uboot/fs/ubifs/gc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements garbage collection. The procedure for garbage collection
  13 * is different depending on whether a LEB as an index LEB (contains index
  14 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
  15 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
  16 * nodes to the journal, at which point the garbage-collected LEB is free to be
  17 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
  18 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
  19 * to be reused. Garbage collection will cause the number of dirty index nodes
  20 * to grow, however sufficient space is reserved for the index to ensure the
  21 * commit will never run out of space.
  22 *
  23 * Notes about dead watermark. At current UBIFS implementation we assume that
  24 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
  25 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
  26 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
  27 * Garbage Collector has to synchronize the GC head's write buffer before
  28 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
  29 * actually reclaim even very small pieces of dirty space by garbage collecting
  30 * enough dirty LEBs, but we do not bother doing this at this implementation.
  31 *
  32 * Notes about dark watermark. The results of GC work depends on how big are
  33 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
  34 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
  35 * have to waste large pieces of free space at the end of LEB B, because nodes
  36 * from LEB A would not fit. And the worst situation is when all nodes are of
  37 * maximum size. So dark watermark is the amount of free + dirty space in LEB
  38 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
  39 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
  40 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
  41 * good, and GC takes extra care when moving them.
  42 */
  43#ifndef __UBOOT__
  44#include <linux/slab.h>
  45#include <linux/pagemap.h>
  46#include <linux/list_sort.h>
  47#endif
  48#include "ubifs.h"
  49
  50#ifndef __UBOOT__
  51/*
  52 * GC may need to move more than one LEB to make progress. The below constants
  53 * define "soft" and "hard" limits on the number of LEBs the garbage collector
  54 * may move.
  55 */
  56#define SOFT_LEBS_LIMIT 4
  57#define HARD_LEBS_LIMIT 32
  58
  59/**
  60 * switch_gc_head - switch the garbage collection journal head.
  61 * @c: UBIFS file-system description object
  62 * @buf: buffer to write
  63 * @len: length of the buffer to write
  64 * @lnum: LEB number written is returned here
  65 * @offs: offset written is returned here
  66 *
  67 * This function switch the GC head to the next LEB which is reserved in
  68 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
  69 * and other negative error code in case of failures.
  70 */
  71static int switch_gc_head(struct ubifs_info *c)
  72{
  73        int err, gc_lnum = c->gc_lnum;
  74        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  75
  76        ubifs_assert(gc_lnum != -1);
  77        dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
  78               wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
  79               c->leb_size - wbuf->offs - wbuf->used);
  80
  81        err = ubifs_wbuf_sync_nolock(wbuf);
  82        if (err)
  83                return err;
  84
  85        /*
  86         * The GC write-buffer was synchronized, we may safely unmap
  87         * 'c->gc_lnum'.
  88         */
  89        err = ubifs_leb_unmap(c, gc_lnum);
  90        if (err)
  91                return err;
  92
  93        err = ubifs_wbuf_sync_nolock(wbuf);
  94        if (err)
  95                return err;
  96
  97        err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
  98        if (err)
  99                return err;
 100
 101        c->gc_lnum = -1;
 102        err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
 103        return err;
 104}
 105
 106/**
 107 * data_nodes_cmp - compare 2 data nodes.
 108 * @priv: UBIFS file-system description object
 109 * @a: first data node
 110 * @a: second data node
 111 *
 112 * This function compares data nodes @a and @b. Returns %1 if @a has greater
 113 * inode or block number, and %-1 otherwise.
 114 */
 115static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
 116{
 117        ino_t inuma, inumb;
 118        struct ubifs_info *c = priv;
 119        struct ubifs_scan_node *sa, *sb;
 120
 121        cond_resched();
 122        if (a == b)
 123                return 0;
 124
 125        sa = list_entry(a, struct ubifs_scan_node, list);
 126        sb = list_entry(b, struct ubifs_scan_node, list);
 127
 128        ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
 129        ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
 130        ubifs_assert(sa->type == UBIFS_DATA_NODE);
 131        ubifs_assert(sb->type == UBIFS_DATA_NODE);
 132
 133        inuma = key_inum(c, &sa->key);
 134        inumb = key_inum(c, &sb->key);
 135
 136        if (inuma == inumb) {
 137                unsigned int blka = key_block(c, &sa->key);
 138                unsigned int blkb = key_block(c, &sb->key);
 139
 140                if (blka <= blkb)
 141                        return -1;
 142        } else if (inuma <= inumb)
 143                return -1;
 144
 145        return 1;
 146}
 147
 148/*
 149 * nondata_nodes_cmp - compare 2 non-data nodes.
 150 * @priv: UBIFS file-system description object
 151 * @a: first node
 152 * @a: second node
 153 *
 154 * This function compares nodes @a and @b. It makes sure that inode nodes go
 155 * first and sorted by length in descending order. Directory entry nodes go
 156 * after inode nodes and are sorted in ascending hash valuer order.
 157 */
 158static int nondata_nodes_cmp(void *priv, struct list_head *a,
 159                             struct list_head *b)
 160{
 161        ino_t inuma, inumb;
 162        struct ubifs_info *c = priv;
 163        struct ubifs_scan_node *sa, *sb;
 164
 165        cond_resched();
 166        if (a == b)
 167                return 0;
 168
 169        sa = list_entry(a, struct ubifs_scan_node, list);
 170        sb = list_entry(b, struct ubifs_scan_node, list);
 171
 172        ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
 173                     key_type(c, &sb->key) != UBIFS_DATA_KEY);
 174        ubifs_assert(sa->type != UBIFS_DATA_NODE &&
 175                     sb->type != UBIFS_DATA_NODE);
 176
 177        /* Inodes go before directory entries */
 178        if (sa->type == UBIFS_INO_NODE) {
 179                if (sb->type == UBIFS_INO_NODE)
 180                        return sb->len - sa->len;
 181                return -1;
 182        }
 183        if (sb->type == UBIFS_INO_NODE)
 184                return 1;
 185
 186        ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
 187                     key_type(c, &sa->key) == UBIFS_XENT_KEY);
 188        ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
 189                     key_type(c, &sb->key) == UBIFS_XENT_KEY);
 190        ubifs_assert(sa->type == UBIFS_DENT_NODE ||
 191                     sa->type == UBIFS_XENT_NODE);
 192        ubifs_assert(sb->type == UBIFS_DENT_NODE ||
 193                     sb->type == UBIFS_XENT_NODE);
 194
 195        inuma = key_inum(c, &sa->key);
 196        inumb = key_inum(c, &sb->key);
 197
 198        if (inuma == inumb) {
 199                uint32_t hasha = key_hash(c, &sa->key);
 200                uint32_t hashb = key_hash(c, &sb->key);
 201
 202                if (hasha <= hashb)
 203                        return -1;
 204        } else if (inuma <= inumb)
 205                return -1;
 206
 207        return 1;
 208}
 209
 210/**
 211 * sort_nodes - sort nodes for GC.
 212 * @c: UBIFS file-system description object
 213 * @sleb: describes nodes to sort and contains the result on exit
 214 * @nondata: contains non-data nodes on exit
 215 * @min: minimum node size is returned here
 216 *
 217 * This function sorts the list of inodes to garbage collect. First of all, it
 218 * kills obsolete nodes and separates data and non-data nodes to the
 219 * @sleb->nodes and @nondata lists correspondingly.
 220 *
 221 * Data nodes are then sorted in block number order - this is important for
 222 * bulk-read; data nodes with lower inode number go before data nodes with
 223 * higher inode number, and data nodes with lower block number go before data
 224 * nodes with higher block number;
 225 *
 226 * Non-data nodes are sorted as follows.
 227 *   o First go inode nodes - they are sorted in descending length order.
 228 *   o Then go directory entry nodes - they are sorted in hash order, which
 229 *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
 230 *     inode number go before direntry nodes with higher parent inode number,
 231 *     and direntry nodes with lower name hash values go before direntry nodes
 232 *     with higher name hash values.
 233 *
 234 * This function returns zero in case of success and a negative error code in
 235 * case of failure.
 236 */
 237static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 238                      struct list_head *nondata, int *min)
 239{
 240        int err;
 241        struct ubifs_scan_node *snod, *tmp;
 242
 243        *min = INT_MAX;
 244
 245        /* Separate data nodes and non-data nodes */
 246        list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
 247                ubifs_assert(snod->type == UBIFS_INO_NODE  ||
 248                             snod->type == UBIFS_DATA_NODE ||
 249                             snod->type == UBIFS_DENT_NODE ||
 250                             snod->type == UBIFS_XENT_NODE ||
 251                             snod->type == UBIFS_TRUN_NODE);
 252
 253                if (snod->type != UBIFS_INO_NODE  &&
 254                    snod->type != UBIFS_DATA_NODE &&
 255                    snod->type != UBIFS_DENT_NODE &&
 256                    snod->type != UBIFS_XENT_NODE) {
 257                        /* Probably truncation node, zap it */
 258                        list_del(&snod->list);
 259                        kfree(snod);
 260                        continue;
 261                }
 262
 263                ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
 264                             key_type(c, &snod->key) == UBIFS_INO_KEY  ||
 265                             key_type(c, &snod->key) == UBIFS_DENT_KEY ||
 266                             key_type(c, &snod->key) == UBIFS_XENT_KEY);
 267
 268                err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
 269                                         snod->offs, 0);
 270                if (err < 0)
 271                        return err;
 272
 273                if (!err) {
 274                        /* The node is obsolete, remove it from the list */
 275                        list_del(&snod->list);
 276                        kfree(snod);
 277                        continue;
 278                }
 279
 280                if (snod->len < *min)
 281                        *min = snod->len;
 282
 283                if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
 284                        list_move_tail(&snod->list, nondata);
 285        }
 286
 287        /* Sort data and non-data nodes */
 288        list_sort(c, &sleb->nodes, &data_nodes_cmp);
 289        list_sort(c, nondata, &nondata_nodes_cmp);
 290
 291        err = dbg_check_data_nodes_order(c, &sleb->nodes);
 292        if (err)
 293                return err;
 294        err = dbg_check_nondata_nodes_order(c, nondata);
 295        if (err)
 296                return err;
 297        return 0;
 298}
 299
 300/**
 301 * move_node - move a node.
 302 * @c: UBIFS file-system description object
 303 * @sleb: describes the LEB to move nodes from
 304 * @snod: the mode to move
 305 * @wbuf: write-buffer to move node to
 306 *
 307 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
 308 * destroys @snod. Returns zero in case of success and a negative error code in
 309 * case of failure.
 310 */
 311static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 312                     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
 313{
 314        int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
 315
 316        cond_resched();
 317        err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
 318        if (err)
 319                return err;
 320
 321        err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
 322                                snod->offs, new_lnum, new_offs,
 323                                snod->len);
 324        list_del(&snod->list);
 325        kfree(snod);
 326        return err;
 327}
 328
 329/**
 330 * move_nodes - move nodes.
 331 * @c: UBIFS file-system description object
 332 * @sleb: describes the LEB to move nodes from
 333 *
 334 * This function moves valid nodes from data LEB described by @sleb to the GC
 335 * journal head. This function returns zero in case of success, %-EAGAIN if
 336 * commit is required, and other negative error codes in case of other
 337 * failures.
 338 */
 339static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
 340{
 341        int err, min;
 342        LIST_HEAD(nondata);
 343        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 344
 345        if (wbuf->lnum == -1) {
 346                /*
 347                 * The GC journal head is not set, because it is the first GC
 348                 * invocation since mount.
 349                 */
 350                err = switch_gc_head(c);
 351                if (err)
 352                        return err;
 353        }
 354
 355        err = sort_nodes(c, sleb, &nondata, &min);
 356        if (err)
 357                goto out;
 358
 359        /* Write nodes to their new location. Use the first-fit strategy */
 360        while (1) {
 361                int avail;
 362                struct ubifs_scan_node *snod, *tmp;
 363
 364                /* Move data nodes */
 365                list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
 366                        avail = c->leb_size - wbuf->offs - wbuf->used;
 367                        if  (snod->len > avail)
 368                                /*
 369                                 * Do not skip data nodes in order to optimize
 370                                 * bulk-read.
 371                                 */
 372                                break;
 373
 374                        err = move_node(c, sleb, snod, wbuf);
 375                        if (err)
 376                                goto out;
 377                }
 378
 379                /* Move non-data nodes */
 380                list_for_each_entry_safe(snod, tmp, &nondata, list) {
 381                        avail = c->leb_size - wbuf->offs - wbuf->used;
 382                        if (avail < min)
 383                                break;
 384
 385                        if  (snod->len > avail) {
 386                                /*
 387                                 * Keep going only if this is an inode with
 388                                 * some data. Otherwise stop and switch the GC
 389                                 * head. IOW, we assume that data-less inode
 390                                 * nodes and direntry nodes are roughly of the
 391                                 * same size.
 392                                 */
 393                                if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
 394                                    snod->len == UBIFS_INO_NODE_SZ)
 395                                        break;
 396                                continue;
 397                        }
 398
 399                        err = move_node(c, sleb, snod, wbuf);
 400                        if (err)
 401                                goto out;
 402                }
 403
 404                if (list_empty(&sleb->nodes) && list_empty(&nondata))
 405                        break;
 406
 407                /*
 408                 * Waste the rest of the space in the LEB and switch to the
 409                 * next LEB.
 410                 */
 411                err = switch_gc_head(c);
 412                if (err)
 413                        goto out;
 414        }
 415
 416        return 0;
 417
 418out:
 419        list_splice_tail(&nondata, &sleb->nodes);
 420        return err;
 421}
 422
 423/**
 424 * gc_sync_wbufs - sync write-buffers for GC.
 425 * @c: UBIFS file-system description object
 426 *
 427 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
 428 * be in a write-buffer instead. That is, a node could be written to a
 429 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
 430 * erased before the write-buffer is sync'd and then there is an unclean
 431 * unmount, then an existing node is lost. To avoid this, we sync all
 432 * write-buffers.
 433 *
 434 * This function returns %0 on success or a negative error code on failure.
 435 */
 436static int gc_sync_wbufs(struct ubifs_info *c)
 437{
 438        int err, i;
 439
 440        for (i = 0; i < c->jhead_cnt; i++) {
 441                if (i == GCHD)
 442                        continue;
 443                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 444                if (err)
 445                        return err;
 446        }
 447        return 0;
 448}
 449
 450/**
 451 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
 452 * @c: UBIFS file-system description object
 453 * @lp: describes the LEB to garbage collect
 454 *
 455 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
 456 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
 457 * required, and other negative error codes in case of failures.
 458 */
 459int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
 460{
 461        struct ubifs_scan_leb *sleb;
 462        struct ubifs_scan_node *snod;
 463        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 464        int err = 0, lnum = lp->lnum;
 465
 466        ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
 467                     c->need_recovery);
 468        ubifs_assert(c->gc_lnum != lnum);
 469        ubifs_assert(wbuf->lnum != lnum);
 470
 471        if (lp->free + lp->dirty == c->leb_size) {
 472                /* Special case - a free LEB  */
 473                dbg_gc("LEB %d is free, return it", lp->lnum);
 474                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 475
 476                if (lp->free != c->leb_size) {
 477                        /*
 478                         * Write buffers must be sync'd before unmapping
 479                         * freeable LEBs, because one of them may contain data
 480                         * which obsoletes something in 'lp->pnum'.
 481                         */
 482                        err = gc_sync_wbufs(c);
 483                        if (err)
 484                                return err;
 485                        err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
 486                                                  0, 0, 0, 0);
 487                        if (err)
 488                                return err;
 489                }
 490                err = ubifs_leb_unmap(c, lp->lnum);
 491                if (err)
 492                        return err;
 493
 494                if (c->gc_lnum == -1) {
 495                        c->gc_lnum = lnum;
 496                        return LEB_RETAINED;
 497                }
 498
 499                return LEB_FREED;
 500        }
 501
 502        /*
 503         * We scan the entire LEB even though we only really need to scan up to
 504         * (c->leb_size - lp->free).
 505         */
 506        sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
 507        if (IS_ERR(sleb))
 508                return PTR_ERR(sleb);
 509
 510        ubifs_assert(!list_empty(&sleb->nodes));
 511        snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 512
 513        if (snod->type == UBIFS_IDX_NODE) {
 514                struct ubifs_gced_idx_leb *idx_gc;
 515
 516                dbg_gc("indexing LEB %d (free %d, dirty %d)",
 517                       lnum, lp->free, lp->dirty);
 518                list_for_each_entry(snod, &sleb->nodes, list) {
 519                        struct ubifs_idx_node *idx = snod->node;
 520                        int level = le16_to_cpu(idx->level);
 521
 522                        ubifs_assert(snod->type == UBIFS_IDX_NODE);
 523                        key_read(c, ubifs_idx_key(c, idx), &snod->key);
 524                        err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
 525                                                   snod->offs);
 526                        if (err)
 527                                goto out;
 528                }
 529
 530                idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 531                if (!idx_gc) {
 532                        err = -ENOMEM;
 533                        goto out;
 534                }
 535
 536                idx_gc->lnum = lnum;
 537                idx_gc->unmap = 0;
 538                list_add(&idx_gc->list, &c->idx_gc);
 539
 540                /*
 541                 * Don't release the LEB until after the next commit, because
 542                 * it may contain data which is needed for recovery. So
 543                 * although we freed this LEB, it will become usable only after
 544                 * the commit.
 545                 */
 546                err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
 547                                          LPROPS_INDEX, 1);
 548                if (err)
 549                        goto out;
 550                err = LEB_FREED_IDX;
 551        } else {
 552                dbg_gc("data LEB %d (free %d, dirty %d)",
 553                       lnum, lp->free, lp->dirty);
 554
 555                err = move_nodes(c, sleb);
 556                if (err)
 557                        goto out_inc_seq;
 558
 559                err = gc_sync_wbufs(c);
 560                if (err)
 561                        goto out_inc_seq;
 562
 563                err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
 564                if (err)
 565                        goto out_inc_seq;
 566
 567                /* Allow for races with TNC */
 568                c->gced_lnum = lnum;
 569                smp_wmb();
 570                c->gc_seq += 1;
 571                smp_wmb();
 572
 573                if (c->gc_lnum == -1) {
 574                        c->gc_lnum = lnum;
 575                        err = LEB_RETAINED;
 576                } else {
 577                        err = ubifs_wbuf_sync_nolock(wbuf);
 578                        if (err)
 579                                goto out;
 580
 581                        err = ubifs_leb_unmap(c, lnum);
 582                        if (err)
 583                                goto out;
 584
 585                        err = LEB_FREED;
 586                }
 587        }
 588
 589out:
 590        ubifs_scan_destroy(sleb);
 591        return err;
 592
 593out_inc_seq:
 594        /* We may have moved at least some nodes so allow for races with TNC */
 595        c->gced_lnum = lnum;
 596        smp_wmb();
 597        c->gc_seq += 1;
 598        smp_wmb();
 599        goto out;
 600}
 601
 602/**
 603 * ubifs_garbage_collect - UBIFS garbage collector.
 604 * @c: UBIFS file-system description object
 605 * @anyway: do GC even if there are free LEBs
 606 *
 607 * This function does out-of-place garbage collection. The return codes are:
 608 *   o positive LEB number if the LEB has been freed and may be used;
 609 *   o %-EAGAIN if the caller has to run commit;
 610 *   o %-ENOSPC if GC failed to make any progress;
 611 *   o other negative error codes in case of other errors.
 612 *
 613 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
 614 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
 615 * commit may be required. But commit cannot be run from inside GC, because the
 616 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
 617 * And this error code means that the caller has to run commit, and re-run GC
 618 * if there is still no free space.
 619 *
 620 * There are many reasons why this function may return %-EAGAIN:
 621 * o the log is full and there is no space to write an LEB reference for
 622 *   @c->gc_lnum;
 623 * o the journal is too large and exceeds size limitations;
 624 * o GC moved indexing LEBs, but they can be used only after the commit;
 625 * o the shrinker fails to find clean znodes to free and requests the commit;
 626 * o etc.
 627 *
 628 * Note, if the file-system is close to be full, this function may return
 629 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
 630 * the function. E.g., this happens if the limits on the journal size are too
 631 * tough and GC writes too much to the journal before an LEB is freed. This
 632 * might also mean that the journal is too large, and the TNC becomes to big,
 633 * so that the shrinker is constantly called, finds not clean znodes to free,
 634 * and requests commit. Well, this may also happen if the journal is all right,
 635 * but another kernel process consumes too much memory. Anyway, infinite
 636 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
 637 */
 638int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
 639{
 640        int i, err, ret, min_space = c->dead_wm;
 641        struct ubifs_lprops lp;
 642        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 643
 644        ubifs_assert_cmt_locked(c);
 645        ubifs_assert(!c->ro_media && !c->ro_mount);
 646
 647        if (ubifs_gc_should_commit(c))
 648                return -EAGAIN;
 649
 650        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 651
 652        if (c->ro_error) {
 653                ret = -EROFS;
 654                goto out_unlock;
 655        }
 656
 657        /* We expect the write-buffer to be empty on entry */
 658        ubifs_assert(!wbuf->used);
 659
 660        for (i = 0; ; i++) {
 661                int space_before, space_after;
 662
 663                cond_resched();
 664
 665                /* Give the commit an opportunity to run */
 666                if (ubifs_gc_should_commit(c)) {
 667                        ret = -EAGAIN;
 668                        break;
 669                }
 670
 671                if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
 672                        /*
 673                         * We've done enough iterations. Indexing LEBs were
 674                         * moved and will be available after the commit.
 675                         */
 676                        dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
 677                        ubifs_commit_required(c);
 678                        ret = -EAGAIN;
 679                        break;
 680                }
 681
 682                if (i > HARD_LEBS_LIMIT) {
 683                        /*
 684                         * We've moved too many LEBs and have not made
 685                         * progress, give up.
 686                         */
 687                        dbg_gc("hard limit, -ENOSPC");
 688                        ret = -ENOSPC;
 689                        break;
 690                }
 691
 692                /*
 693                 * Empty and freeable LEBs can turn up while we waited for
 694                 * the wbuf lock, or while we have been running GC. In that
 695                 * case, we should just return one of those instead of
 696                 * continuing to GC dirty LEBs. Hence we request
 697                 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
 698                 */
 699                ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
 700                if (ret) {
 701                        if (ret == -ENOSPC)
 702                                dbg_gc("no more dirty LEBs");
 703                        break;
 704                }
 705
 706                dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
 707                       lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
 708                       min_space);
 709
 710                space_before = c->leb_size - wbuf->offs - wbuf->used;
 711                if (wbuf->lnum == -1)
 712                        space_before = 0;
 713
 714                ret = ubifs_garbage_collect_leb(c, &lp);
 715                if (ret < 0) {
 716                        if (ret == -EAGAIN) {
 717                                /*
 718                                 * This is not error, so we have to return the
 719                                 * LEB to lprops. But if 'ubifs_return_leb()'
 720                                 * fails, its failure code is propagated to the
 721                                 * caller instead of the original '-EAGAIN'.
 722                                 */
 723                                err = ubifs_return_leb(c, lp.lnum);
 724                                if (err)
 725                                        ret = err;
 726                                break;
 727                        }
 728                        goto out;
 729                }
 730
 731                if (ret == LEB_FREED) {
 732                        /* An LEB has been freed and is ready for use */
 733                        dbg_gc("LEB %d freed, return", lp.lnum);
 734                        ret = lp.lnum;
 735                        break;
 736                }
 737
 738                if (ret == LEB_FREED_IDX) {
 739                        /*
 740                         * This was an indexing LEB and it cannot be
 741                         * immediately used. And instead of requesting the
 742                         * commit straight away, we try to garbage collect some
 743                         * more.
 744                         */
 745                        dbg_gc("indexing LEB %d freed, continue", lp.lnum);
 746                        continue;
 747                }
 748
 749                ubifs_assert(ret == LEB_RETAINED);
 750                space_after = c->leb_size - wbuf->offs - wbuf->used;
 751                dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
 752                       space_after - space_before);
 753
 754                if (space_after > space_before) {
 755                        /* GC makes progress, keep working */
 756                        min_space >>= 1;
 757                        if (min_space < c->dead_wm)
 758                                min_space = c->dead_wm;
 759                        continue;
 760                }
 761
 762                dbg_gc("did not make progress");
 763
 764                /*
 765                 * GC moved an LEB bud have not done any progress. This means
 766                 * that the previous GC head LEB contained too few free space
 767                 * and the LEB which was GC'ed contained only large nodes which
 768                 * did not fit that space.
 769                 *
 770                 * We can do 2 things:
 771                 * 1. pick another LEB in a hope it'll contain a small node
 772                 *    which will fit the space we have at the end of current GC
 773                 *    head LEB, but there is no guarantee, so we try this out
 774                 *    unless we have already been working for too long;
 775                 * 2. request an LEB with more dirty space, which will force
 776                 *    'ubifs_find_dirty_leb()' to start scanning the lprops
 777                 *    table, instead of just picking one from the heap
 778                 *    (previously it already picked the dirtiest LEB).
 779                 */
 780                if (i < SOFT_LEBS_LIMIT) {
 781                        dbg_gc("try again");
 782                        continue;
 783                }
 784
 785                min_space <<= 1;
 786                if (min_space > c->dark_wm)
 787                        min_space = c->dark_wm;
 788                dbg_gc("set min. space to %d", min_space);
 789        }
 790
 791        if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
 792                dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
 793                ubifs_commit_required(c);
 794                ret = -EAGAIN;
 795        }
 796
 797        err = ubifs_wbuf_sync_nolock(wbuf);
 798        if (!err)
 799                err = ubifs_leb_unmap(c, c->gc_lnum);
 800        if (err) {
 801                ret = err;
 802                goto out;
 803        }
 804out_unlock:
 805        mutex_unlock(&wbuf->io_mutex);
 806        return ret;
 807
 808out:
 809        ubifs_assert(ret < 0);
 810        ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
 811        ubifs_wbuf_sync_nolock(wbuf);
 812        ubifs_ro_mode(c, ret);
 813        mutex_unlock(&wbuf->io_mutex);
 814        ubifs_return_leb(c, lp.lnum);
 815        return ret;
 816}
 817
 818/**
 819 * ubifs_gc_start_commit - garbage collection at start of commit.
 820 * @c: UBIFS file-system description object
 821 *
 822 * If a LEB has only dirty and free space, then we may safely unmap it and make
 823 * it free.  Note, we cannot do this with indexing LEBs because dirty space may
 824 * correspond index nodes that are required for recovery.  In that case, the
 825 * LEB cannot be unmapped until after the next commit.
 826 *
 827 * This function returns %0 upon success and a negative error code upon failure.
 828 */
 829int ubifs_gc_start_commit(struct ubifs_info *c)
 830{
 831        struct ubifs_gced_idx_leb *idx_gc;
 832        const struct ubifs_lprops *lp;
 833        int err = 0, flags;
 834
 835        ubifs_get_lprops(c);
 836
 837        /*
 838         * Unmap (non-index) freeable LEBs. Note that recovery requires that all
 839         * wbufs are sync'd before this, which is done in 'do_commit()'.
 840         */
 841        while (1) {
 842                lp = ubifs_fast_find_freeable(c);
 843                if (IS_ERR(lp)) {
 844                        err = PTR_ERR(lp);
 845                        goto out;
 846                }
 847                if (!lp)
 848                        break;
 849                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 850                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 851                err = ubifs_leb_unmap(c, lp->lnum);
 852                if (err)
 853                        goto out;
 854                lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
 855                if (IS_ERR(lp)) {
 856                        err = PTR_ERR(lp);
 857                        goto out;
 858                }
 859                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 860                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 861        }
 862
 863        /* Mark GC'd index LEBs OK to unmap after this commit finishes */
 864        list_for_each_entry(idx_gc, &c->idx_gc, list)
 865                idx_gc->unmap = 1;
 866
 867        /* Record index freeable LEBs for unmapping after commit */
 868        while (1) {
 869                lp = ubifs_fast_find_frdi_idx(c);
 870                if (IS_ERR(lp)) {
 871                        err = PTR_ERR(lp);
 872                        goto out;
 873                }
 874                if (!lp)
 875                        break;
 876                idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 877                if (!idx_gc) {
 878                        err = -ENOMEM;
 879                        goto out;
 880                }
 881                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 882                ubifs_assert(lp->flags & LPROPS_INDEX);
 883                /* Don't release the LEB until after the next commit */
 884                flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
 885                lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
 886                if (IS_ERR(lp)) {
 887                        err = PTR_ERR(lp);
 888                        kfree(idx_gc);
 889                        goto out;
 890                }
 891                ubifs_assert(lp->flags & LPROPS_TAKEN);
 892                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 893                idx_gc->lnum = lp->lnum;
 894                idx_gc->unmap = 1;
 895                list_add(&idx_gc->list, &c->idx_gc);
 896        }
 897out:
 898        ubifs_release_lprops(c);
 899        return err;
 900}
 901
 902/**
 903 * ubifs_gc_end_commit - garbage collection at end of commit.
 904 * @c: UBIFS file-system description object
 905 *
 906 * This function completes out-of-place garbage collection of index LEBs.
 907 */
 908int ubifs_gc_end_commit(struct ubifs_info *c)
 909{
 910        struct ubifs_gced_idx_leb *idx_gc, *tmp;
 911        struct ubifs_wbuf *wbuf;
 912        int err = 0;
 913
 914        wbuf = &c->jheads[GCHD].wbuf;
 915        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 916        list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
 917                if (idx_gc->unmap) {
 918                        dbg_gc("LEB %d", idx_gc->lnum);
 919                        err = ubifs_leb_unmap(c, idx_gc->lnum);
 920                        if (err)
 921                                goto out;
 922                        err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
 923                                          LPROPS_NC, 0, LPROPS_TAKEN, -1);
 924                        if (err)
 925                                goto out;
 926                        list_del(&idx_gc->list);
 927                        kfree(idx_gc);
 928                }
 929out:
 930        mutex_unlock(&wbuf->io_mutex);
 931        return err;
 932}
 933#endif
 934/**
 935 * ubifs_destroy_idx_gc - destroy idx_gc list.
 936 * @c: UBIFS file-system description object
 937 *
 938 * This function destroys the @c->idx_gc list. It is called when unmounting
 939 * so locks are not needed. Returns zero in case of success and a negative
 940 * error code in case of failure.
 941 */
 942void ubifs_destroy_idx_gc(struct ubifs_info *c)
 943{
 944        while (!list_empty(&c->idx_gc)) {
 945                struct ubifs_gced_idx_leb *idx_gc;
 946
 947                idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
 948                                    list);
 949                c->idx_gc_cnt -= 1;
 950                list_del(&idx_gc->list);
 951                kfree(idx_gc);
 952        }
 953}
 954#ifndef __UBOOT__
 955/**
 956 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
 957 * @c: UBIFS file-system description object
 958 *
 959 * Called during start commit so locks are not needed.
 960 */
 961int ubifs_get_idx_gc_leb(struct ubifs_info *c)
 962{
 963        struct ubifs_gced_idx_leb *idx_gc;
 964        int lnum;
 965
 966        if (list_empty(&c->idx_gc))
 967                return -ENOSPC;
 968        idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
 969        lnum = idx_gc->lnum;
 970        /* c->idx_gc_cnt is updated by the caller when lprops are updated */
 971        list_del(&idx_gc->list);
 972        kfree(idx_gc);
 973        return lnum;
 974}
 975#endif
 976