struct ubifs_nnode));
1505        n->cnext = NULL;
1506        __set_bit(DIRTY_CNODE, &n->flags);
1507        __clear_bit(COW_CNODE, &n->flags);
1508
1509        /* The children now have new parent */
1510        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1511                struct ubifs_nbranch *branch = &n->nbranch[i];
1512
1513                if (branch->cnode)
1514                        branch->cnode->parent = n;
1515        }
1516
1517        ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1518        __set_bit(OBSOLETE_CNODE, &nnode->flags);
1519
1520        c->dirty_nn_cnt += 1;
1521        ubifs_add_nnode_dirt(c, nnode);
1522        if (nnode->parent)
1523                nnode->parent->nbranch[n->iip].nnode = n;
1524        else
1525                c->nroot = n;
1526        return n;
1527}
1528
1529/**
1530 * dirty_cow_pnode - ensure a pnode is not being committed.
1531 * @c: UBIFS file-system description object
1532 * @pnode: pnode to check
1533 *
1534 * Returns dirtied pnode on success or negative error code on failure.
1535 */
1536static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1537                                           struct ubifs_pnode *pnode)
1538{
1539        struct ubifs_pnode *p;
1540
1541        if (!test_bit(COW_CNODE, &pnode->flags)) {
1542                /* pnode is not being committed */
1543                if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1544                        c->dirty_pn_cnt += 1;
1545                        add_pnode_dirt(c, pnode);
1546                }
1547                return pnode;
1548        }
1549
1550        /* pnode is being committed, so copy it */
1551        p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1552        if (unlikely(!p))
1553                return ERR_PTR(-ENOMEM);
1554
1555        memcpy(p, pnode, sizeof(struct ubifs_pnode));
1556        p->cnext = NULL;
1557        __set_bit(DIRTY_CNODE, &p->flags);
1558        __clear_bit(COW_CNODE, &p->flags);
1559        replace_cats(c, pnode, p);
1560
1561        ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1562        __set_bit(OBSOLETE_CNODE, &pnode->flags);
1563
1564        c->dirty_pn_cnt += 1;
1565        add_pnode_dirt(c, pnode);
1566        pnode->parent->nbranch[p->iip].pnode = p;
1567        return p;
1568}
1569
1570/**
1571 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1572 * @c: UBIFS file-system description object
1573 * @lnum: LEB number to lookup
1574 *
1575 * This function returns a pointer to the LEB properties on success or a
1576 * negative error code on failure.
1577 */
1578struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1579{
1580        int err, i, h, iip, shft;
1581        struct ubifs_nnode *nnode;
1582        struct ubifs_pnode *pnode;
1583
1584        if (!c->nroot) {
1585                err = ubifs_read_nnode(c, NULL, 0);
1586                if (err)
1587                        return ERR_PTR(err);
1588        }
1589        nnode = c->nroot;
1590        nnode = dirty_cow_nnode(c, nnode);
1591        if (IS_ERR(nnode))
1592                return ERR_CAST(nnode);
1593        i = lnum - c->main_first;
1594        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1595        for (h = 1; h < c->lpt_hght; h++) {
1596                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1597                shft -= UBIFS_LPT_FANOUT_SHIFT;
1598                nnode = ubifs_get_nnode(c, nnode, iip);
1599                if (IS_ERR(nnode))
1600                        return ERR_CAST(nnode);
1601                nnode = dirty_cow_nnode(c, nnode);
1602                if (IS_ERR(nnode))
1603                        return ERR_CAST(nnode);
1604        }
1605        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1606        pnode = ubifs_get_pnode(c, nnode, iip);
1607        if (IS_ERR(pnode))
1608                return ERR_CAST(pnode);
1609        pnode = dirty_cow_pnode(c, pnode);
1610        if (IS_ERR(pnode))
1611                return ERR_CAST(pnode);
1612        iip = (i & (UBIFS_LPT_FANOUT - 1));
1613        dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1614               pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1615               pnode->lprops[iip].flags);
1616        ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1617        return &pnode->lprops[iip];
1618}
1619
1620/**
1621 * lpt_init_rd - initialize the LPT for reading.
1622 * @c: UBIFS file-system description object
1623 *
1624 * This function returns %0 on success and a negative error code on failure.
1625 */
1626static int lpt_init_rd(struct ubifs_info *c)
1627{
1628        int err, i;
1629
1630        c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1631        if (!c->ltab)
1632                return -ENOMEM;
1633
1634        i = max_t(int, c->nnode_sz, c->pnode_sz);
1635        c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1636        if (!c->lpt_nod_buf)
1637                return -ENOMEM;
1638
1639        for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1640                c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1641                                             GFP_KERNEL);
1642                if (!c->lpt_heap[i].arr)
1643                        return -ENOMEM;
1644                c->lpt_heap[i].cnt = 0;
1645                c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1646        }
1647
1648        c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1649        if (!c->dirty_idx.arr)
1650                return -ENOMEM;
1651        c->dirty_idx.cnt = 0;
1652        c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1653
1654        err = read_ltab(c);
1655        if (err)
1656                return err;
1657
1658        dbg_lp("space_bits %d", c->space_bits);
1659        dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1660        dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1661        dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1662        dbg_lp("pcnt_bits %d", c->pcnt_bits);
1663        dbg_lp("lnum_bits %d", c->lnum_bits);
1664        dbg_lp("pnode_sz %d", c->pnode_sz);
1665        dbg_lp("nnode_sz %d", c->nnode_sz);
1666        dbg_lp("ltab_sz %d", c->ltab_sz);
1667        dbg_lp("lsave_sz %d", c->lsave_sz);
1668        dbg_lp("lsave_cnt %d", c->lsave_cnt);
1669        dbg_lp("lpt_hght %d", c->lpt_hght);
1670        dbg_lp("big_lpt %d", c->big_lpt);
1671        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1672        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1673        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1674        if (c->big_lpt)
1675                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1676
1677        return 0;
1678}
1679
1680#ifndef __UBOOT__
1681/**
1682 * lpt_init_wr - initialize the LPT for writing.
1683 * @c: UBIFS file-system description object
1684 *
1685 * 'lpt_init_rd()' must have been called already.
1686 *
1687 * This function returns %0 on success and a negative error code on failure.
1688 */
1689static int lpt_init_wr(struct ubifs_info *c)
1690{
1691        int err, i;
1692
1693        c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1694        if (!c->ltab_cmt)
1695                return -ENOMEM;
1696
1697        c->lpt_buf = vmalloc(c->leb_size);
1698        if (!c->lpt_buf)
1699                return -ENOMEM;
1700
1701        if (c->big_lpt) {
1702                c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1703                if (!c->lsave)
1704                        return -ENOMEM;
1705                err = read_lsave(c);
1706                if (err)
1707                        return err;
1708        }
1709
1710        for (i = 0; i < c->lpt_lebs; i++)
1711                if (c->ltab[i].free == c->leb_size) {
1712                        err = ubifs_leb_unmap(c, i + c->lpt_first);
1713                        if (err)
1714                                return err;
1715                }
1716
1717        return 0;
1718}
1719#endif
1720
1721/**
1722 * ubifs_lpt_init - initialize the LPT.
1723 * @c: UBIFS file-system description object
1724 * @rd: whether to initialize lpt for reading
1725 * @wr: whether to initialize lpt for writing
1726 *
1727 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1728 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1729 * true.
1730 *
1731 * This function returns %0 on success and a negative error code on failure.
1732 */
1733int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1734{
1735        int err;
1736
1737        if (rd) {
1738                err = lpt_init_rd(c);
1739                if (err)
1740                        goto out_err;
1741        }
1742
1743#ifndef __UBOOT__
1744        if (wr) {
1745                err = lpt_init_wr(c);
1746                if (err)
1747                        goto out_err;
1748        }
1749#endif
1750
1751        return 0;
1752
1753out_err:
1754#ifndef __UBOOT__
1755        if (wr)
1756                ubifs_lpt_free(c, 1);
1757#endif
1758        if (rd)
1759                ubifs_lpt_free(c, 0);
1760        return err;
1761}
1762
1763/**
1764 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1765 * @nnode: where to keep a nnode
1766 * @pnode: where to keep a pnode
1767 * @cnode: where to keep a cnode
1768 * @in_tree: is the node in the tree in memory
1769 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1770 * the tree
1771 * @ptr.pnode: ditto for pnode
1772 * @ptr.cnode: ditto for cnode
1773 */
1774struct lpt_scan_node {
1775        union {
1776                struct ubifs_nnode nnode;
1777                struct ubifs_pnode pnode;
1778                struct ubifs_cnode cnode;
1779        };
1780        int in_tree;
1781        union {
1782                struct ubifs_nnode *nnode;
1783                struct ubifs_pnode *pnode;
1784                struct ubifs_cnode *cnode;
1785        } ptr;
1786};
1787
1788/**
1789 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1790 * @c: the UBIFS file-system description object
1791 * @path: where to put the nnode
1792 * @parent: parent of the nnode
1793 * @iip: index in parent of the nnode
1794 *
1795 * This function returns a pointer to the nnode on success or a negative error
1796 * code on failure.
1797 */
1798static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1799                                          struct lpt_scan_node *path,
1800                                          struct ubifs_nnode *parent, int iip)
1801{
1802        struct ubifs_nbranch *branch;
1803        struct ubifs_nnode *nnode;
1804        void *buf = c->lpt_nod_buf;
1805        int err;
1806
1807        branch = &parent->nbranch[iip];
1808        nnode = branch->nnode;
1809        if (nnode) {
1810                path->in_tree = 1;
1811                path->ptr.nnode = nnode;
1812                return nnode;
1813        }
1814        nnode = &path->nnode;
1815        path->in_tree = 0;
1816        path->ptr.nnode = nnode;
1817        memset(nnode, 0, sizeof(struct ubifs_nnode));
1818        if (branch->lnum == 0) {
1819                /*
1820                 * This nnode was not written which just means that the LEB
1821                 * properties in the subtree below it describe empty LEBs. We
1822                 * make the nnode as though we had read it, which in fact means
1823                 * doing almost nothing.
1824                 */
1825                if (c->big_lpt)
1826                        nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1827        } else {
1828                err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1829                                     c->nnode_sz, 1);
1830                if (err)
1831                        return ERR_PTR(err);
1832                err = ubifs_unpack_nnode(c, buf, nnode);
1833                if (err)
1834                        return ERR_PTR(err);
1835        }
1836        err = validate_nnode(c, nnode, parent, iip);
1837        if (err)
1838                return ERR_PTR(err);
1839        if (!c->big_lpt)
1840                nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1841        nnode->level = parent->level - 1;
1842        nnode->parent = parent;
1843        nnode->iip = iip;
1844        return nnode;
1845}
1846
1847/**
1848 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1849 * @c: the UBIFS file-system description object
1850 * @path: where to put the pnode
1851 * @parent: parent of the pnode
1852 * @iip: index in parent of the pnode
1853 *
1854 * This function returns a pointer to the pnode on success or a negative error
1855 * code on failure.
1856 */
1857static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1858                                          struct lpt_scan_node *path,
1859                                          struct ubifs_nnode *parent, int iip)
1860{
1861        struct ubifs_nbranch *branch;
1862        struct ubifs_pnode *pnode;
1863        void *buf = c->lpt_nod_buf;
1864        int err;
1865
1866        branch = &parent->nbranch[iip];
1867        pnode = branch->pnode;
1868        if (pnode) {
1869                path->in_tree = 1;
1870                path->ptr.pnode = pnode;
1871                return pnode;
1872        }
1873        pnode = &path->pnode;
1874        path->in_tree = 0;
1875        path->ptr.pnode = pnode;
1876        memset(pnode, 0, sizeof(struct ubifs_pnode));
1877        if (branch->lnum == 0) {
1878                /*
1879                 * This pnode was not written which just means that the LEB
1880                 * properties in it describe empty LEBs. We make the pnode as
1881                 * though we had read it.
1882                 */
1883                int i;
1884
1885                if (c->big_lpt)
1886                        pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1887                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1888                        struct ubifs_lprops * const lprops = &pnode->lprops[i];
1889
1890                        lprops->free = c->leb_size;
1891                        lprops->flags = ubifs_categorize_lprops(c, lprops);
1892                }
1893        } else {
1894                ubifs_assert(branch->lnum >= c->lpt_first &&
1895                             branch->lnum <= c->lpt_last);
1896                ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1897                err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1898                                     c->pnode_sz, 1);
1899                if (err)
1900                        return ERR_PTR(err);
1901                err = unpack_pnode(c, buf, pnode);
1902                if (err)
1903                        return ERR_PTR(err);
1904        }
1905        err = validate_pnode(c, pnode, parent, iip);
1906        if (err)
1907                return ERR_PTR(err);
1908        if (!c->big_lpt)
1909                pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1910        pnode->parent = parent;
1911        pnode->iip = iip;
1912        set_pnode_lnum(c, pnode);
1913        return pnode;
1914}
1915
1916/**
1917 * ubifs_lpt_scan_nolock - scan the LPT.
1918 * @c: the UBIFS file-system description object
1919 * @start_lnum: LEB number from which to start scanning
1920 * @end_lnum: LEB number at which to stop scanning
1921 * @scan_cb: callback function called for each lprops
1922 * @data: data to be passed to the callback function
1923 *
1924 * This function returns %0 on success and a negative error code on failure.
1925 */
1926int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1927                          ubifs_lpt_scan_callback scan_cb, void *data)
1928{
1929        int err = 0, i, h, iip, shft;
1930        struct ubifs_nnode *nnode;
1931        struct ubifs_pnode *pnode;
1932        struct lpt_scan_node *path;
1933
1934        if (start_lnum == -1) {
1935                start_lnum = end_lnum + 1;
1936                if (start_lnum >= c->leb_cnt)
1937                        start_lnum = c->main_first;
1938        }
1939
1940        ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1941        ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1942
1943        if (!c->nroot) {
1944                err = ubifs_read_nnode(c, NULL, 0);
1945                if (err)
1946                        return err;
1947        }
1948
1949        path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1950                       GFP_NOFS);
1951        if (!path)
1952                return -ENOMEM;
1953
1954        path[0].ptr.nnode = c->nroot;
1955        path[0].in_tree = 1;
1956again:
1957        /* Descend to the pnode containing start_lnum */
1958        nnode = c->nroot;
1959        i = start_lnum - c->main_first;
1960        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1961        for (h = 1; h < c->lpt_hght; h++) {
1962                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1963                shft -= UBIFS_LPT_FANOUT_SHIFT;
1964                nnode = scan_get_nnode(c, path + h, nnode, iip);
1965                if (IS_ERR(nnode)) {
1966                        err = PTR_ERR(nnode);
1967                        goto out;
1968                }
1969        }
1970        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1971        pnode = scan_get_pnode(c, path + h, nnode, iip);
1972        if (IS_ERR(pnode)) {
1973                err = PTR_ERR(pnode);
1974                goto out;
1975        }
1976        iip = (i & (UBIFS_LPT_FANOUT - 1));
1977
1978        /* Loop for each lprops */
1979        while (1) {
1980                struct ubifs_lprops *lprops = &pnode->lprops[iip];
1981                int ret, lnum = lprops->lnum;
1982
1983                ret = scan_cb(c, lprops, path[h].in_tree, data);
1984                if (ret < 0) {
1985                        err = ret;
1986                        goto out;
1987                }
1988                if (ret & LPT_SCAN_ADD) {
1989                        /* Add all the nodes in path to the tree in memory */
1990                        for (h = 1; h < c->lpt_hght; h++) {
1991                                const size_t sz = sizeof(struct ubifs_nnode);
1992                                struct ubifs_nnode *parent;
1993
1994                                if (path[h].in_tree)
1995                                        continue;
1996                                nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1997                                if (!nnode) {
1998                                        err = -ENOMEM;
1999                                        goto out;
2000                                }
2001                                parent = nnode->parent;
2002                                parent->nbranch[nnode->iip].nnode = nnode;
2003                                path[h].ptr.nnode = nnode;
2004                                path[h].in_tree = 1;
2005                                path[h + 1].cnode.parent = nnode;
2006                        }
2007                        if (path[h].in_tree)
2008                                ubifs_ensure_cat(c, lprops);
2009                        else {
2010                                const size_t sz = sizeof(struct ubifs_pnode);
2011                                struct ubifs_nnode *parent;
2012
2013                                pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2014                                if (!pnode) {
2015                                        err = -ENOMEM;
2016                                        goto out;
2017                                }
2018                                parent = pnode->parent;
2019                                parent->nbranch[pnode->iip].pnode = pnode;
2020                                path[h].ptr.pnode = pnode;
2021                                path[h].in_tree = 1;
2022                                update_cats(c, pnode);
2023                                c->pnodes_have += 1;
2024                        }
2025                        err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2026                                                  c->nroot, 0, 0);
2027                        if (err)
2028                                goto out;
2029                        err = dbg_check_cats(c);
2030                        if (err)
2031                                goto out;
2032                }
2033                if (ret & LPT_SCAN_STOP) {
2034                        err = 0;
2035                        break;
2036                }
2037                /* Get the next lprops */
2038                if (lnum == end_lnum) {
2039                        /*
2040                         * We got to the end without finding what we were
2041                         * looking for
2042                         */
2043                        err = -ENOSPC;
2044                        goto out;
2045                }
2046                if (lnum + 1 >= c->leb_cnt) {
2047                        /* Wrap-around to the beginning */
2048                        start_lnum = c->main_first;
2049                        goto again;
2050                }
2051                if (iip + 1 < UBIFS_LPT_FANOUT) {
2052                        /* Next lprops is in the same pnode */
2053                        iip += 1;
2054                        continue;
2055                }
2056                /* We need to get the next pnode. Go up until we can go right */
2057                iip = pnode->iip;
2058                while (1) {
2059                        h -= 1;
2060                        ubifs_assert(h >= 0);
2061                        nnode = path[h].ptr.nnode;
2062                        if (iip + 1 < UBIFS_LPT_FANOUT)
2063                                break;
2064                        iip = nnode->iip;
2065                }
2066                /* Go right */
2067                iip += 1;
2068                /* Descend to the pnode */
2069                h += 1;
2070                for (; h < c->lpt_hght; h++) {
2071                        nnode = scan_get_nnode(c, path + h, nnode, iip);
2072                        if (IS_ERR(nnode)) {
2073                                err = PTR_ERR(nnode);
2074                                goto out;
2075                        }
2076                        iip = 0;
2077                }
2078                pnode = scan_get_pnode(c, path + h, nnode, iip);
2079                if (IS_ERR(pnode)) {
2080                        err = PTR_ERR(pnode);
2081                        goto out;
2082                }
2083                iip = 0;
2084        }
2085out:
2086        kfree(path);
2087        return err;
2088}
2089
2090/**
2091 * dbg_chk_pnode - check a pnode.
2092 * @c: the UBIFS file-system description object
2093 * @pnode: pnode to check
2094 * @col: pnode column
2095 *
2096 * This function returns %0 on success and a negative error code on failure.
2097 */
2098static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2099                         int col)
2100{
2101        int i;
2102
2103        if (pnode->num != col) {
2104                ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2105                          pnode->num, col, pnode->parent->num, pnode->iip);
2106                return -EINVAL;
2107        }
2108        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2109                struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2110                int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2111                           c->main_first;
2112                int found, cat = lprops->flags & LPROPS_CAT_MASK;
2113                struct ubifs_lpt_heap *heap;
2114                struct list_head *list = NULL;
2115
2116                if (lnum >= c->leb_cnt)
2117                        continue;
2118                if (lprops->lnum != lnum) {
2119                        ubifs_err(c, "bad LEB number %d expected %d",
2120                                  lprops->lnum, lnum);
2121                        return -EINVAL;
2122                }
2123                if (lprops->flags & LPROPS_TAKEN) {
2124                        if (cat != LPROPS_UNCAT) {
2125                                ubifs_err(c, "LEB %d taken but not uncat %d",
2126                                          lprops->lnum, cat);
2127                                return -EINVAL;
2128                        }
2129                        continue;
2130                }
2131                if (lprops->flags & LPROPS_INDEX) {
2132                        switch (cat) {
2133                        case LPROPS_UNCAT:
2134                        case LPROPS_DIRTY_IDX:
2135                        case LPROPS_FRDI_IDX:
2136                                break;
2137                        default:
2138                                ubifs_err(c, "LEB %d index but cat %d",
2139                                          lprops->lnum, cat);
2140                                return -EINVAL;
2141                        }
2142                } else {
2143                        switch (cat) {
2144                        case LPROPS_UNCAT:
2145                        case LPROPS_DIRTY:
2146                        case LPROPS_FREE:
2147                        case LPROPS_EMPTY:
2148                        case LPROPS_FREEABLE:
2149                                break;
2150                        default:
2151                                ubifs_err(c, "LEB %d not index but cat %d",
2152                                          lprops->lnum, cat);
2153                                return -EINVAL;
2154                        }
2155                }
2156                switch (cat) {
2157                case LPROPS_UNCAT:
2158                        list = &c->uncat_list;
2159                        break;
2160                case LPROPS_EMPTY:
2161                        list = &c->empty_list;
2162                        break;
2163                case LPROPS_FREEABLE:
2164                        list = &c->freeable_list;
2165                        break;
2166                case LPROPS_FRDI_IDX:
2167                        list = &c->frdi_idx_list;
2168                        break;
2169                }
2170                found = 0;
2171                switch (cat) {
2172                case LPROPS_DIRTY:
2173                case LPROPS_DIRTY_IDX:
2174                case LPROPS_FREE:
2175                        heap = &c->lpt_heap[cat - 1];
2176                        if (lprops->hpos < heap->cnt &&
2177                            heap->arr[lprops->hpos] == lprops)
2178                                found = 1;
2179                        break;
2180                case LPROPS_UNCAT:
2181                case LPROPS_EMPTY:
2182                case LPROPS_FREEABLE:
2183                case LPROPS_FRDI_IDX:
2184                        list_for_each_entry(lp, list, list)
2185                                if (lprops == lp) {
2186                                        found = 1;
2187                                        break;
2188                                }
2189                        break;
2190                }
2191                if (!found) {
2192                        ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2193                                  lprops->lnum, cat);
2194                        return -EINVAL;
2195                }
2196                switch (cat) {
2197                case LPROPS_EMPTY:
2198                        if (lprops->free != c->leb_size) {
2199                                ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2200                                          lprops->lnum, cat, lprops->free,
2201                                          lprops->dirty);
2202                                return -EINVAL;
2203                        }
2204                        break;
2205                case LPROPS_FREEABLE:
2206                case LPROPS_FRDI_IDX:
2207                        if (lprops->free + lprops->dirty != c->leb_size) {
2208                                ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2209                                          lprops->lnum, cat, lprops->free,
2210                                          lprops->dirty);
2211                                return -EINVAL;
2212                        }
2213                        break;
2214                }
2215        }
2216        return 0;
2217}
2218
2219/**
2220 * dbg_check_lpt_nodes - check nnodes and pnodes.
2221 * @c: the UBIFS file-system description object
2222 * @cnode: next cnode (nnode or pnode) to check
2223 * @row: row of cnode (root is zero)
2224 * @col: column of cnode (leftmost is zero)
2225 *
2226 * This function returns %0 on success and a negative error code on failure.
2227 */
2228int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2229                        int row, int col)
2230{
2231        struct ubifs_nnode *nnode, *nn;
2232        struct ubifs_cnode *cn;
2233        int num, iip = 0, err;
2234
2235        if (!dbg_is_chk_lprops(c))
2236                return 0;
2237
2238        while (cnode) {
2239                ubifs_assert(row >= 0);
2240                nnode = cnode->parent;
2241                if (cnode->level) {
2242                        /* cnode is a nnode */
2243                        num = calc_nnode_num(row, col);
2244                        if (cnode->num != num) {
2245                                ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2246                                          cnode->num, num,
2247                                          (nnode ? nnode->num : 0), cnode->iip);
2248                                return -EINVAL;
2249                        }
2250                        nn = (struct ubifs_nnode *)cnode;
2251                        while (iip < UBIFS_LPT_FANOUT) {
2252                                cn = nn->nbranch[iip].cnode;
2253                                if (cn) {
2254                                        /* Go down */
2255                                        row += 1;
2256                                        col <<= UBIFS_LPT_FANOUT_SHIFT;
2257                                        col += iip;
2258                                        iip = 0;
2259                                        cnode = cn;
2260                                        break;
2261                                }
2262                                /* Go right */
2263                                iip += 1;
2264                        }
2265                        if (iip < UBIFS_LPT_FANOUT)
2266                                continue;
2267                } else {
2268                        struct ubifs_pnode *pnode;
2269
2270                        /* cnode is a pnode */
2271                        pnode = (struct ubifs_pnode *)cnode;
2272                        err = dbg_chk_pnode(c, pnode, col);
2273                        if (err)
2274                                return err;
2275                }
2276                /* Go up and to the right */
2277                row -= 1;
2278                col >>= UBIFS_LPT_FANOUT_SHIFT;
2279                iip = cnode->iip + 1;
2280                cnode = (struct ubifs_cnode *)nnode;
2281        }
2282        return 0;
2283}
2284