uboot/drivers/mtd/nand/raw/omap_gpmc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
   4 * Rohit Choraria <rohitkc@ti.com>
   5 */
   6
   7#include <common.h>
   8#include <asm/io.h>
   9#include <linux/errno.h>
  10#include <asm/arch/mem.h>
  11#include <linux/mtd/omap_gpmc.h>
  12#include <linux/mtd/nand_ecc.h>
  13#include <linux/bch.h>
  14#include <linux/compiler.h>
  15#include <nand.h>
  16#include <linux/mtd/omap_elm.h>
  17
  18#define BADBLOCK_MARKER_LENGTH  2
  19#define SECTOR_BYTES            512
  20#define ECCCLEAR                (0x1 << 8)
  21#define ECCRESULTREG1           (0x1 << 0)
  22/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
  23#define BCH4_BIT_PAD            4
  24
  25#ifdef CONFIG_BCH
  26static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
  27                                0x97, 0x79, 0xe5, 0x24, 0xb5};
  28#endif
  29static uint8_t cs_next;
  30static __maybe_unused struct nand_ecclayout omap_ecclayout;
  31
  32#if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
  33static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
  34        { CONFIG_NAND_OMAP_GPMC_WSCFG };
  35#else
  36/* wscfg is preset to zero since its a static variable */
  37static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
  38#endif
  39
  40/*
  41 * Driver configurations
  42 */
  43struct omap_nand_info {
  44        struct bch_control *control;
  45        enum omap_ecc ecc_scheme;
  46        uint8_t cs;
  47        uint8_t ws;             /* wait status pin (0,1) */
  48};
  49
  50/* We are wasting a bit of memory but al least we are safe */
  51static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
  52
  53/*
  54 * omap_nand_hwcontrol - Set the address pointers corretly for the
  55 *                      following address/data/command operation
  56 */
  57static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
  58                                uint32_t ctrl)
  59{
  60        register struct nand_chip *this = mtd_to_nand(mtd);
  61        struct omap_nand_info *info = nand_get_controller_data(this);
  62        int cs = info->cs;
  63
  64        /*
  65         * Point the IO_ADDR to DATA and ADDRESS registers instead
  66         * of chip address
  67         */
  68        switch (ctrl) {
  69        case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
  70                this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
  71                break;
  72        case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
  73                this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
  74                break;
  75        case NAND_CTRL_CHANGE | NAND_NCE:
  76                this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
  77                break;
  78        }
  79
  80        if (cmd != NAND_CMD_NONE)
  81                writeb(cmd, this->IO_ADDR_W);
  82}
  83
  84/* Check wait pin as dev ready indicator */
  85static int omap_dev_ready(struct mtd_info *mtd)
  86{
  87        register struct nand_chip *this = mtd_to_nand(mtd);
  88        struct omap_nand_info *info = nand_get_controller_data(this);
  89        return gpmc_cfg->status & (1 << (8 + info->ws));
  90}
  91
  92/*
  93 * gen_true_ecc - This function will generate true ECC value, which
  94 * can be used when correcting data read from NAND flash memory core
  95 *
  96 * @ecc_buf:    buffer to store ecc code
  97 *
  98 * @return:     re-formatted ECC value
  99 */
 100static uint32_t gen_true_ecc(uint8_t *ecc_buf)
 101{
 102        return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
 103                ((ecc_buf[2] & 0x0F) << 8);
 104}
 105
 106/*
 107 * omap_correct_data - Compares the ecc read from nand spare area with ECC
 108 * registers values and corrects one bit error if it has occurred
 109 * Further details can be had from OMAP TRM and the following selected links:
 110 * http://en.wikipedia.org/wiki/Hamming_code
 111 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
 112 *
 113 * @mtd:                 MTD device structure
 114 * @dat:                 page data
 115 * @read_ecc:            ecc read from nand flash
 116 * @calc_ecc:            ecc read from ECC registers
 117 *
 118 * @return 0 if data is OK or corrected, else returns -1
 119 */
 120static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
 121                                uint8_t *read_ecc, uint8_t *calc_ecc)
 122{
 123        uint32_t orig_ecc, new_ecc, res, hm;
 124        uint16_t parity_bits, byte;
 125        uint8_t bit;
 126
 127        /* Regenerate the orginal ECC */
 128        orig_ecc = gen_true_ecc(read_ecc);
 129        new_ecc = gen_true_ecc(calc_ecc);
 130        /* Get the XOR of real ecc */
 131        res = orig_ecc ^ new_ecc;
 132        if (res) {
 133                /* Get the hamming width */
 134                hm = hweight32(res);
 135                /* Single bit errors can be corrected! */
 136                if (hm == 12) {
 137                        /* Correctable data! */
 138                        parity_bits = res >> 16;
 139                        bit = (parity_bits & 0x7);
 140                        byte = (parity_bits >> 3) & 0x1FF;
 141                        /* Flip the bit to correct */
 142                        dat[byte] ^= (0x1 << bit);
 143                } else if (hm == 1) {
 144                        printf("Error: Ecc is wrong\n");
 145                        /* ECC itself is corrupted */
 146                        return 2;
 147                } else {
 148                        /*
 149                         * hm distance != parity pairs OR one, could mean 2 bit
 150                         * error OR potentially be on a blank page..
 151                         * orig_ecc: contains spare area data from nand flash.
 152                         * new_ecc: generated ecc while reading data area.
 153                         * Note: if the ecc = 0, all data bits from which it was
 154                         * generated are 0xFF.
 155                         * The 3 byte(24 bits) ecc is generated per 512byte
 156                         * chunk of a page. If orig_ecc(from spare area)
 157                         * is 0xFF && new_ecc(computed now from data area)=0x0,
 158                         * this means that data area is 0xFF and spare area is
 159                         * 0xFF. A sure sign of a erased page!
 160                         */
 161                        if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
 162                                return 0;
 163                        printf("Error: Bad compare! failed\n");
 164                        /* detected 2 bit error */
 165                        return -EBADMSG;
 166                }
 167        }
 168        return 0;
 169}
 170
 171/*
 172 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
 173 * @mtd:        MTD device structure
 174 * @mode:       Read/Write mode
 175 */
 176__maybe_unused
 177static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
 178{
 179        struct nand_chip        *nand   = mtd_to_nand(mtd);
 180        struct omap_nand_info   *info   = nand_get_controller_data(nand);
 181        unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
 182        unsigned int ecc_algo = 0;
 183        unsigned int bch_type = 0;
 184        unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
 185        u32 ecc_size_config_val = 0;
 186        u32 ecc_config_val = 0;
 187        int cs = info->cs;
 188
 189        /* configure GPMC for specific ecc-scheme */
 190        switch (info->ecc_scheme) {
 191        case OMAP_ECC_HAM1_CODE_SW:
 192                return;
 193        case OMAP_ECC_HAM1_CODE_HW:
 194                ecc_algo = 0x0;
 195                bch_type = 0x0;
 196                bch_wrapmode = 0x00;
 197                eccsize0 = 0xFF;
 198                eccsize1 = 0xFF;
 199                break;
 200        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 201        case OMAP_ECC_BCH8_CODE_HW:
 202                ecc_algo = 0x1;
 203                bch_type = 0x1;
 204                if (mode == NAND_ECC_WRITE) {
 205                        bch_wrapmode = 0x01;
 206                        eccsize0 = 0;  /* extra bits in nibbles per sector */
 207                        eccsize1 = 28; /* OOB bits in nibbles per sector */
 208                } else {
 209                        bch_wrapmode = 0x01;
 210                        eccsize0 = 26; /* ECC bits in nibbles per sector */
 211                        eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
 212                }
 213                break;
 214        case OMAP_ECC_BCH16_CODE_HW:
 215                ecc_algo = 0x1;
 216                bch_type = 0x2;
 217                if (mode == NAND_ECC_WRITE) {
 218                        bch_wrapmode = 0x01;
 219                        eccsize0 = 0;  /* extra bits in nibbles per sector */
 220                        eccsize1 = 52; /* OOB bits in nibbles per sector */
 221                } else {
 222                        bch_wrapmode = 0x01;
 223                        eccsize0 = 52; /* ECC bits in nibbles per sector */
 224                        eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
 225                }
 226                break;
 227        default:
 228                return;
 229        }
 230        /* Clear ecc and enable bits */
 231        writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
 232        /* Configure ecc size for BCH */
 233        ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
 234        writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
 235
 236        /* Configure device details for BCH engine */
 237        ecc_config_val = ((ecc_algo << 16)      | /* HAM1 | BCHx */
 238                        (bch_type << 12)        | /* BCH4/BCH8/BCH16 */
 239                        (bch_wrapmode << 8)     | /* wrap mode */
 240                        (dev_width << 7)        | /* bus width */
 241                        (0x0 << 4)              | /* number of sectors */
 242                        (cs <<  1)              | /* ECC CS */
 243                        (0x1));                   /* enable ECC */
 244        writel(ecc_config_val, &gpmc_cfg->ecc_config);
 245}
 246
 247/*
 248 *  omap_calculate_ecc - Read ECC result
 249 *  @mtd:       MTD structure
 250 *  @dat:       unused
 251 *  @ecc_code:  ecc_code buffer
 252 *  Using noninverted ECC can be considered ugly since writing a blank
 253 *  page ie. padding will clear the ECC bytes. This is no problem as
 254 *  long nobody is trying to write data on the seemingly unused page.
 255 *  Reading an erased page will produce an ECC mismatch between
 256 *  generated and read ECC bytes that has to be dealt with separately.
 257 *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
 258 *  is used, the result of read will be 0x0 while the ECC offsets of the
 259 *  spare area will be 0xFF which will result in an ECC mismatch.
 260 */
 261static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
 262                                uint8_t *ecc_code)
 263{
 264        struct nand_chip *chip = mtd_to_nand(mtd);
 265        struct omap_nand_info *info = nand_get_controller_data(chip);
 266        const uint32_t *ptr;
 267        uint32_t val = 0;
 268        int8_t i = 0, j;
 269
 270        switch (info->ecc_scheme) {
 271        case OMAP_ECC_HAM1_CODE_HW:
 272                val = readl(&gpmc_cfg->ecc1_result);
 273                ecc_code[0] = val & 0xFF;
 274                ecc_code[1] = (val >> 16) & 0xFF;
 275                ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
 276                break;
 277#ifdef CONFIG_BCH
 278        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 279#endif
 280        case OMAP_ECC_BCH8_CODE_HW:
 281                ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
 282                val = readl(ptr);
 283                ecc_code[i++] = (val >>  0) & 0xFF;
 284                ptr--;
 285                for (j = 0; j < 3; j++) {
 286                        val = readl(ptr);
 287                        ecc_code[i++] = (val >> 24) & 0xFF;
 288                        ecc_code[i++] = (val >> 16) & 0xFF;
 289                        ecc_code[i++] = (val >>  8) & 0xFF;
 290                        ecc_code[i++] = (val >>  0) & 0xFF;
 291                        ptr--;
 292                }
 293                break;
 294        case OMAP_ECC_BCH16_CODE_HW:
 295                val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
 296                ecc_code[i++] = (val >>  8) & 0xFF;
 297                ecc_code[i++] = (val >>  0) & 0xFF;
 298                val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
 299                ecc_code[i++] = (val >> 24) & 0xFF;
 300                ecc_code[i++] = (val >> 16) & 0xFF;
 301                ecc_code[i++] = (val >>  8) & 0xFF;
 302                ecc_code[i++] = (val >>  0) & 0xFF;
 303                val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
 304                ecc_code[i++] = (val >> 24) & 0xFF;
 305                ecc_code[i++] = (val >> 16) & 0xFF;
 306                ecc_code[i++] = (val >>  8) & 0xFF;
 307                ecc_code[i++] = (val >>  0) & 0xFF;
 308                for (j = 3; j >= 0; j--) {
 309                        val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
 310                                                                        );
 311                        ecc_code[i++] = (val >> 24) & 0xFF;
 312                        ecc_code[i++] = (val >> 16) & 0xFF;
 313                        ecc_code[i++] = (val >>  8) & 0xFF;
 314                        ecc_code[i++] = (val >>  0) & 0xFF;
 315                }
 316                break;
 317        default:
 318                return -EINVAL;
 319        }
 320        /* ECC scheme specific syndrome customizations */
 321        switch (info->ecc_scheme) {
 322        case OMAP_ECC_HAM1_CODE_HW:
 323                break;
 324#ifdef CONFIG_BCH
 325        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 326
 327                for (i = 0; i < chip->ecc.bytes; i++)
 328                        *(ecc_code + i) = *(ecc_code + i) ^
 329                                                bch8_polynomial[i];
 330                break;
 331#endif
 332        case OMAP_ECC_BCH8_CODE_HW:
 333                ecc_code[chip->ecc.bytes - 1] = 0x00;
 334                break;
 335        case OMAP_ECC_BCH16_CODE_HW:
 336                break;
 337        default:
 338                return -EINVAL;
 339        }
 340        return 0;
 341}
 342
 343#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
 344
 345#define PREFETCH_CONFIG1_CS_SHIFT       24
 346#define PREFETCH_FIFOTHRESHOLD_MAX      0x40
 347#define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
 348#define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
 349#define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
 350#define ENABLE_PREFETCH                 (1 << 7)
 351
 352/**
 353 * omap_prefetch_enable - configures and starts prefetch transfer
 354 * @fifo_th: fifo threshold to be used for read/ write
 355 * @count: number of bytes to be transferred
 356 * @is_write: prefetch read(0) or write post(1) mode
 357 * @cs: chip select to use
 358 */
 359static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
 360{
 361        uint32_t val;
 362
 363        if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 364                return -EINVAL;
 365
 366        if (readl(&gpmc_cfg->prefetch_control))
 367                return -EBUSY;
 368
 369        /* Set the amount of bytes to be prefetched */
 370        writel(count, &gpmc_cfg->prefetch_config2);
 371
 372        val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
 373                PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
 374        writel(val, &gpmc_cfg->prefetch_config1);
 375
 376        /*  Start the prefetch engine */
 377        writel(1, &gpmc_cfg->prefetch_control);
 378
 379        return 0;
 380}
 381
 382/**
 383 * omap_prefetch_reset - disables and stops the prefetch engine
 384 */
 385static void omap_prefetch_reset(void)
 386{
 387        writel(0, &gpmc_cfg->prefetch_control);
 388        writel(0, &gpmc_cfg->prefetch_config1);
 389}
 390
 391static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
 392{
 393        int ret;
 394        uint32_t cnt;
 395        struct omap_nand_info *info = nand_get_controller_data(chip);
 396
 397        ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
 398        if (ret < 0)
 399                return ret;
 400
 401        do {
 402                int i;
 403
 404                cnt = readl(&gpmc_cfg->prefetch_status);
 405                cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
 406
 407                for (i = 0; i < cnt / 4; i++) {
 408                        *buf++ = readl(CONFIG_SYS_NAND_BASE);
 409                        len -= 4;
 410                }
 411        } while (len);
 412
 413        omap_prefetch_reset();
 414
 415        return 0;
 416}
 417
 418static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
 419{
 420        struct nand_chip *chip = mtd_to_nand(mtd);
 421
 422        if (chip->options & NAND_BUSWIDTH_16)
 423                nand_read_buf16(mtd, buf, len);
 424        else
 425                nand_read_buf(mtd, buf, len);
 426}
 427
 428static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
 429{
 430        int ret;
 431        uint32_t head, tail;
 432        struct nand_chip *chip = mtd_to_nand(mtd);
 433
 434        /*
 435         * If the destination buffer is unaligned, start with reading
 436         * the overlap byte-wise.
 437         */
 438        head = ((uint32_t) buf) % 4;
 439        if (head) {
 440                omap_nand_read(mtd, buf, head);
 441                buf += head;
 442                len -= head;
 443        }
 444
 445        /*
 446         * Only transfer multiples of 4 bytes in a pre-fetched fashion.
 447         * If there's a residue, care for it byte-wise afterwards.
 448         */
 449        tail = len % 4;
 450
 451        ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
 452        if (ret < 0) {
 453                /* fallback in case the prefetch engine is busy */
 454                omap_nand_read(mtd, buf, len);
 455        } else if (tail) {
 456                buf += len - tail;
 457                omap_nand_read(mtd, buf, tail);
 458        }
 459}
 460#endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
 461
 462#ifdef CONFIG_NAND_OMAP_ELM
 463/*
 464 * omap_reverse_list - re-orders list elements in reverse order [internal]
 465 * @list:       pointer to start of list
 466 * @length:     length of list
 467*/
 468static void omap_reverse_list(u8 *list, unsigned int length)
 469{
 470        unsigned int i, j;
 471        unsigned int half_length = length / 2;
 472        u8 tmp;
 473        for (i = 0, j = length - 1; i < half_length; i++, j--) {
 474                tmp = list[i];
 475                list[i] = list[j];
 476                list[j] = tmp;
 477        }
 478}
 479
 480/*
 481 * omap_correct_data_bch - Compares the ecc read from nand spare area
 482 * with ECC registers values and corrects one bit error if it has occurred
 483 *
 484 * @mtd:        MTD device structure
 485 * @dat:        page data
 486 * @read_ecc:   ecc read from nand flash (ignored)
 487 * @calc_ecc:   ecc read from ECC registers
 488 *
 489 * @return 0 if data is OK or corrected, else returns -1
 490 */
 491static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
 492                                uint8_t *read_ecc, uint8_t *calc_ecc)
 493{
 494        struct nand_chip *chip = mtd_to_nand(mtd);
 495        struct omap_nand_info *info = nand_get_controller_data(chip);
 496        struct nand_ecc_ctrl *ecc = &chip->ecc;
 497        uint32_t error_count = 0, error_max;
 498        uint32_t error_loc[ELM_MAX_ERROR_COUNT];
 499        enum bch_level bch_type;
 500        uint32_t i, ecc_flag = 0;
 501        uint8_t count;
 502        uint32_t byte_pos, bit_pos;
 503        int err = 0;
 504
 505        /* check calculated ecc */
 506        for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
 507                if (calc_ecc[i] != 0x00)
 508                        ecc_flag = 1;
 509        }
 510        if (!ecc_flag)
 511                return 0;
 512
 513        /* check for whether its a erased-page */
 514        ecc_flag = 0;
 515        for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
 516                if (read_ecc[i] != 0xff)
 517                        ecc_flag = 1;
 518        }
 519        if (!ecc_flag)
 520                return 0;
 521
 522        /*
 523         * while reading ECC result we read it in big endian.
 524         * Hence while loading to ELM we have rotate to get the right endian.
 525         */
 526        switch (info->ecc_scheme) {
 527        case OMAP_ECC_BCH8_CODE_HW:
 528                bch_type = BCH_8_BIT;
 529                omap_reverse_list(calc_ecc, ecc->bytes - 1);
 530                break;
 531        case OMAP_ECC_BCH16_CODE_HW:
 532                bch_type = BCH_16_BIT;
 533                omap_reverse_list(calc_ecc, ecc->bytes);
 534                break;
 535        default:
 536                return -EINVAL;
 537        }
 538        /* use elm module to check for errors */
 539        elm_config(bch_type);
 540        err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
 541        if (err)
 542                return err;
 543
 544        /* correct bch error */
 545        for (count = 0; count < error_count; count++) {
 546                switch (info->ecc_scheme) {
 547                case OMAP_ECC_BCH8_CODE_HW:
 548                        /* 14th byte in ECC is reserved to match ROM layout */
 549                        error_max = SECTOR_BYTES + (ecc->bytes - 1);
 550                        break;
 551                case OMAP_ECC_BCH16_CODE_HW:
 552                        error_max = SECTOR_BYTES + ecc->bytes;
 553                        break;
 554                default:
 555                        return -EINVAL;
 556                }
 557                byte_pos = error_max - (error_loc[count] / 8) - 1;
 558                bit_pos  = error_loc[count] % 8;
 559                if (byte_pos < SECTOR_BYTES) {
 560                        dat[byte_pos] ^= 1 << bit_pos;
 561                        debug("nand: bit-flip corrected @data=%d\n", byte_pos);
 562                } else if (byte_pos < error_max) {
 563                        read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
 564                        debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
 565                                                                SECTOR_BYTES);
 566                } else {
 567                        err = -EBADMSG;
 568                        printf("nand: error: invalid bit-flip location\n");
 569                }
 570        }
 571        return (err) ? err : error_count;
 572}
 573
 574/**
 575 * omap_read_page_bch - hardware ecc based page read function
 576 * @mtd:        mtd info structure
 577 * @chip:       nand chip info structure
 578 * @buf:        buffer to store read data
 579 * @oob_required: caller expects OOB data read to chip->oob_poi
 580 * @page:       page number to read
 581 *
 582 */
 583static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
 584                                uint8_t *buf, int oob_required, int page)
 585{
 586        int i, eccsize = chip->ecc.size;
 587        int eccbytes = chip->ecc.bytes;
 588        int eccsteps = chip->ecc.steps;
 589        uint8_t *p = buf;
 590        uint8_t *ecc_calc = chip->buffers->ecccalc;
 591        uint8_t *ecc_code = chip->buffers->ecccode;
 592        uint32_t *eccpos = chip->ecc.layout->eccpos;
 593        uint8_t *oob = chip->oob_poi;
 594        uint32_t data_pos;
 595        uint32_t oob_pos;
 596
 597        data_pos = 0;
 598        /* oob area start */
 599        oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
 600        oob += chip->ecc.layout->eccpos[0];
 601
 602        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
 603                                oob += eccbytes) {
 604                chip->ecc.hwctl(mtd, NAND_ECC_READ);
 605                /* read data */
 606                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
 607                chip->read_buf(mtd, p, eccsize);
 608
 609                /* read respective ecc from oob area */
 610                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
 611                chip->read_buf(mtd, oob, eccbytes);
 612                /* read syndrome */
 613                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 614
 615                data_pos += eccsize;
 616                oob_pos += eccbytes;
 617        }
 618
 619        for (i = 0; i < chip->ecc.total; i++)
 620                ecc_code[i] = chip->oob_poi[eccpos[i]];
 621
 622        eccsteps = chip->ecc.steps;
 623        p = buf;
 624
 625        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 626                int stat;
 627
 628                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
 629                if (stat < 0)
 630                        mtd->ecc_stats.failed++;
 631                else
 632                        mtd->ecc_stats.corrected += stat;
 633        }
 634        return 0;
 635}
 636#endif /* CONFIG_NAND_OMAP_ELM */
 637
 638/*
 639 * OMAP3 BCH8 support (with BCH library)
 640 */
 641#ifdef CONFIG_BCH
 642/**
 643 * omap_correct_data_bch_sw - Decode received data and correct errors
 644 * @mtd: MTD device structure
 645 * @data: page data
 646 * @read_ecc: ecc read from nand flash
 647 * @calc_ecc: ecc read from HW ECC registers
 648 */
 649static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
 650                                 u_char *read_ecc, u_char *calc_ecc)
 651{
 652        int i, count;
 653        /* cannot correct more than 8 errors */
 654        unsigned int errloc[8];
 655        struct nand_chip *chip = mtd_to_nand(mtd);
 656        struct omap_nand_info *info = nand_get_controller_data(chip);
 657
 658        count = decode_bch(info->control, NULL, SECTOR_BYTES,
 659                                read_ecc, calc_ecc, NULL, errloc);
 660        if (count > 0) {
 661                /* correct errors */
 662                for (i = 0; i < count; i++) {
 663                        /* correct data only, not ecc bytes */
 664                        if (errloc[i] < SECTOR_BYTES << 3)
 665                                data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
 666                        debug("corrected bitflip %u\n", errloc[i]);
 667#ifdef DEBUG
 668                        puts("read_ecc: ");
 669                        /*
 670                         * BCH8 have 13 bytes of ECC; BCH4 needs adoption
 671                         * here!
 672                         */
 673                        for (i = 0; i < 13; i++)
 674                                printf("%02x ", read_ecc[i]);
 675                        puts("\n");
 676                        puts("calc_ecc: ");
 677                        for (i = 0; i < 13; i++)
 678                                printf("%02x ", calc_ecc[i]);
 679                        puts("\n");
 680#endif
 681                }
 682        } else if (count < 0) {
 683                puts("ecc unrecoverable error\n");
 684        }
 685        return count;
 686}
 687
 688/**
 689 * omap_free_bch - Release BCH ecc resources
 690 * @mtd: MTD device structure
 691 */
 692static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
 693{
 694        struct nand_chip *chip = mtd_to_nand(mtd);
 695        struct omap_nand_info *info = nand_get_controller_data(chip);
 696
 697        if (info->control) {
 698                free_bch(info->control);
 699                info->control = NULL;
 700        }
 701}
 702#endif /* CONFIG_BCH */
 703
 704/**
 705 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
 706 * @nand: NAND chip device structure
 707 * @ecc_scheme: ecc scheme to configure
 708 * @pagesize: number of main-area bytes per page of NAND device
 709 * @oobsize: number of OOB/spare bytes per page of NAND device
 710 */
 711static int omap_select_ecc_scheme(struct nand_chip *nand,
 712        enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
 713        struct omap_nand_info   *info           = nand_get_controller_data(nand);
 714        struct nand_ecclayout   *ecclayout      = &omap_ecclayout;
 715        int eccsteps = pagesize / SECTOR_BYTES;
 716        int i;
 717
 718        switch (ecc_scheme) {
 719        case OMAP_ECC_HAM1_CODE_SW:
 720                debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
 721                /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
 722                 * initialized in nand_scan_tail(), so just set ecc.mode */
 723                info->control           = NULL;
 724                nand->ecc.mode          = NAND_ECC_SOFT;
 725                nand->ecc.layout        = NULL;
 726                nand->ecc.size          = 0;
 727                break;
 728
 729        case OMAP_ECC_HAM1_CODE_HW:
 730                debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
 731                /* check ecc-scheme requirements before updating ecc info */
 732                if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 733                        printf("nand: error: insufficient OOB: require=%d\n", (
 734                                (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 735                        return -EINVAL;
 736                }
 737                info->control           = NULL;
 738                /* populate ecc specific fields */
 739                memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
 740                nand->ecc.mode          = NAND_ECC_HW;
 741                nand->ecc.strength      = 1;
 742                nand->ecc.size          = SECTOR_BYTES;
 743                nand->ecc.bytes         = 3;
 744                nand->ecc.hwctl         = omap_enable_hwecc;
 745                nand->ecc.correct       = omap_correct_data;
 746                nand->ecc.calculate     = omap_calculate_ecc;
 747                /* define ecc-layout */
 748                ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
 749                for (i = 0; i < ecclayout->eccbytes; i++) {
 750                        if (nand->options & NAND_BUSWIDTH_16)
 751                                ecclayout->eccpos[i] = i + 2;
 752                        else
 753                                ecclayout->eccpos[i] = i + 1;
 754                }
 755                ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 756                ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
 757                                                BADBLOCK_MARKER_LENGTH;
 758                break;
 759
 760        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 761#ifdef CONFIG_BCH
 762                debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
 763                /* check ecc-scheme requirements before updating ecc info */
 764                if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 765                        printf("nand: error: insufficient OOB: require=%d\n", (
 766                                (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 767                        return -EINVAL;
 768                }
 769                /* check if BCH S/W library can be used for error detection */
 770                info->control = init_bch(13, 8, 0x201b);
 771                if (!info->control) {
 772                        printf("nand: error: could not init_bch()\n");
 773                        return -ENODEV;
 774                }
 775                /* populate ecc specific fields */
 776                memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
 777                nand->ecc.mode          = NAND_ECC_HW;
 778                nand->ecc.strength      = 8;
 779                nand->ecc.size          = SECTOR_BYTES;
 780                nand->ecc.bytes         = 13;
 781                nand->ecc.hwctl         = omap_enable_hwecc;
 782                nand->ecc.correct       = omap_correct_data_bch_sw;
 783                nand->ecc.calculate     = omap_calculate_ecc;
 784                /* define ecc-layout */
 785                ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
 786                ecclayout->eccpos[0]    = BADBLOCK_MARKER_LENGTH;
 787                for (i = 1; i < ecclayout->eccbytes; i++) {
 788                        if (i % nand->ecc.bytes)
 789                                ecclayout->eccpos[i] =
 790                                                ecclayout->eccpos[i - 1] + 1;
 791                        else
 792                                ecclayout->eccpos[i] =
 793                                                ecclayout->eccpos[i - 1] + 2;
 794                }
 795                ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 796                ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
 797                                                BADBLOCK_MARKER_LENGTH;
 798                break;
 799#else
 800                printf("nand: error: CONFIG_BCH required for ECC\n");
 801                return -EINVAL;
 802#endif
 803
 804        case OMAP_ECC_BCH8_CODE_HW:
 805#ifdef CONFIG_NAND_OMAP_ELM
 806                debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
 807                /* check ecc-scheme requirements before updating ecc info */
 808                if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 809                        printf("nand: error: insufficient OOB: require=%d\n", (
 810                                (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 811                        return -EINVAL;
 812                }
 813                /* intialize ELM for ECC error detection */
 814                elm_init();
 815                info->control           = NULL;
 816                /* populate ecc specific fields */
 817                memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
 818                nand->ecc.mode          = NAND_ECC_HW;
 819                nand->ecc.strength      = 8;
 820                nand->ecc.size          = SECTOR_BYTES;
 821                nand->ecc.bytes         = 14;
 822                nand->ecc.hwctl         = omap_enable_hwecc;
 823                nand->ecc.correct       = omap_correct_data_bch;
 824                nand->ecc.calculate     = omap_calculate_ecc;
 825                nand->ecc.read_page     = omap_read_page_bch;
 826                /* define ecc-layout */
 827                ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
 828                for (i = 0; i < ecclayout->eccbytes; i++)
 829                        ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
 830                ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 831                ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
 832                                                BADBLOCK_MARKER_LENGTH;
 833                break;
 834#else
 835                printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
 836                return -EINVAL;
 837#endif
 838
 839        case OMAP_ECC_BCH16_CODE_HW:
 840#ifdef CONFIG_NAND_OMAP_ELM
 841                debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
 842                /* check ecc-scheme requirements before updating ecc info */
 843                if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 844                        printf("nand: error: insufficient OOB: require=%d\n", (
 845                                (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 846                        return -EINVAL;
 847                }
 848                /* intialize ELM for ECC error detection */
 849                elm_init();
 850                /* populate ecc specific fields */
 851                nand->ecc.mode          = NAND_ECC_HW;
 852                nand->ecc.size          = SECTOR_BYTES;
 853                nand->ecc.bytes         = 26;
 854                nand->ecc.strength      = 16;
 855                nand->ecc.hwctl         = omap_enable_hwecc;
 856                nand->ecc.correct       = omap_correct_data_bch;
 857                nand->ecc.calculate     = omap_calculate_ecc;
 858                nand->ecc.read_page     = omap_read_page_bch;
 859                /* define ecc-layout */
 860                ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
 861                for (i = 0; i < ecclayout->eccbytes; i++)
 862                        ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
 863                ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 864                ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
 865                                                BADBLOCK_MARKER_LENGTH;
 866                break;
 867#else
 868                printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
 869                return -EINVAL;
 870#endif
 871        default:
 872                debug("nand: error: ecc scheme not enabled or supported\n");
 873                return -EINVAL;
 874        }
 875
 876        /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
 877        if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
 878                nand->ecc.layout = ecclayout;
 879
 880        info->ecc_scheme = ecc_scheme;
 881        return 0;
 882}
 883
 884#ifndef CONFIG_SPL_BUILD
 885/*
 886 * omap_nand_switch_ecc - switch the ECC operation between different engines
 887 * (h/w and s/w) and different algorithms (hamming and BCHx)
 888 *
 889 * @hardware            - true if one of the HW engines should be used
 890 * @eccstrength         - the number of bits that could be corrected
 891 *                        (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
 892 */
 893int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
 894{
 895        struct nand_chip *nand;
 896        struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
 897        int err = 0;
 898
 899        if (!mtd) {
 900                printf("nand: error: no NAND devices found\n");
 901                return -ENODEV;
 902        }
 903
 904        nand = mtd_to_nand(mtd);
 905        nand->options |= NAND_OWN_BUFFERS;
 906        nand->options &= ~NAND_SUBPAGE_READ;
 907        /* Setup the ecc configurations again */
 908        if (hardware) {
 909                if (eccstrength == 1) {
 910                        err = omap_select_ecc_scheme(nand,
 911                                        OMAP_ECC_HAM1_CODE_HW,
 912                                        mtd->writesize, mtd->oobsize);
 913                } else if (eccstrength == 8) {
 914                        err = omap_select_ecc_scheme(nand,
 915                                        OMAP_ECC_BCH8_CODE_HW,
 916                                        mtd->writesize, mtd->oobsize);
 917                } else if (eccstrength == 16) {
 918                        err = omap_select_ecc_scheme(nand,
 919                                        OMAP_ECC_BCH16_CODE_HW,
 920                                        mtd->writesize, mtd->oobsize);
 921                } else {
 922                        printf("nand: error: unsupported ECC scheme\n");
 923                        return -EINVAL;
 924                }
 925        } else {
 926                if (eccstrength == 1) {
 927                        err = omap_select_ecc_scheme(nand,
 928                                        OMAP_ECC_HAM1_CODE_SW,
 929                                        mtd->writesize, mtd->oobsize);
 930                } else if (eccstrength == 8) {
 931                        err = omap_select_ecc_scheme(nand,
 932                                        OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
 933                                        mtd->writesize, mtd->oobsize);
 934                } else {
 935                        printf("nand: error: unsupported ECC scheme\n");
 936                        return -EINVAL;
 937                }
 938        }
 939
 940        /* Update NAND handling after ECC mode switch */
 941        if (!err)
 942                err = nand_scan_tail(mtd);
 943        return err;
 944}
 945#endif /* CONFIG_SPL_BUILD */
 946
 947/*
 948 * Board-specific NAND initialization. The following members of the
 949 * argument are board-specific:
 950 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
 951 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
 952 * - cmd_ctrl: hardwarespecific function for accesing control-lines
 953 * - waitfunc: hardwarespecific function for accesing device ready/busy line
 954 * - ecc.hwctl: function to enable (reset) hardware ecc generator
 955 * - ecc.mode: mode of ecc, see defines
 956 * - chip_delay: chip dependent delay for transfering data from array to
 957 *   read regs (tR)
 958 * - options: various chip options. They can partly be set to inform
 959 *   nand_scan about special functionality. See the defines for further
 960 *   explanation
 961 */
 962int board_nand_init(struct nand_chip *nand)
 963{
 964        int32_t gpmc_config = 0;
 965        int cs = cs_next++;
 966        int err = 0;
 967        /*
 968         * xloader/Uboot's gpmc configuration would have configured GPMC for
 969         * nand type of memory. The following logic scans and latches on to the
 970         * first CS with NAND type memory.
 971         * TBD: need to make this logic generic to handle multiple CS NAND
 972         * devices.
 973         */
 974        while (cs < GPMC_MAX_CS) {
 975                /* Check if NAND type is set */
 976                if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
 977                        /* Found it!! */
 978                        break;
 979                }
 980                cs++;
 981        }
 982        if (cs >= GPMC_MAX_CS) {
 983                printf("nand: error: Unable to find NAND settings in "
 984                        "GPMC Configuration - quitting\n");
 985                return -ENODEV;
 986        }
 987
 988        gpmc_config = readl(&gpmc_cfg->config);
 989        /* Disable Write protect */
 990        gpmc_config |= 0x10;
 991        writel(gpmc_config, &gpmc_cfg->config);
 992
 993        nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
 994        nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
 995        omap_nand_info[cs].control = NULL;
 996        omap_nand_info[cs].cs = cs;
 997        omap_nand_info[cs].ws = wscfg[cs];
 998        nand_set_controller_data(nand, &omap_nand_info[cs]);
 999        nand->cmd_ctrl  = omap_nand_hwcontrol;
1000        nand->options   |= NAND_NO_PADDING | NAND_CACHEPRG;
1001        nand->chip_delay = 100;
1002        nand->ecc.layout = &omap_ecclayout;
1003
1004        /* configure driver and controller based on NAND device bus-width */
1005        gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
1006#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
1007        nand->options |= NAND_BUSWIDTH_16;
1008        writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
1009#else
1010        nand->options &= ~NAND_BUSWIDTH_16;
1011        writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1012#endif
1013        /* select ECC scheme */
1014#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1015        err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
1016                        CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
1017#else
1018        /* pagesize and oobsize are not required to configure sw ecc-scheme */
1019        err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1020                        0, 0);
1021#endif
1022        if (err)
1023                return err;
1024
1025#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
1026        nand->read_buf = omap_nand_read_prefetch;
1027#else
1028        if (nand->options & NAND_BUSWIDTH_16)
1029                nand->read_buf = nand_read_buf16;
1030        else
1031                nand->read_buf = nand_read_buf;
1032#endif
1033
1034        nand->dev_ready = omap_dev_ready;
1035
1036        return 0;
1037}
1038