uboot/drivers/ddr/altera/sequencer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: BSD-3-Clause
   2/*
   3 * Copyright Altera Corporation (C) 2012-2015
   4 */
   5
   6#include <common.h>
   7#include <asm/io.h>
   8#include <asm/arch/sdram.h>
   9#include <errno.h>
  10#include "sequencer.h"
  11
  12static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
  13        (struct socfpga_sdr_rw_load_manager *)
  14                (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
  15static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
  16        (struct socfpga_sdr_rw_load_jump_manager *)
  17                (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
  18static struct socfpga_sdr_reg_file *sdr_reg_file =
  19        (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
  20static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
  21        (struct socfpga_sdr_scc_mgr *)
  22                (SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
  23static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
  24        (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
  25static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
  26        (struct socfpga_phy_mgr_cfg *)
  27                (SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
  28static struct socfpga_data_mgr *data_mgr =
  29        (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
  30static struct socfpga_sdr_ctrl *sdr_ctrl =
  31        (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
  32
  33const struct socfpga_sdram_rw_mgr_config *rwcfg;
  34const struct socfpga_sdram_io_config *iocfg;
  35const struct socfpga_sdram_misc_config *misccfg;
  36
  37#define DELTA_D         1
  38
  39/*
  40 * In order to reduce ROM size, most of the selectable calibration steps are
  41 * decided at compile time based on the user's calibration mode selection,
  42 * as captured by the STATIC_CALIB_STEPS selection below.
  43 *
  44 * However, to support simulation-time selection of fast simulation mode, where
  45 * we skip everything except the bare minimum, we need a few of the steps to
  46 * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
  47 * check, which is based on the rtl-supplied value, or we dynamically compute
  48 * the value to use based on the dynamically-chosen calibration mode
  49 */
  50
  51#define DLEVEL 0
  52#define STATIC_IN_RTL_SIM 0
  53#define STATIC_SKIP_DELAY_LOOPS 0
  54
  55#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
  56        STATIC_SKIP_DELAY_LOOPS)
  57
  58/* calibration steps requested by the rtl */
  59static u16 dyn_calib_steps;
  60
  61/*
  62 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
  63 * instead of static, we use boolean logic to select between
  64 * non-skip and skip values
  65 *
  66 * The mask is set to include all bits when not-skipping, but is
  67 * zero when skipping
  68 */
  69
  70static u16 skip_delay_mask;     /* mask off bits when skipping/not-skipping */
  71
  72#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
  73        ((non_skip_value) & skip_delay_mask)
  74
  75static struct gbl_type *gbl;
  76static struct param_type *param;
  77
  78static void set_failing_group_stage(u32 group, u32 stage,
  79        u32 substage)
  80{
  81        /*
  82         * Only set the global stage if there was not been any other
  83         * failing group
  84         */
  85        if (gbl->error_stage == CAL_STAGE_NIL)  {
  86                gbl->error_substage = substage;
  87                gbl->error_stage = stage;
  88                gbl->error_group = group;
  89        }
  90}
  91
  92static void reg_file_set_group(u16 set_group)
  93{
  94        clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
  95}
  96
  97static void reg_file_set_stage(u8 set_stage)
  98{
  99        clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
 100}
 101
 102static void reg_file_set_sub_stage(u8 set_sub_stage)
 103{
 104        set_sub_stage &= 0xff;
 105        clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
 106}
 107
 108/**
 109 * phy_mgr_initialize() - Initialize PHY Manager
 110 *
 111 * Initialize PHY Manager.
 112 */
 113static void phy_mgr_initialize(void)
 114{
 115        u32 ratio;
 116
 117        debug("%s:%d\n", __func__, __LINE__);
 118        /* Calibration has control over path to memory */
 119        /*
 120         * In Hard PHY this is a 2-bit control:
 121         * 0: AFI Mux Select
 122         * 1: DDIO Mux Select
 123         */
 124        writel(0x3, &phy_mgr_cfg->mux_sel);
 125
 126        /* USER memory clock is not stable we begin initialization  */
 127        writel(0, &phy_mgr_cfg->reset_mem_stbl);
 128
 129        /* USER calibration status all set to zero */
 130        writel(0, &phy_mgr_cfg->cal_status);
 131
 132        writel(0, &phy_mgr_cfg->cal_debug_info);
 133
 134        /* Init params only if we do NOT skip calibration. */
 135        if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
 136                return;
 137
 138        ratio = rwcfg->mem_dq_per_read_dqs /
 139                rwcfg->mem_virtual_groups_per_read_dqs;
 140        param->read_correct_mask_vg = (1 << ratio) - 1;
 141        param->write_correct_mask_vg = (1 << ratio) - 1;
 142        param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
 143        param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
 144}
 145
 146/**
 147 * set_rank_and_odt_mask() - Set Rank and ODT mask
 148 * @rank:       Rank mask
 149 * @odt_mode:   ODT mode, OFF or READ_WRITE
 150 *
 151 * Set Rank and ODT mask (On-Die Termination).
 152 */
 153static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
 154{
 155        u32 odt_mask_0 = 0;
 156        u32 odt_mask_1 = 0;
 157        u32 cs_and_odt_mask;
 158
 159        if (odt_mode == RW_MGR_ODT_MODE_OFF) {
 160                odt_mask_0 = 0x0;
 161                odt_mask_1 = 0x0;
 162        } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
 163                switch (rwcfg->mem_number_of_ranks) {
 164                case 1: /* 1 Rank */
 165                        /* Read: ODT = 0 ; Write: ODT = 1 */
 166                        odt_mask_0 = 0x0;
 167                        odt_mask_1 = 0x1;
 168                        break;
 169                case 2: /* 2 Ranks */
 170                        if (rwcfg->mem_number_of_cs_per_dimm == 1) {
 171                                /*
 172                                 * - Dual-Slot , Single-Rank (1 CS per DIMM)
 173                                 *   OR
 174                                 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
 175                                 *
 176                                 * Since MEM_NUMBER_OF_RANKS is 2, they
 177                                 * are both single rank with 2 CS each
 178                                 * (special for RDIMM).
 179                                 *
 180                                 * Read: Turn on ODT on the opposite rank
 181                                 * Write: Turn on ODT on all ranks
 182                                 */
 183                                odt_mask_0 = 0x3 & ~(1 << rank);
 184                                odt_mask_1 = 0x3;
 185                        } else {
 186                                /*
 187                                 * - Single-Slot , Dual-Rank (2 CS per DIMM)
 188                                 *
 189                                 * Read: Turn on ODT off on all ranks
 190                                 * Write: Turn on ODT on active rank
 191                                 */
 192                                odt_mask_0 = 0x0;
 193                                odt_mask_1 = 0x3 & (1 << rank);
 194                        }
 195                        break;
 196                case 4: /* 4 Ranks */
 197                        /* Read:
 198                         * ----------+-----------------------+
 199                         *           |         ODT           |
 200                         * Read From +-----------------------+
 201                         *   Rank    |  3  |  2  |  1  |  0  |
 202                         * ----------+-----+-----+-----+-----+
 203                         *     0     |  0  |  1  |  0  |  0  |
 204                         *     1     |  1  |  0  |  0  |  0  |
 205                         *     2     |  0  |  0  |  0  |  1  |
 206                         *     3     |  0  |  0  |  1  |  0  |
 207                         * ----------+-----+-----+-----+-----+
 208                         *
 209                         * Write:
 210                         * ----------+-----------------------+
 211                         *           |         ODT           |
 212                         * Write To  +-----------------------+
 213                         *   Rank    |  3  |  2  |  1  |  0  |
 214                         * ----------+-----+-----+-----+-----+
 215                         *     0     |  0  |  1  |  0  |  1  |
 216                         *     1     |  1  |  0  |  1  |  0  |
 217                         *     2     |  0  |  1  |  0  |  1  |
 218                         *     3     |  1  |  0  |  1  |  0  |
 219                         * ----------+-----+-----+-----+-----+
 220                         */
 221                        switch (rank) {
 222                        case 0:
 223                                odt_mask_0 = 0x4;
 224                                odt_mask_1 = 0x5;
 225                                break;
 226                        case 1:
 227                                odt_mask_0 = 0x8;
 228                                odt_mask_1 = 0xA;
 229                                break;
 230                        case 2:
 231                                odt_mask_0 = 0x1;
 232                                odt_mask_1 = 0x5;
 233                                break;
 234                        case 3:
 235                                odt_mask_0 = 0x2;
 236                                odt_mask_1 = 0xA;
 237                                break;
 238                        }
 239                        break;
 240                }
 241        }
 242
 243        cs_and_odt_mask = (0xFF & ~(1 << rank)) |
 244                          ((0xFF & odt_mask_0) << 8) |
 245                          ((0xFF & odt_mask_1) << 16);
 246        writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 247                                RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
 248}
 249
 250/**
 251 * scc_mgr_set() - Set SCC Manager register
 252 * @off:        Base offset in SCC Manager space
 253 * @grp:        Read/Write group
 254 * @val:        Value to be set
 255 *
 256 * This function sets the SCC Manager (Scan Chain Control Manager) register.
 257 */
 258static void scc_mgr_set(u32 off, u32 grp, u32 val)
 259{
 260        writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
 261}
 262
 263/**
 264 * scc_mgr_initialize() - Initialize SCC Manager registers
 265 *
 266 * Initialize SCC Manager registers.
 267 */
 268static void scc_mgr_initialize(void)
 269{
 270        /*
 271         * Clear register file for HPS. 16 (2^4) is the size of the
 272         * full register file in the scc mgr:
 273         *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
 274         *                             MEM_IF_READ_DQS_WIDTH - 1);
 275         */
 276        int i;
 277
 278        for (i = 0; i < 16; i++) {
 279                debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
 280                           __func__, __LINE__, i);
 281                scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
 282        }
 283}
 284
 285static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
 286{
 287        scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
 288}
 289
 290static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
 291{
 292        scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
 293}
 294
 295static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
 296{
 297        scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
 298}
 299
 300static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
 301{
 302        scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
 303}
 304
 305static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
 306{
 307        scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
 308}
 309
 310static void scc_mgr_set_dqs_io_in_delay(u32 delay)
 311{
 312        scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
 313                    delay);
 314}
 315
 316static void scc_mgr_set_dm_in_delay(u32 dm, u32 delay)
 317{
 318        scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
 319                    rwcfg->mem_dq_per_write_dqs + 1 + dm,
 320                    delay);
 321}
 322
 323static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
 324{
 325        scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
 326}
 327
 328static void scc_mgr_set_dqs_out1_delay(u32 delay)
 329{
 330        scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
 331                    delay);
 332}
 333
 334static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay)
 335{
 336        scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
 337                    rwcfg->mem_dq_per_write_dqs + 1 + dm,
 338                    delay);
 339}
 340
 341/* load up dqs config settings */
 342static void scc_mgr_load_dqs(u32 dqs)
 343{
 344        writel(dqs, &sdr_scc_mgr->dqs_ena);
 345}
 346
 347/* load up dqs io config settings */
 348static void scc_mgr_load_dqs_io(void)
 349{
 350        writel(0, &sdr_scc_mgr->dqs_io_ena);
 351}
 352
 353/* load up dq config settings */
 354static void scc_mgr_load_dq(u32 dq_in_group)
 355{
 356        writel(dq_in_group, &sdr_scc_mgr->dq_ena);
 357}
 358
 359/* load up dm config settings */
 360static void scc_mgr_load_dm(u32 dm)
 361{
 362        writel(dm, &sdr_scc_mgr->dm_ena);
 363}
 364
 365/**
 366 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
 367 * @off:        Base offset in SCC Manager space
 368 * @grp:        Read/Write group
 369 * @val:        Value to be set
 370 * @update:     If non-zero, trigger SCC Manager update for all ranks
 371 *
 372 * This function sets the SCC Manager (Scan Chain Control Manager) register
 373 * and optionally triggers the SCC update for all ranks.
 374 */
 375static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
 376                                  const int update)
 377{
 378        u32 r;
 379
 380        for (r = 0; r < rwcfg->mem_number_of_ranks;
 381             r += NUM_RANKS_PER_SHADOW_REG) {
 382                scc_mgr_set(off, grp, val);
 383
 384                if (update || (r == 0)) {
 385                        writel(grp, &sdr_scc_mgr->dqs_ena);
 386                        writel(0, &sdr_scc_mgr->update);
 387                }
 388        }
 389}
 390
 391static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
 392{
 393        /*
 394         * USER although the h/w doesn't support different phases per
 395         * shadow register, for simplicity our scc manager modeling
 396         * keeps different phase settings per shadow reg, and it's
 397         * important for us to keep them in sync to match h/w.
 398         * for efficiency, the scan chain update should occur only
 399         * once to sr0.
 400         */
 401        scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
 402                              read_group, phase, 0);
 403}
 404
 405static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,
 406                                                     u32 phase)
 407{
 408        /*
 409         * USER although the h/w doesn't support different phases per
 410         * shadow register, for simplicity our scc manager modeling
 411         * keeps different phase settings per shadow reg, and it's
 412         * important for us to keep them in sync to match h/w.
 413         * for efficiency, the scan chain update should occur only
 414         * once to sr0.
 415         */
 416        scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
 417                              write_group, phase, 0);
 418}
 419
 420static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,
 421                                               u32 delay)
 422{
 423        /*
 424         * In shadow register mode, the T11 settings are stored in
 425         * registers in the core, which are updated by the DQS_ENA
 426         * signals. Not issuing the SCC_MGR_UPD command allows us to
 427         * save lots of rank switching overhead, by calling
 428         * select_shadow_regs_for_update with update_scan_chains
 429         * set to 0.
 430         */
 431        scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
 432                              read_group, delay, 1);
 433}
 434
 435/**
 436 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
 437 * @write_group:        Write group
 438 * @delay:              Delay value
 439 *
 440 * This function sets the OCT output delay in SCC manager.
 441 */
 442static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
 443{
 444        const int ratio = rwcfg->mem_if_read_dqs_width /
 445                          rwcfg->mem_if_write_dqs_width;
 446        const int base = write_group * ratio;
 447        int i;
 448        /*
 449         * Load the setting in the SCC manager
 450         * Although OCT affects only write data, the OCT delay is controlled
 451         * by the DQS logic block which is instantiated once per read group.
 452         * For protocols where a write group consists of multiple read groups,
 453         * the setting must be set multiple times.
 454         */
 455        for (i = 0; i < ratio; i++)
 456                scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
 457}
 458
 459/**
 460 * scc_mgr_set_hhp_extras() - Set HHP extras.
 461 *
 462 * Load the fixed setting in the SCC manager HHP extras.
 463 */
 464static void scc_mgr_set_hhp_extras(void)
 465{
 466        /*
 467         * Load the fixed setting in the SCC manager
 468         * bits: 0:0 = 1'b1     - DQS bypass
 469         * bits: 1:1 = 1'b1     - DQ bypass
 470         * bits: 4:2 = 3'b001   - rfifo_mode
 471         * bits: 6:5 = 2'b01    - rfifo clock_select
 472         * bits: 7:7 = 1'b0     - separate gating from ungating setting
 473         * bits: 8:8 = 1'b0     - separate OE from Output delay setting
 474         */
 475        const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
 476                          (1 << 2) | (1 << 1) | (1 << 0);
 477        const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
 478                         SCC_MGR_HHP_GLOBALS_OFFSET |
 479                         SCC_MGR_HHP_EXTRAS_OFFSET;
 480
 481        debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
 482                   __func__, __LINE__);
 483        writel(value, addr);
 484        debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
 485                   __func__, __LINE__);
 486}
 487
 488/**
 489 * scc_mgr_zero_all() - Zero all DQS config
 490 *
 491 * Zero all DQS config.
 492 */
 493static void scc_mgr_zero_all(void)
 494{
 495        int i, r;
 496
 497        /*
 498         * USER Zero all DQS config settings, across all groups and all
 499         * shadow registers
 500         */
 501        for (r = 0; r < rwcfg->mem_number_of_ranks;
 502             r += NUM_RANKS_PER_SHADOW_REG) {
 503                for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
 504                        /*
 505                         * The phases actually don't exist on a per-rank basis,
 506                         * but there's no harm updating them several times, so
 507                         * let's keep the code simple.
 508                         */
 509                        scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
 510                        scc_mgr_set_dqs_en_phase(i, 0);
 511                        scc_mgr_set_dqs_en_delay(i, 0);
 512                }
 513
 514                for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
 515                        scc_mgr_set_dqdqs_output_phase(i, 0);
 516                        /* Arria V/Cyclone V don't have out2. */
 517                        scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
 518                }
 519        }
 520
 521        /* Multicast to all DQS group enables. */
 522        writel(0xff, &sdr_scc_mgr->dqs_ena);
 523        writel(0, &sdr_scc_mgr->update);
 524}
 525
 526/**
 527 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
 528 * @write_group:        Write group
 529 *
 530 * Set bypass mode and trigger SCC update.
 531 */
 532static void scc_set_bypass_mode(const u32 write_group)
 533{
 534        /* Multicast to all DQ enables. */
 535        writel(0xff, &sdr_scc_mgr->dq_ena);
 536        writel(0xff, &sdr_scc_mgr->dm_ena);
 537
 538        /* Update current DQS IO enable. */
 539        writel(0, &sdr_scc_mgr->dqs_io_ena);
 540
 541        /* Update the DQS logic. */
 542        writel(write_group, &sdr_scc_mgr->dqs_ena);
 543
 544        /* Hit update. */
 545        writel(0, &sdr_scc_mgr->update);
 546}
 547
 548/**
 549 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
 550 * @write_group:        Write group
 551 *
 552 * Load DQS settings for Write Group, do not trigger SCC update.
 553 */
 554static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
 555{
 556        const int ratio = rwcfg->mem_if_read_dqs_width /
 557                          rwcfg->mem_if_write_dqs_width;
 558        const int base = write_group * ratio;
 559        int i;
 560        /*
 561         * Load the setting in the SCC manager
 562         * Although OCT affects only write data, the OCT delay is controlled
 563         * by the DQS logic block which is instantiated once per read group.
 564         * For protocols where a write group consists of multiple read groups,
 565         * the setting must be set multiple times.
 566         */
 567        for (i = 0; i < ratio; i++)
 568                writel(base + i, &sdr_scc_mgr->dqs_ena);
 569}
 570
 571/**
 572 * scc_mgr_zero_group() - Zero all configs for a group
 573 *
 574 * Zero DQ, DM, DQS and OCT configs for a group.
 575 */
 576static void scc_mgr_zero_group(const u32 write_group, const int out_only)
 577{
 578        int i, r;
 579
 580        for (r = 0; r < rwcfg->mem_number_of_ranks;
 581             r += NUM_RANKS_PER_SHADOW_REG) {
 582                /* Zero all DQ config settings. */
 583                for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
 584                        scc_mgr_set_dq_out1_delay(i, 0);
 585                        if (!out_only)
 586                                scc_mgr_set_dq_in_delay(i, 0);
 587                }
 588
 589                /* Multicast to all DQ enables. */
 590                writel(0xff, &sdr_scc_mgr->dq_ena);
 591
 592                /* Zero all DM config settings. */
 593                for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
 594                        if (!out_only)
 595                                scc_mgr_set_dm_in_delay(i, 0);
 596                        scc_mgr_set_dm_out1_delay(i, 0);
 597                }
 598
 599                /* Multicast to all DM enables. */
 600                writel(0xff, &sdr_scc_mgr->dm_ena);
 601
 602                /* Zero all DQS IO settings. */
 603                if (!out_only)
 604                        scc_mgr_set_dqs_io_in_delay(0);
 605
 606                /* Arria V/Cyclone V don't have out2. */
 607                scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
 608                scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
 609                scc_mgr_load_dqs_for_write_group(write_group);
 610
 611                /* Multicast to all DQS IO enables (only 1 in total). */
 612                writel(0, &sdr_scc_mgr->dqs_io_ena);
 613
 614                /* Hit update to zero everything. */
 615                writel(0, &sdr_scc_mgr->update);
 616        }
 617}
 618
 619/*
 620 * apply and load a particular input delay for the DQ pins in a group
 621 * group_bgn is the index of the first dq pin (in the write group)
 622 */
 623static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay)
 624{
 625        u32 i, p;
 626
 627        for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
 628                scc_mgr_set_dq_in_delay(p, delay);
 629                scc_mgr_load_dq(p);
 630        }
 631}
 632
 633/**
 634 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
 635 * @delay:              Delay value
 636 *
 637 * Apply and load a particular output delay for the DQ pins in a group.
 638 */
 639static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
 640{
 641        int i;
 642
 643        for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
 644                scc_mgr_set_dq_out1_delay(i, delay);
 645                scc_mgr_load_dq(i);
 646        }
 647}
 648
 649/* apply and load a particular output delay for the DM pins in a group */
 650static void scc_mgr_apply_group_dm_out1_delay(u32 delay1)
 651{
 652        u32 i;
 653
 654        for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
 655                scc_mgr_set_dm_out1_delay(i, delay1);
 656                scc_mgr_load_dm(i);
 657        }
 658}
 659
 660
 661/* apply and load delay on both DQS and OCT out1 */
 662static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,
 663                                                    u32 delay)
 664{
 665        scc_mgr_set_dqs_out1_delay(delay);
 666        scc_mgr_load_dqs_io();
 667
 668        scc_mgr_set_oct_out1_delay(write_group, delay);
 669        scc_mgr_load_dqs_for_write_group(write_group);
 670}
 671
 672/**
 673 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
 674 * @write_group:        Write group
 675 * @delay:              Delay value
 676 *
 677 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
 678 */
 679static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
 680                                                  const u32 delay)
 681{
 682        u32 i, new_delay;
 683
 684        /* DQ shift */
 685        for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
 686                scc_mgr_load_dq(i);
 687
 688        /* DM shift */
 689        for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
 690                scc_mgr_load_dm(i);
 691
 692        /* DQS shift */
 693        new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
 694        if (new_delay > iocfg->io_out2_delay_max) {
 695                debug_cond(DLEVEL >= 1,
 696                           "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
 697                           __func__, __LINE__, write_group, delay, new_delay,
 698                           iocfg->io_out2_delay_max,
 699                           new_delay - iocfg->io_out2_delay_max);
 700                new_delay -= iocfg->io_out2_delay_max;
 701                scc_mgr_set_dqs_out1_delay(new_delay);
 702        }
 703
 704        scc_mgr_load_dqs_io();
 705
 706        /* OCT shift */
 707        new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
 708        if (new_delay > iocfg->io_out2_delay_max) {
 709                debug_cond(DLEVEL >= 1,
 710                           "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
 711                           __func__, __LINE__, write_group, delay,
 712                           new_delay, iocfg->io_out2_delay_max,
 713                           new_delay - iocfg->io_out2_delay_max);
 714                new_delay -= iocfg->io_out2_delay_max;
 715                scc_mgr_set_oct_out1_delay(write_group, new_delay);
 716        }
 717
 718        scc_mgr_load_dqs_for_write_group(write_group);
 719}
 720
 721/**
 722 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
 723 * @write_group:        Write group
 724 * @delay:              Delay value
 725 *
 726 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
 727 */
 728static void
 729scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
 730                                                const u32 delay)
 731{
 732        int r;
 733
 734        for (r = 0; r < rwcfg->mem_number_of_ranks;
 735             r += NUM_RANKS_PER_SHADOW_REG) {
 736                scc_mgr_apply_group_all_out_delay_add(write_group, delay);
 737                writel(0, &sdr_scc_mgr->update);
 738        }
 739}
 740
 741/**
 742 * set_jump_as_return() - Return instruction optimization
 743 *
 744 * Optimization used to recover some slots in ddr3 inst_rom could be
 745 * applied to other protocols if we wanted to
 746 */
 747static void set_jump_as_return(void)
 748{
 749        /*
 750         * To save space, we replace return with jump to special shared
 751         * RETURN instruction so we set the counter to large value so that
 752         * we always jump.
 753         */
 754        writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
 755        writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 756}
 757
 758/**
 759 * delay_for_n_mem_clocks() - Delay for N memory clocks
 760 * @clocks:     Length of the delay
 761 *
 762 * Delay for N memory clocks.
 763 */
 764static void delay_for_n_mem_clocks(const u32 clocks)
 765{
 766        u32 afi_clocks;
 767        u16 c_loop;
 768        u8 inner;
 769        u8 outer;
 770
 771        debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
 772
 773        /* Scale (rounding up) to get afi clocks. */
 774        afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio);
 775        if (afi_clocks) /* Temporary underflow protection */
 776                afi_clocks--;
 777
 778        /*
 779         * Note, we don't bother accounting for being off a little
 780         * bit because of a few extra instructions in outer loops.
 781         * Note, the loops have a test at the end, and do the test
 782         * before the decrement, and so always perform the loop
 783         * 1 time more than the counter value
 784         */
 785        c_loop = afi_clocks >> 16;
 786        outer = c_loop ? 0xff : (afi_clocks >> 8);
 787        inner = outer ? 0xff : afi_clocks;
 788
 789        /*
 790         * rom instructions are structured as follows:
 791         *
 792         *    IDLE_LOOP2: jnz cntr0, TARGET_A
 793         *    IDLE_LOOP1: jnz cntr1, TARGET_B
 794         *                return
 795         *
 796         * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
 797         * TARGET_B is set to IDLE_LOOP2 as well
 798         *
 799         * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
 800         * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
 801         *
 802         * a little confusing, but it helps save precious space in the inst_rom
 803         * and sequencer rom and keeps the delays more accurate and reduces
 804         * overhead
 805         */
 806        if (afi_clocks < 0x100) {
 807                writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
 808                       &sdr_rw_load_mgr_regs->load_cntr1);
 809
 810                writel(rwcfg->idle_loop1,
 811                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 812
 813                writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 814                                          RW_MGR_RUN_SINGLE_GROUP_OFFSET);
 815        } else {
 816                writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
 817                       &sdr_rw_load_mgr_regs->load_cntr0);
 818
 819                writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
 820                       &sdr_rw_load_mgr_regs->load_cntr1);
 821
 822                writel(rwcfg->idle_loop2,
 823                       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 824
 825                writel(rwcfg->idle_loop2,
 826                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 827
 828                do {
 829                        writel(rwcfg->idle_loop2,
 830                               SDR_PHYGRP_RWMGRGRP_ADDRESS |
 831                               RW_MGR_RUN_SINGLE_GROUP_OFFSET);
 832                } while (c_loop-- != 0);
 833        }
 834        debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
 835}
 836
 837/**
 838 * rw_mgr_mem_init_load_regs() - Load instruction registers
 839 * @cntr0:      Counter 0 value
 840 * @cntr1:      Counter 1 value
 841 * @cntr2:      Counter 2 value
 842 * @jump:       Jump instruction value
 843 *
 844 * Load instruction registers.
 845 */
 846static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
 847{
 848        u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
 849                           RW_MGR_RUN_SINGLE_GROUP_OFFSET;
 850
 851        /* Load counters */
 852        writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
 853               &sdr_rw_load_mgr_regs->load_cntr0);
 854        writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
 855               &sdr_rw_load_mgr_regs->load_cntr1);
 856        writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
 857               &sdr_rw_load_mgr_regs->load_cntr2);
 858
 859        /* Load jump address */
 860        writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
 861        writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
 862        writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
 863
 864        /* Execute count instruction */
 865        writel(jump, grpaddr);
 866}
 867
 868/**
 869 * rw_mgr_mem_load_user() - Load user calibration values
 870 * @fin1:       Final instruction 1
 871 * @fin2:       Final instruction 2
 872 * @precharge:  If 1, precharge the banks at the end
 873 *
 874 * Load user calibration values and optionally precharge the banks.
 875 */
 876static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
 877                                 const int precharge)
 878{
 879        u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
 880                      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
 881        u32 r;
 882
 883        for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
 884                /* set rank */
 885                set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
 886
 887                /* precharge all banks ... */
 888                if (precharge)
 889                        writel(rwcfg->precharge_all, grpaddr);
 890
 891                /*
 892                 * USER Use Mirror-ed commands for odd ranks if address
 893                 * mirrorring is on
 894                 */
 895                if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
 896                        set_jump_as_return();
 897                        writel(rwcfg->mrs2_mirr, grpaddr);
 898                        delay_for_n_mem_clocks(4);
 899                        set_jump_as_return();
 900                        writel(rwcfg->mrs3_mirr, grpaddr);
 901                        delay_for_n_mem_clocks(4);
 902                        set_jump_as_return();
 903                        writel(rwcfg->mrs1_mirr, grpaddr);
 904                        delay_for_n_mem_clocks(4);
 905                        set_jump_as_return();
 906                        writel(fin1, grpaddr);
 907                } else {
 908                        set_jump_as_return();
 909                        writel(rwcfg->mrs2, grpaddr);
 910                        delay_for_n_mem_clocks(4);
 911                        set_jump_as_return();
 912                        writel(rwcfg->mrs3, grpaddr);
 913                        delay_for_n_mem_clocks(4);
 914                        set_jump_as_return();
 915                        writel(rwcfg->mrs1, grpaddr);
 916                        set_jump_as_return();
 917                        writel(fin2, grpaddr);
 918                }
 919
 920                if (precharge)
 921                        continue;
 922
 923                set_jump_as_return();
 924                writel(rwcfg->zqcl, grpaddr);
 925
 926                /* tZQinit = tDLLK = 512 ck cycles */
 927                delay_for_n_mem_clocks(512);
 928        }
 929}
 930
 931/**
 932 * rw_mgr_mem_initialize() - Initialize RW Manager
 933 *
 934 * Initialize RW Manager.
 935 */
 936static void rw_mgr_mem_initialize(void)
 937{
 938        debug("%s:%d\n", __func__, __LINE__);
 939
 940        /* The reset / cke part of initialization is broadcasted to all ranks */
 941        writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
 942                                RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
 943
 944        /*
 945         * Here's how you load register for a loop
 946         * Counters are located @ 0x800
 947         * Jump address are located @ 0xC00
 948         * For both, registers 0 to 3 are selected using bits 3 and 2, like
 949         * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
 950         * I know this ain't pretty, but Avalon bus throws away the 2 least
 951         * significant bits
 952         */
 953
 954        /* Start with memory RESET activated */
 955
 956        /* tINIT = 200us */
 957
 958        /*
 959         * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
 960         * If a and b are the number of iteration in 2 nested loops
 961         * it takes the following number of cycles to complete the operation:
 962         * number_of_cycles = ((2 + n) * a + 2) * b
 963         * where n is the number of instruction in the inner loop
 964         * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
 965         * b = 6A
 966         */
 967        rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val,
 968                                  misccfg->tinit_cntr1_val,
 969                                  misccfg->tinit_cntr2_val,
 970                                  rwcfg->init_reset_0_cke_0);
 971
 972        /* Indicate that memory is stable. */
 973        writel(1, &phy_mgr_cfg->reset_mem_stbl);
 974
 975        /*
 976         * transition the RESET to high
 977         * Wait for 500us
 978         */
 979
 980        /*
 981         * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
 982         * If a and b are the number of iteration in 2 nested loops
 983         * it takes the following number of cycles to complete the operation
 984         * number_of_cycles = ((2 + n) * a + 2) * b
 985         * where n is the number of instruction in the inner loop
 986         * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
 987         * b = FF
 988         */
 989        rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val,
 990                                  misccfg->treset_cntr1_val,
 991                                  misccfg->treset_cntr2_val,
 992                                  rwcfg->init_reset_1_cke_0);
 993
 994        /* Bring up clock enable. */
 995
 996        /* tXRP < 250 ck cycles */
 997        delay_for_n_mem_clocks(250);
 998
 999        rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
1000                             0);
1001}
1002
1003/**
1004 * rw_mgr_mem_handoff() - Hand off the memory to user
1005 *
1006 * At the end of calibration we have to program the user settings in
1007 * and hand off the memory to the user.
1008 */
1009static void rw_mgr_mem_handoff(void)
1010{
1011        rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1012        /*
1013         * Need to wait tMOD (12CK or 15ns) time before issuing other
1014         * commands, but we will have plenty of NIOS cycles before actual
1015         * handoff so its okay.
1016         */
1017}
1018
1019/**
1020 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1021 * @group:      Write Group
1022 * @use_dm:     Use DM
1023 *
1024 * Issue write test command. Two variants are provided, one that just tests
1025 * a write pattern and another that tests datamask functionality.
1026 */
1027static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1028                                                  u32 test_dm)
1029{
1030        const u32 quick_write_mode =
1031                (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1032                misccfg->enable_super_quick_calibration;
1033        u32 mcc_instruction;
1034        u32 rw_wl_nop_cycles;
1035
1036        /*
1037         * Set counter and jump addresses for the right
1038         * number of NOP cycles.
1039         * The number of supported NOP cycles can range from -1 to infinity
1040         * Three different cases are handled:
1041         *
1042         * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1043         *    mechanism will be used to insert the right number of NOPs
1044         *
1045         * 2. For a number of NOP cycles equals to 0, the micro-instruction
1046         *    issuing the write command will jump straight to the
1047         *    micro-instruction that turns on DQS (for DDRx), or outputs write
1048         *    data (for RLD), skipping
1049         *    the NOP micro-instruction all together
1050         *
1051         * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1052         *    turned on in the same micro-instruction that issues the write
1053         *    command. Then we need
1054         *    to directly jump to the micro-instruction that sends out the data
1055         *
1056         * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1057         *       (2 and 3). One jump-counter (0) is used to perform multiple
1058         *       write-read operations.
1059         *       one counter left to issue this command in "multiple-group" mode
1060         */
1061
1062        rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1063
1064        if (rw_wl_nop_cycles == -1) {
1065                /*
1066                 * CNTR 2 - We want to execute the special write operation that
1067                 * turns on DQS right away and then skip directly to the
1068                 * instruction that sends out the data. We set the counter to a
1069                 * large number so that the jump is always taken.
1070                 */
1071                writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1072
1073                /* CNTR 3 - Not used */
1074                if (test_dm) {
1075                        mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1076                        writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1077                               &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1078                        writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1079                               &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1080                } else {
1081                        mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1082                        writel(rwcfg->lfsr_wr_rd_bank_0_data,
1083                               &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1084                        writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1085                               &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1086                }
1087        } else if (rw_wl_nop_cycles == 0) {
1088                /*
1089                 * CNTR 2 - We want to skip the NOP operation and go straight
1090                 * to the DQS enable instruction. We set the counter to a large
1091                 * number so that the jump is always taken.
1092                 */
1093                writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1094
1095                /* CNTR 3 - Not used */
1096                if (test_dm) {
1097                        mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1098                        writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1099                               &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1100                } else {
1101                        mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1102                        writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1103                               &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1104                }
1105        } else {
1106                /*
1107                 * CNTR 2 - In this case we want to execute the next instruction
1108                 * and NOT take the jump. So we set the counter to 0. The jump
1109                 * address doesn't count.
1110                 */
1111                writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1112                writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1113
1114                /*
1115                 * CNTR 3 - Set the nop counter to the number of cycles we
1116                 * need to loop for, minus 1.
1117                 */
1118                writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1119                if (test_dm) {
1120                        mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1121                        writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1122                               &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1123                } else {
1124                        mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1125                        writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1126                               &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1127                }
1128        }
1129
1130        writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1131                  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1132
1133        if (quick_write_mode)
1134                writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1135        else
1136                writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1137
1138        writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1139
1140        /*
1141         * CNTR 1 - This is used to ensure enough time elapses
1142         * for read data to come back.
1143         */
1144        writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1145
1146        if (test_dm) {
1147                writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1148                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1149        } else {
1150                writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1151                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1152        }
1153
1154        writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1155                                RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1156                                (group << 2));
1157}
1158
1159/**
1160 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1161 * @rank_bgn:           Rank number
1162 * @write_group:        Write Group
1163 * @use_dm:             Use DM
1164 * @all_correct:        All bits must be correct in the mask
1165 * @bit_chk:            Resulting bit mask after the test
1166 * @all_ranks:          Test all ranks
1167 *
1168 * Test writes, can check for a single bit pass or multiple bit pass.
1169 */
1170static int
1171rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1172                                const u32 use_dm, const u32 all_correct,
1173                                u32 *bit_chk, const u32 all_ranks)
1174{
1175        const u32 rank_end = all_ranks ?
1176                                rwcfg->mem_number_of_ranks :
1177                                (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1178        const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1179                                rwcfg->mem_virtual_groups_per_write_dqs;
1180        const u32 correct_mask_vg = param->write_correct_mask_vg;
1181
1182        u32 tmp_bit_chk, base_rw_mgr;
1183        int vg, r;
1184
1185        *bit_chk = param->write_correct_mask;
1186
1187        for (r = rank_bgn; r < rank_end; r++) {
1188                /* Set rank */
1189                set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1190
1191                tmp_bit_chk = 0;
1192                for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1193                     vg >= 0; vg--) {
1194                        /* Reset the FIFOs to get pointers to known state. */
1195                        writel(0, &phy_mgr_cmd->fifo_reset);
1196
1197                        rw_mgr_mem_calibrate_write_test_issue(
1198                                write_group *
1199                                rwcfg->mem_virtual_groups_per_write_dqs + vg,
1200                                use_dm);
1201
1202                        base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1203                        tmp_bit_chk <<= shift_ratio;
1204                        tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1205                }
1206
1207                *bit_chk &= tmp_bit_chk;
1208        }
1209
1210        set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1211        if (all_correct) {
1212                debug_cond(DLEVEL >= 2,
1213                           "write_test(%u,%u,ALL) : %u == %u => %i\n",
1214                           write_group, use_dm, *bit_chk,
1215                           param->write_correct_mask,
1216                           *bit_chk == param->write_correct_mask);
1217                return *bit_chk == param->write_correct_mask;
1218        } else {
1219                debug_cond(DLEVEL >= 2,
1220                           "write_test(%u,%u,ONE) : %u != %i => %i\n",
1221                           write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1222                return *bit_chk != 0x00;
1223        }
1224}
1225
1226/**
1227 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1228 * @rank_bgn:   Rank number
1229 * @group:      Read/Write Group
1230 * @all_ranks:  Test all ranks
1231 *
1232 * Performs a guaranteed read on the patterns we are going to use during a
1233 * read test to ensure memory works.
1234 */
1235static int
1236rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1237                                        const u32 all_ranks)
1238{
1239        const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1240                         RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1241        const u32 addr_offset =
1242                         (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1243        const u32 rank_end = all_ranks ?
1244                                rwcfg->mem_number_of_ranks :
1245                                (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1246        const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1247                                rwcfg->mem_virtual_groups_per_read_dqs;
1248        const u32 correct_mask_vg = param->read_correct_mask_vg;
1249
1250        u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1251        int vg, r;
1252        int ret = 0;
1253
1254        bit_chk = param->read_correct_mask;
1255
1256        for (r = rank_bgn; r < rank_end; r++) {
1257                /* Set rank */
1258                set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1259
1260                /* Load up a constant bursts of read commands */
1261                writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1262                writel(rwcfg->guaranteed_read,
1263                       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1264
1265                writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1266                writel(rwcfg->guaranteed_read_cont,
1267                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1268
1269                tmp_bit_chk = 0;
1270                for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1271                     vg >= 0; vg--) {
1272                        /* Reset the FIFOs to get pointers to known state. */
1273                        writel(0, &phy_mgr_cmd->fifo_reset);
1274                        writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1275                                  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1276                        writel(rwcfg->guaranteed_read,
1277                               addr + addr_offset + (vg << 2));
1278
1279                        base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1280                        tmp_bit_chk <<= shift_ratio;
1281                        tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1282                }
1283
1284                bit_chk &= tmp_bit_chk;
1285        }
1286
1287        writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1288
1289        set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1290
1291        if (bit_chk != param->read_correct_mask)
1292                ret = -EIO;
1293
1294        debug_cond(DLEVEL >= 1,
1295                   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1296                   __func__, __LINE__, group, bit_chk,
1297                   param->read_correct_mask, ret);
1298
1299        return ret;
1300}
1301
1302/**
1303 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1304 * @rank_bgn:   Rank number
1305 * @all_ranks:  Test all ranks
1306 *
1307 * Load up the patterns we are going to use during a read test.
1308 */
1309static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1310                                                    const int all_ranks)
1311{
1312        const u32 rank_end = all_ranks ?
1313                        rwcfg->mem_number_of_ranks :
1314                        (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1315        u32 r;
1316
1317        debug("%s:%d\n", __func__, __LINE__);
1318
1319        for (r = rank_bgn; r < rank_end; r++) {
1320                /* set rank */
1321                set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1322
1323                /* Load up a constant bursts */
1324                writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1325
1326                writel(rwcfg->guaranteed_write_wait0,
1327                       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1328
1329                writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1330
1331                writel(rwcfg->guaranteed_write_wait1,
1332                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1333
1334                writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1335
1336                writel(rwcfg->guaranteed_write_wait2,
1337                       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1338
1339                writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1340
1341                writel(rwcfg->guaranteed_write_wait3,
1342                       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1343
1344                writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1345                                                RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1346        }
1347
1348        set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1349}
1350
1351/**
1352 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1353 * @rank_bgn:           Rank number
1354 * @group:              Read/Write group
1355 * @num_tries:          Number of retries of the test
1356 * @all_correct:        All bits must be correct in the mask
1357 * @bit_chk:            Resulting bit mask after the test
1358 * @all_groups:         Test all R/W groups
1359 * @all_ranks:          Test all ranks
1360 *
1361 * Try a read and see if it returns correct data back. Test has dummy reads
1362 * inserted into the mix used to align DQS enable. Test has more thorough
1363 * checks than the regular read test.
1364 */
1365static int
1366rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1367                               const u32 num_tries, const u32 all_correct,
1368                               u32 *bit_chk,
1369                               const u32 all_groups, const u32 all_ranks)
1370{
1371        const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1372                (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1373        const u32 quick_read_mode =
1374                ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1375                 misccfg->enable_super_quick_calibration);
1376        u32 correct_mask_vg = param->read_correct_mask_vg;
1377        u32 tmp_bit_chk;
1378        u32 base_rw_mgr;
1379        u32 addr;
1380
1381        int r, vg, ret;
1382
1383        *bit_chk = param->read_correct_mask;
1384
1385        for (r = rank_bgn; r < rank_end; r++) {
1386                /* set rank */
1387                set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1388
1389                writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1390
1391                writel(rwcfg->read_b2b_wait1,
1392                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1393
1394                writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1395                writel(rwcfg->read_b2b_wait2,
1396                       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1397
1398                if (quick_read_mode)
1399                        writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1400                        /* need at least two (1+1) reads to capture failures */
1401                else if (all_groups)
1402                        writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1403                else
1404                        writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1405
1406                writel(rwcfg->read_b2b,
1407                       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1408                if (all_groups)
1409                        writel(rwcfg->mem_if_read_dqs_width *
1410                               rwcfg->mem_virtual_groups_per_read_dqs - 1,
1411                               &sdr_rw_load_mgr_regs->load_cntr3);
1412                else
1413                        writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1414
1415                writel(rwcfg->read_b2b,
1416                       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1417
1418                tmp_bit_chk = 0;
1419                for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1420                     vg--) {
1421                        /* Reset the FIFOs to get pointers to known state. */
1422                        writel(0, &phy_mgr_cmd->fifo_reset);
1423                        writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1424                                  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1425
1426                        if (all_groups) {
1427                                addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1428                                       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1429                        } else {
1430                                addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1431                                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1432                        }
1433
1434                        writel(rwcfg->read_b2b, addr +
1435                               ((group *
1436                                 rwcfg->mem_virtual_groups_per_read_dqs +
1437                                 vg) << 2));
1438
1439                        base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1440                        tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1441                                        rwcfg->mem_virtual_groups_per_read_dqs;
1442                        tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1443                }
1444
1445                *bit_chk &= tmp_bit_chk;
1446        }
1447
1448        addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1449        writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1450
1451        set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1452
1453        if (all_correct) {
1454                ret = (*bit_chk == param->read_correct_mask);
1455                debug_cond(DLEVEL >= 2,
1456                           "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1457                           __func__, __LINE__, group, all_groups, *bit_chk,
1458                           param->read_correct_mask, ret);
1459        } else  {
1460                ret = (*bit_chk != 0x00);
1461                debug_cond(DLEVEL >= 2,
1462                           "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1463                           __func__, __LINE__, group, all_groups, *bit_chk,
1464                           0, ret);
1465        }
1466
1467        return ret;
1468}
1469
1470/**
1471 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1472 * @grp:                Read/Write group
1473 * @num_tries:          Number of retries of the test
1474 * @all_correct:        All bits must be correct in the mask
1475 * @all_groups:         Test all R/W groups
1476 *
1477 * Perform a READ test across all memory ranks.
1478 */
1479static int
1480rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1481                                         const u32 all_correct,
1482                                         const u32 all_groups)
1483{
1484        u32 bit_chk;
1485        return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1486                                              &bit_chk, all_groups, 1);
1487}
1488
1489/**
1490 * rw_mgr_incr_vfifo() - Increase VFIFO value
1491 * @grp:        Read/Write group
1492 *
1493 * Increase VFIFO value.
1494 */
1495static void rw_mgr_incr_vfifo(const u32 grp)
1496{
1497        writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1498}
1499
1500/**
1501 * rw_mgr_decr_vfifo() - Decrease VFIFO value
1502 * @grp:        Read/Write group
1503 *
1504 * Decrease VFIFO value.
1505 */
1506static void rw_mgr_decr_vfifo(const u32 grp)
1507{
1508        u32 i;
1509
1510        for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++)
1511                rw_mgr_incr_vfifo(grp);
1512}
1513
1514/**
1515 * find_vfifo_failing_read() - Push VFIFO to get a failing read
1516 * @grp:        Read/Write group
1517 *
1518 * Push VFIFO until a failing read happens.
1519 */
1520static int find_vfifo_failing_read(const u32 grp)
1521{
1522        u32 v, ret, fail_cnt = 0;
1523
1524        for (v = 0; v < misccfg->read_valid_fifo_size; v++) {
1525                debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
1526                           __func__, __LINE__, v);
1527                ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1528                                                PASS_ONE_BIT, 0);
1529                if (!ret) {
1530                        fail_cnt++;
1531
1532                        if (fail_cnt == 2)
1533                                return v;
1534                }
1535
1536                /* Fiddle with FIFO. */
1537                rw_mgr_incr_vfifo(grp);
1538        }
1539
1540        /* No failing read found! Something must have gone wrong. */
1541        debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1542        return 0;
1543}
1544
1545/**
1546 * sdr_find_phase_delay() - Find DQS enable phase or delay
1547 * @working:    If 1, look for working phase/delay, if 0, look for non-working
1548 * @delay:      If 1, look for delay, if 0, look for phase
1549 * @grp:        Read/Write group
1550 * @work:       Working window position
1551 * @work_inc:   Working window increment
1552 * @pd:         DQS Phase/Delay Iterator
1553 *
1554 * Find working or non-working DQS enable phase setting.
1555 */
1556static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1557                                u32 *work, const u32 work_inc, u32 *pd)
1558{
1559        const u32 max = delay ? iocfg->dqs_en_delay_max :
1560                                iocfg->dqs_en_phase_max;
1561        u32 ret;
1562
1563        for (; *pd <= max; (*pd)++) {
1564                if (delay)
1565                        scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1566                else
1567                        scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1568
1569                ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1570                                        PASS_ONE_BIT, 0);
1571                if (!working)
1572                        ret = !ret;
1573
1574                if (ret)
1575                        return 0;
1576
1577                if (work)
1578                        *work += work_inc;
1579        }
1580
1581        return -EINVAL;
1582}
1583/**
1584 * sdr_find_phase() - Find DQS enable phase
1585 * @working:    If 1, look for working phase, if 0, look for non-working phase
1586 * @grp:        Read/Write group
1587 * @work:       Working window position
1588 * @i:          Iterator
1589 * @p:          DQS Phase Iterator
1590 *
1591 * Find working or non-working DQS enable phase setting.
1592 */
1593static int sdr_find_phase(int working, const u32 grp, u32 *work,
1594                          u32 *i, u32 *p)
1595{
1596        const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1);
1597        int ret;
1598
1599        for (; *i < end; (*i)++) {
1600                if (working)
1601                        *p = 0;
1602
1603                ret = sdr_find_phase_delay(working, 0, grp, work,
1604                                           iocfg->delay_per_opa_tap, p);
1605                if (!ret)
1606                        return 0;
1607
1608                if (*p > iocfg->dqs_en_phase_max) {
1609                        /* Fiddle with FIFO. */
1610                        rw_mgr_incr_vfifo(grp);
1611                        if (!working)
1612                                *p = 0;
1613                }
1614        }
1615
1616        return -EINVAL;
1617}
1618
1619/**
1620 * sdr_working_phase() - Find working DQS enable phase
1621 * @grp:        Read/Write group
1622 * @work_bgn:   Working window start position
1623 * @d:          dtaps output value
1624 * @p:          DQS Phase Iterator
1625 * @i:          Iterator
1626 *
1627 * Find working DQS enable phase setting.
1628 */
1629static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1630                             u32 *p, u32 *i)
1631{
1632        const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1633                                   iocfg->delay_per_dqs_en_dchain_tap;
1634        int ret;
1635
1636        *work_bgn = 0;
1637
1638        for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1639                *i = 0;
1640                scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1641                ret = sdr_find_phase(1, grp, work_bgn, i, p);
1642                if (!ret)
1643                        return 0;
1644                *work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1645        }
1646
1647        /* Cannot find working solution */
1648        debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1649                   __func__, __LINE__);
1650        return -EINVAL;
1651}
1652
1653/**
1654 * sdr_backup_phase() - Find DQS enable backup phase
1655 * @grp:        Read/Write group
1656 * @work_bgn:   Working window start position
1657 * @p:          DQS Phase Iterator
1658 *
1659 * Find DQS enable backup phase setting.
1660 */
1661static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1662{
1663        u32 tmp_delay, d;
1664        int ret;
1665
1666        /* Special case code for backing up a phase */
1667        if (*p == 0) {
1668                *p = iocfg->dqs_en_phase_max;
1669                rw_mgr_decr_vfifo(grp);
1670        } else {
1671                (*p)--;
1672        }
1673        tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1674        scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1675
1676        for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
1677             d++) {
1678                scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1679
1680                ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1681                                        PASS_ONE_BIT, 0);
1682                if (ret) {
1683                        *work_bgn = tmp_delay;
1684                        break;
1685                }
1686
1687                tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1688        }
1689
1690        /* Restore VFIFO to old state before we decremented it (if needed). */
1691        (*p)++;
1692        if (*p > iocfg->dqs_en_phase_max) {
1693                *p = 0;
1694                rw_mgr_incr_vfifo(grp);
1695        }
1696
1697        scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1698}
1699
1700/**
1701 * sdr_nonworking_phase() - Find non-working DQS enable phase
1702 * @grp:        Read/Write group
1703 * @work_end:   Working window end position
1704 * @p:          DQS Phase Iterator
1705 * @i:          Iterator
1706 *
1707 * Find non-working DQS enable phase setting.
1708 */
1709static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1710{
1711        int ret;
1712
1713        (*p)++;
1714        *work_end += iocfg->delay_per_opa_tap;
1715        if (*p > iocfg->dqs_en_phase_max) {
1716                /* Fiddle with FIFO. */
1717                *p = 0;
1718                rw_mgr_incr_vfifo(grp);
1719        }
1720
1721        ret = sdr_find_phase(0, grp, work_end, i, p);
1722        if (ret) {
1723                /* Cannot see edge of failing read. */
1724                debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
1725                           __func__, __LINE__);
1726        }
1727
1728        return ret;
1729}
1730
1731/**
1732 * sdr_find_window_center() - Find center of the working DQS window.
1733 * @grp:        Read/Write group
1734 * @work_bgn:   First working settings
1735 * @work_end:   Last working settings
1736 *
1737 * Find center of the working DQS enable window.
1738 */
1739static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1740                                  const u32 work_end)
1741{
1742        u32 work_mid;
1743        int tmp_delay = 0;
1744        int i, p, d;
1745
1746        work_mid = (work_bgn + work_end) / 2;
1747
1748        debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1749                   work_bgn, work_end, work_mid);
1750        /* Get the middle delay to be less than a VFIFO delay */
1751        tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1752
1753        debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
1754        work_mid %= tmp_delay;
1755        debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
1756
1757        tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1758        if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1759                tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1760        p = tmp_delay / iocfg->delay_per_opa_tap;
1761
1762        debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1763
1764        d = DIV_ROUND_UP(work_mid - tmp_delay,
1765                         iocfg->delay_per_dqs_en_dchain_tap);
1766        if (d > iocfg->dqs_en_delay_max)
1767                d = iocfg->dqs_en_delay_max;
1768        tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1769
1770        debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1771
1772        scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1773        scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1774
1775        /*
1776         * push vfifo until we can successfully calibrate. We can do this
1777         * because the largest possible margin in 1 VFIFO cycle.
1778         */
1779        for (i = 0; i < misccfg->read_valid_fifo_size; i++) {
1780                debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
1781                if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1782                                                             PASS_ONE_BIT,
1783                                                             0)) {
1784                        debug_cond(DLEVEL >= 2,
1785                                   "%s:%d center: found: ptap=%u dtap=%u\n",
1786                                   __func__, __LINE__, p, d);
1787                        return 0;
1788                }
1789
1790                /* Fiddle with FIFO. */
1791                rw_mgr_incr_vfifo(grp);
1792        }
1793
1794        debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
1795                   __func__, __LINE__);
1796        return -EINVAL;
1797}
1798
1799/**
1800 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1801 * @grp:        Read/Write Group
1802 *
1803 * Find a good DQS enable to use.
1804 */
1805static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1806{
1807        u32 d, p, i;
1808        u32 dtaps_per_ptap;
1809        u32 work_bgn, work_end;
1810        u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
1811        int ret;
1812
1813        debug("%s:%d %u\n", __func__, __LINE__, grp);
1814
1815        reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1816
1817        scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1818        scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1819
1820        /* Step 0: Determine number of delay taps for each phase tap. */
1821        dtaps_per_ptap = iocfg->delay_per_opa_tap /
1822                         iocfg->delay_per_dqs_en_dchain_tap;
1823
1824        /* Step 1: First push vfifo until we get a failing read. */
1825        find_vfifo_failing_read(grp);
1826
1827        /* Step 2: Find first working phase, increment in ptaps. */
1828        work_bgn = 0;
1829        ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1830        if (ret)
1831                return ret;
1832
1833        work_end = work_bgn;
1834
1835        /*
1836         * If d is 0 then the working window covers a phase tap and we can
1837         * follow the old procedure. Otherwise, we've found the beginning
1838         * and we need to increment the dtaps until we find the end.
1839         */
1840        if (d == 0) {
1841                /*
1842                 * Step 3a: If we have room, back off by one and
1843                 *          increment in dtaps.
1844                 */
1845                sdr_backup_phase(grp, &work_bgn, &p);
1846
1847                /*
1848                 * Step 4a: go forward from working phase to non working
1849                 * phase, increment in ptaps.
1850                 */
1851                ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1852                if (ret)
1853                        return ret;
1854
1855                /* Step 5a: Back off one from last, increment in dtaps. */
1856
1857                /* Special case code for backing up a phase */
1858                if (p == 0) {
1859                        p = iocfg->dqs_en_phase_max;
1860                        rw_mgr_decr_vfifo(grp);
1861                } else {
1862                        p = p - 1;
1863                }
1864
1865                work_end -= iocfg->delay_per_opa_tap;
1866                scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1867
1868                d = 0;
1869
1870                debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
1871                           __func__, __LINE__, p);
1872        }
1873
1874        /* The dtap increment to find the failing edge is done here. */
1875        sdr_find_phase_delay(0, 1, grp, &work_end,
1876                             iocfg->delay_per_dqs_en_dchain_tap, &d);
1877
1878        /* Go back to working dtap */
1879        if (d != 0)
1880                work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1881
1882        debug_cond(DLEVEL >= 2,
1883                   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1884                   __func__, __LINE__, p, d - 1, work_end);
1885
1886        if (work_end < work_bgn) {
1887                /* nil range */
1888                debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
1889                           __func__, __LINE__);
1890                return -EINVAL;
1891        }
1892
1893        debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
1894                   __func__, __LINE__, work_bgn, work_end);
1895
1896        /*
1897         * We need to calculate the number of dtaps that equal a ptap.
1898         * To do that we'll back up a ptap and re-find the edge of the
1899         * window using dtaps
1900         */
1901        debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1902                   __func__, __LINE__);
1903
1904        /* Special case code for backing up a phase */
1905        if (p == 0) {
1906                p = iocfg->dqs_en_phase_max;
1907                rw_mgr_decr_vfifo(grp);
1908                debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
1909                           __func__, __LINE__, p);
1910        } else {
1911                p = p - 1;
1912                debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
1913                           __func__, __LINE__, p);
1914        }
1915
1916        scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1917
1918        /*
1919         * Increase dtap until we first see a passing read (in case the
1920         * window is smaller than a ptap), and then a failing read to
1921         * mark the edge of the window again.
1922         */
1923
1924        /* Find a passing read. */
1925        debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
1926                   __func__, __LINE__);
1927
1928        initial_failing_dtap = d;
1929
1930        found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1931        if (found_passing_read) {
1932                /* Find a failing read. */
1933                debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
1934                           __func__, __LINE__);
1935                d++;
1936                found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1937                                                           &d);
1938        } else {
1939                debug_cond(DLEVEL >= 1,
1940                           "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1941                           __func__, __LINE__);
1942        }
1943
1944        /*
1945         * The dynamically calculated dtaps_per_ptap is only valid if we
1946         * found a passing/failing read. If we didn't, it means d hit the max
1947         * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1948         * statically calculated value.
1949         */
1950        if (found_passing_read && found_failing_read)
1951                dtaps_per_ptap = d - initial_failing_dtap;
1952
1953        writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1954        debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1955                   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1956
1957        /* Step 6: Find the centre of the window. */
1958        ret = sdr_find_window_center(grp, work_bgn, work_end);
1959
1960        return ret;
1961}
1962
1963/**
1964 * search_stop_check() - Check if the detected edge is valid
1965 * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1966 * @d:                  DQS delay
1967 * @rank_bgn:           Rank number
1968 * @write_group:        Write Group
1969 * @read_group:         Read Group
1970 * @bit_chk:            Resulting bit mask after the test
1971 * @sticky_bit_chk:     Resulting sticky bit mask after the test
1972 * @use_read_test:      Perform read test
1973 *
1974 * Test if the found edge is valid.
1975 */
1976static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1977                             const u32 write_group, const u32 read_group,
1978                             u32 *bit_chk, u32 *sticky_bit_chk,
1979                             const u32 use_read_test)
1980{
1981        const u32 ratio = rwcfg->mem_if_read_dqs_width /
1982                          rwcfg->mem_if_write_dqs_width;
1983        const u32 correct_mask = write ? param->write_correct_mask :
1984                                         param->read_correct_mask;
1985        const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1986                                    rwcfg->mem_dq_per_read_dqs;
1987        u32 ret;
1988        /*
1989         * Stop searching when the read test doesn't pass AND when
1990         * we've seen a passing read on every bit.
1991         */
1992        if (write) {                    /* WRITE-ONLY */
1993                ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1994                                                         0, PASS_ONE_BIT,
1995                                                         bit_chk, 0);
1996        } else if (use_read_test) {     /* READ-ONLY */
1997                ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1998                                                        NUM_READ_PB_TESTS,
1999                                                        PASS_ONE_BIT, bit_chk,
2000                                                        0, 0);
2001        } else {                        /* READ-ONLY */
2002                rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2003                                                PASS_ONE_BIT, bit_chk, 0);
2004                *bit_chk = *bit_chk >> (per_dqs *
2005                        (read_group - (write_group * ratio)));
2006                ret = (*bit_chk == 0);
2007        }
2008        *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2009        ret = ret && (*sticky_bit_chk == correct_mask);
2010        debug_cond(DLEVEL >= 2,
2011                   "%s:%d center(left): dtap=%u => %u == %u && %u",
2012                   __func__, __LINE__, d,
2013                   *sticky_bit_chk, correct_mask, ret);
2014        return ret;
2015}
2016
2017/**
2018 * search_left_edge() - Find left edge of DQ/DQS working phase
2019 * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2020 * @rank_bgn:           Rank number
2021 * @write_group:        Write Group
2022 * @read_group:         Read Group
2023 * @test_bgn:           Rank number to begin the test
2024 * @sticky_bit_chk:     Resulting sticky bit mask after the test
2025 * @left_edge:          Left edge of the DQ/DQS phase
2026 * @right_edge:         Right edge of the DQ/DQS phase
2027 * @use_read_test:      Perform read test
2028 *
2029 * Find left edge of DQ/DQS working phase.
2030 */
2031static void search_left_edge(const int write, const int rank_bgn,
2032        const u32 write_group, const u32 read_group, const u32 test_bgn,
2033        u32 *sticky_bit_chk,
2034        int *left_edge, int *right_edge, const u32 use_read_test)
2035{
2036        const u32 delay_max = write ? iocfg->io_out1_delay_max :
2037                                      iocfg->io_in_delay_max;
2038        const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2039                                    iocfg->dqs_in_delay_max;
2040        const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2041                                    rwcfg->mem_dq_per_read_dqs;
2042        u32 stop, bit_chk;
2043        int i, d;
2044
2045        for (d = 0; d <= dqs_max; d++) {
2046                if (write)
2047                        scc_mgr_apply_group_dq_out1_delay(d);
2048                else
2049                        scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2050
2051                writel(0, &sdr_scc_mgr->update);
2052
2053                stop = search_stop_check(write, d, rank_bgn, write_group,
2054                                         read_group, &bit_chk, sticky_bit_chk,
2055                                         use_read_test);
2056                if (stop == 1)
2057                        break;
2058
2059                /* stop != 1 */
2060                for (i = 0; i < per_dqs; i++) {
2061                        if (bit_chk & 1) {
2062                                /*
2063                                 * Remember a passing test as
2064                                 * the left_edge.
2065                                 */
2066                                left_edge[i] = d;
2067                        } else {
2068                                /*
2069                                 * If a left edge has not been seen
2070                                 * yet, then a future passing test
2071                                 * will mark this edge as the right
2072                                 * edge.
2073                                 */
2074                                if (left_edge[i] == delay_max + 1)
2075                                        right_edge[i] = -(d + 1);
2076                        }
2077                        bit_chk >>= 1;
2078                }
2079        }
2080
2081        /* Reset DQ delay chains to 0 */
2082        if (write)
2083                scc_mgr_apply_group_dq_out1_delay(0);
2084        else
2085                scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2086
2087        *sticky_bit_chk = 0;
2088        for (i = per_dqs - 1; i >= 0; i--) {
2089                debug_cond(DLEVEL >= 2,
2090                           "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2091                           __func__, __LINE__, i, left_edge[i],
2092                           i, right_edge[i]);
2093
2094                /*
2095                 * Check for cases where we haven't found the left edge,
2096                 * which makes our assignment of the the right edge invalid.
2097                 * Reset it to the illegal value.
2098                 */
2099                if ((left_edge[i] == delay_max + 1) &&
2100                    (right_edge[i] != delay_max + 1)) {
2101                        right_edge[i] = delay_max + 1;
2102                        debug_cond(DLEVEL >= 2,
2103                                   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2104                                   __func__, __LINE__, i, right_edge[i]);
2105                }
2106
2107                /*
2108                 * Reset sticky bit
2109                 * READ: except for bits where we have seen both
2110                 *       the left and right edge.
2111                 * WRITE: except for bits where we have seen the
2112                 *        left edge.
2113                 */
2114                *sticky_bit_chk <<= 1;
2115                if (write) {
2116                        if (left_edge[i] != delay_max + 1)
2117                                *sticky_bit_chk |= 1;
2118                } else {
2119                        if ((left_edge[i] != delay_max + 1) &&
2120                            (right_edge[i] != delay_max + 1))
2121                                *sticky_bit_chk |= 1;
2122                }
2123        }
2124}
2125
2126/**
2127 * search_right_edge() - Find right edge of DQ/DQS working phase
2128 * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2129 * @rank_bgn:           Rank number
2130 * @write_group:        Write Group
2131 * @read_group:         Read Group
2132 * @start_dqs:          DQS start phase
2133 * @start_dqs_en:       DQS enable start phase
2134 * @sticky_bit_chk:     Resulting sticky bit mask after the test
2135 * @left_edge:          Left edge of the DQ/DQS phase
2136 * @right_edge:         Right edge of the DQ/DQS phase
2137 * @use_read_test:      Perform read test
2138 *
2139 * Find right edge of DQ/DQS working phase.
2140 */
2141static int search_right_edge(const int write, const int rank_bgn,
2142        const u32 write_group, const u32 read_group,
2143        const int start_dqs, const int start_dqs_en,
2144        u32 *sticky_bit_chk,
2145        int *left_edge, int *right_edge, const u32 use_read_test)
2146{
2147        const u32 delay_max = write ? iocfg->io_out1_delay_max :
2148                                      iocfg->io_in_delay_max;
2149        const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2150                                    iocfg->dqs_in_delay_max;
2151        const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2152                                    rwcfg->mem_dq_per_read_dqs;
2153        u32 stop, bit_chk;
2154        int i, d;
2155
2156        for (d = 0; d <= dqs_max - start_dqs; d++) {
2157                if (write) {    /* WRITE-ONLY */
2158                        scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2159                                                                d + start_dqs);
2160                } else {        /* READ-ONLY */
2161                        scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2162                        if (iocfg->shift_dqs_en_when_shift_dqs) {
2163                                u32 delay = d + start_dqs_en;
2164                                if (delay > iocfg->dqs_en_delay_max)
2165                                        delay = iocfg->dqs_en_delay_max;
2166                                scc_mgr_set_dqs_en_delay(read_group, delay);
2167                        }
2168                        scc_mgr_load_dqs(read_group);
2169                }
2170
2171                writel(0, &sdr_scc_mgr->update);
2172
2173                stop = search_stop_check(write, d, rank_bgn, write_group,
2174                                         read_group, &bit_chk, sticky_bit_chk,
2175                                         use_read_test);
2176                if (stop == 1) {
2177                        if (write && (d == 0)) {        /* WRITE-ONLY */
2178                                for (i = 0; i < rwcfg->mem_dq_per_write_dqs;
2179                                     i++) {
2180                                        /*
2181                                         * d = 0 failed, but it passed when
2182                                         * testing the left edge, so it must be
2183                                         * marginal, set it to -1
2184                                         */
2185                                        if (right_edge[i] == delay_max + 1 &&
2186                                            left_edge[i] != delay_max + 1)
2187                                                right_edge[i] = -1;
2188                                }
2189                        }
2190                        break;
2191                }
2192
2193                /* stop != 1 */
2194                for (i = 0; i < per_dqs; i++) {
2195                        if (bit_chk & 1) {
2196                                /*
2197                                 * Remember a passing test as
2198                                 * the right_edge.
2199                                 */
2200                                right_edge[i] = d;
2201                        } else {
2202                                if (d != 0) {
2203                                        /*
2204                                         * If a right edge has not
2205                                         * been seen yet, then a future
2206                                         * passing test will mark this
2207                                         * edge as the left edge.
2208                                         */
2209                                        if (right_edge[i] == delay_max + 1)
2210                                                left_edge[i] = -(d + 1);
2211                                } else {
2212                                        /*
2213                                         * d = 0 failed, but it passed
2214                                         * when testing the left edge,
2215                                         * so it must be marginal, set
2216                                         * it to -1
2217                                         */
2218                                        if (right_edge[i] == delay_max + 1 &&
2219                                            left_edge[i] != delay_max + 1)
2220                                                right_edge[i] = -1;
2221                                        /*
2222                                         * If a right edge has not been
2223                                         * seen yet, then a future
2224                                         * passing test will mark this
2225                                         * edge as the left edge.
2226                                         */
2227                                        else if (right_edge[i] == delay_max + 1)
2228                                                left_edge[i] = -(d + 1);
2229                                }
2230                        }
2231
2232                        debug_cond(DLEVEL >= 2, "%s:%d center[r,d=%u]: ",
2233                                   __func__, __LINE__, d);
2234                        debug_cond(DLEVEL >= 2,
2235                                   "bit_chk_test=%i left_edge[%u]: %d ",
2236                                   bit_chk & 1, i, left_edge[i]);
2237                        debug_cond(DLEVEL >= 2, "right_edge[%u]: %d\n", i,
2238                                   right_edge[i]);
2239                        bit_chk >>= 1;
2240                }
2241        }
2242
2243        /* Check that all bits have a window */
2244        for (i = 0; i < per_dqs; i++) {
2245                debug_cond(DLEVEL >= 2,
2246                           "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2247                           __func__, __LINE__, i, left_edge[i],
2248                           i, right_edge[i]);
2249                if ((left_edge[i] == dqs_max + 1) ||
2250                    (right_edge[i] == dqs_max + 1))
2251                        return i + 1;   /* FIXME: If we fail, retval > 0 */
2252        }
2253
2254        return 0;
2255}
2256
2257/**
2258 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2259 * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2260 * @left_edge:          Left edge of the DQ/DQS phase
2261 * @right_edge:         Right edge of the DQ/DQS phase
2262 * @mid_min:            Best DQ/DQS phase middle setting
2263 *
2264 * Find index and value of the middle of the DQ/DQS working phase.
2265 */
2266static int get_window_mid_index(const int write, int *left_edge,
2267                                int *right_edge, int *mid_min)
2268{
2269        const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2270                                    rwcfg->mem_dq_per_read_dqs;
2271        int i, mid, min_index;
2272
2273        /* Find middle of window for each DQ bit */
2274        *mid_min = left_edge[0] - right_edge[0];
2275        min_index = 0;
2276        for (i = 1; i < per_dqs; i++) {
2277                mid = left_edge[i] - right_edge[i];
2278                if (mid < *mid_min) {
2279                        *mid_min = mid;
2280                        min_index = i;
2281                }
2282        }
2283
2284        /*
2285         * -mid_min/2 represents the amount that we need to move DQS.
2286         * If mid_min is odd and positive we'll need to add one to make
2287         * sure the rounding in further calculations is correct (always
2288         * bias to the right), so just add 1 for all positive values.
2289         */
2290        if (*mid_min > 0)
2291                (*mid_min)++;
2292        *mid_min = *mid_min / 2;
2293
2294        debug_cond(DLEVEL >= 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2295                   __func__, __LINE__, *mid_min, min_index);
2296        return min_index;
2297}
2298
2299/**
2300 * center_dq_windows() - Center the DQ/DQS windows
2301 * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2302 * @left_edge:          Left edge of the DQ/DQS phase
2303 * @right_edge:         Right edge of the DQ/DQS phase
2304 * @mid_min:            Adjusted DQ/DQS phase middle setting
2305 * @orig_mid_min:       Original DQ/DQS phase middle setting
2306 * @min_index:          DQ/DQS phase middle setting index
2307 * @test_bgn:           Rank number to begin the test
2308 * @dq_margin:          Amount of shift for the DQ
2309 * @dqs_margin:         Amount of shift for the DQS
2310 *
2311 * Align the DQ/DQS windows in each group.
2312 */
2313static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2314                              const int mid_min, const int orig_mid_min,
2315                              const int min_index, const int test_bgn,
2316                              int *dq_margin, int *dqs_margin)
2317{
2318        const s32 delay_max = write ? iocfg->io_out1_delay_max :
2319                                      iocfg->io_in_delay_max;
2320        const s32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2321                                    rwcfg->mem_dq_per_read_dqs;
2322        const s32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2323                                      SCC_MGR_IO_IN_DELAY_OFFSET;
2324        const s32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2325
2326        s32 temp_dq_io_delay1;
2327        int shift_dq, i, p;
2328
2329        /* Initialize data for export structures */
2330        *dqs_margin = delay_max + 1;
2331        *dq_margin  = delay_max + 1;
2332
2333        /* add delay to bring centre of all DQ windows to the same "level" */
2334        for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2335                /* Use values before divide by 2 to reduce round off error */
2336                shift_dq = (left_edge[i] - right_edge[i] -
2337                        (left_edge[min_index] - right_edge[min_index]))/2  +
2338                        (orig_mid_min - mid_min);
2339
2340                debug_cond(DLEVEL >= 2,
2341                           "vfifo_center: before: shift_dq[%u]=%d\n",
2342                           i, shift_dq);
2343
2344                temp_dq_io_delay1 = readl(addr + (i << 2));
2345
2346                if (shift_dq + temp_dq_io_delay1 > delay_max)
2347                        shift_dq = delay_max - temp_dq_io_delay1;
2348                else if (shift_dq + temp_dq_io_delay1 < 0)
2349                        shift_dq = -temp_dq_io_delay1;
2350
2351                debug_cond(DLEVEL >= 2,
2352                           "vfifo_center: after: shift_dq[%u]=%d\n",
2353                           i, shift_dq);
2354
2355                if (write)
2356                        scc_mgr_set_dq_out1_delay(i,
2357                                                  temp_dq_io_delay1 + shift_dq);
2358                else
2359                        scc_mgr_set_dq_in_delay(p,
2360                                                temp_dq_io_delay1 + shift_dq);
2361
2362                scc_mgr_load_dq(p);
2363
2364                debug_cond(DLEVEL >= 2,
2365                           "vfifo_center: margin[%u]=[%d,%d]\n", i,
2366                           left_edge[i] - shift_dq + (-mid_min),
2367                           right_edge[i] + shift_dq - (-mid_min));
2368
2369                /* To determine values for export structures */
2370                if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2371                        *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2372
2373                if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2374                        *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2375        }
2376}
2377
2378/**
2379 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2380 * @rank_bgn:           Rank number
2381 * @rw_group:           Read/Write Group
2382 * @test_bgn:           Rank at which the test begins
2383 * @use_read_test:      Perform a read test
2384 * @update_fom:         Update FOM
2385 *
2386 * Per-bit deskew DQ and centering.
2387 */
2388static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2389                        const u32 rw_group, const u32 test_bgn,
2390                        const int use_read_test, const int update_fom)
2391{
2392        const u32 addr =
2393                SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2394                (rw_group << 2);
2395        /*
2396         * Store these as signed since there are comparisons with
2397         * signed numbers.
2398         */
2399        u32 sticky_bit_chk;
2400        int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2401        int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2402        int32_t orig_mid_min, mid_min;
2403        int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2404        int32_t dq_margin, dqs_margin;
2405        int i, min_index;
2406        int ret;
2407
2408        debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2409
2410        start_dqs = readl(addr);
2411        if (iocfg->shift_dqs_en_when_shift_dqs)
2412                start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2413
2414        /* set the left and right edge of each bit to an illegal value */
2415        /* use (iocfg->io_in_delay_max + 1) as an illegal value */
2416        sticky_bit_chk = 0;
2417        for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2418                left_edge[i]  = iocfg->io_in_delay_max + 1;
2419                right_edge[i] = iocfg->io_in_delay_max + 1;
2420        }
2421
2422        /* Search for the left edge of the window for each bit */
2423        search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2424                         &sticky_bit_chk,
2425                         left_edge, right_edge, use_read_test);
2426
2427
2428        /* Search for the right edge of the window for each bit */
2429        ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2430                                start_dqs, start_dqs_en,
2431                                &sticky_bit_chk,
2432                                left_edge, right_edge, use_read_test);
2433        if (ret) {
2434                /*
2435                 * Restore delay chain settings before letting the loop
2436                 * in rw_mgr_mem_calibrate_vfifo to retry different
2437                 * dqs/ck relationships.
2438                 */
2439                scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2440                if (iocfg->shift_dqs_en_when_shift_dqs)
2441                        scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2442
2443                scc_mgr_load_dqs(rw_group);
2444                writel(0, &sdr_scc_mgr->update);
2445
2446                debug_cond(DLEVEL >= 1,
2447                           "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2448                           __func__, __LINE__, i, left_edge[i], right_edge[i]);
2449                if (use_read_test) {
2450                        set_failing_group_stage(rw_group *
2451                                rwcfg->mem_dq_per_read_dqs + i,
2452                                CAL_STAGE_VFIFO,
2453                                CAL_SUBSTAGE_VFIFO_CENTER);
2454                } else {
2455                        set_failing_group_stage(rw_group *
2456                                rwcfg->mem_dq_per_read_dqs + i,
2457                                CAL_STAGE_VFIFO_AFTER_WRITES,
2458                                CAL_SUBSTAGE_VFIFO_CENTER);
2459                }
2460                return -EIO;
2461        }
2462
2463        min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2464
2465        /* Determine the amount we can change DQS (which is -mid_min) */
2466        orig_mid_min = mid_min;
2467        new_dqs = start_dqs - mid_min;
2468        if (new_dqs > iocfg->dqs_in_delay_max)
2469                new_dqs = iocfg->dqs_in_delay_max;
2470        else if (new_dqs < 0)
2471                new_dqs = 0;
2472
2473        mid_min = start_dqs - new_dqs;
2474        debug_cond(DLEVEL >= 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2475                   mid_min, new_dqs);
2476
2477        if (iocfg->shift_dqs_en_when_shift_dqs) {
2478                if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2479                        mid_min += start_dqs_en - mid_min -
2480                                   iocfg->dqs_en_delay_max;
2481                else if (start_dqs_en - mid_min < 0)
2482                        mid_min += start_dqs_en - mid_min;
2483        }
2484        new_dqs = start_dqs - mid_min;
2485
2486        debug_cond(DLEVEL >= 1,
2487                   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2488                   start_dqs,
2489                   iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2490                   new_dqs, mid_min);
2491
2492        /* Add delay to bring centre of all DQ windows to the same "level". */
2493        center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2494                          min_index, test_bgn, &dq_margin, &dqs_margin);
2495
2496        /* Move DQS-en */
2497        if (iocfg->shift_dqs_en_when_shift_dqs) {
2498                final_dqs_en = start_dqs_en - mid_min;
2499                scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2500                scc_mgr_load_dqs(rw_group);
2501        }
2502
2503        /* Move DQS */
2504        scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2505        scc_mgr_load_dqs(rw_group);
2506        debug_cond(DLEVEL >= 2,
2507                   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2508                   __func__, __LINE__, dq_margin, dqs_margin);
2509
2510        /*
2511         * Do not remove this line as it makes sure all of our decisions
2512         * have been applied. Apply the update bit.
2513         */
2514        writel(0, &sdr_scc_mgr->update);
2515
2516        if ((dq_margin < 0) || (dqs_margin < 0))
2517                return -EINVAL;
2518
2519        return 0;
2520}
2521
2522/**
2523 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2524 * @rw_group:   Read/Write Group
2525 * @phase:      DQ/DQS phase
2526 *
2527 * Because initially no communication ca be reliably performed with the memory
2528 * device, the sequencer uses a guaranteed write mechanism to write data into
2529 * the memory device.
2530 */
2531static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2532                                                 const u32 phase)
2533{
2534        int ret;
2535
2536        /* Set a particular DQ/DQS phase. */
2537        scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2538
2539        debug_cond(DLEVEL >= 1, "%s:%d guaranteed write: g=%u p=%u\n",
2540                   __func__, __LINE__, rw_group, phase);
2541
2542        /*
2543         * Altera EMI_RM 2015.05.04 :: Figure 1-25
2544         * Load up the patterns used by read calibration using the
2545         * current DQDQS phase.
2546         */
2547        rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2548
2549        if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2550                return 0;
2551
2552        /*
2553         * Altera EMI_RM 2015.05.04 :: Figure 1-26
2554         * Back-to-Back reads of the patterns used for calibration.
2555         */
2556        ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2557        if (ret)
2558                debug_cond(DLEVEL >= 1,
2559                           "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2560                           __func__, __LINE__, rw_group, phase);
2561        return ret;
2562}
2563
2564/**
2565 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2566 * @rw_group:   Read/Write Group
2567 * @test_bgn:   Rank at which the test begins
2568 *
2569 * DQS enable calibration ensures reliable capture of the DQ signal without
2570 * glitches on the DQS line.
2571 */
2572static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2573                                                       const u32 test_bgn)
2574{
2575        /*
2576         * Altera EMI_RM 2015.05.04 :: Figure 1-27
2577         * DQS and DQS Eanble Signal Relationships.
2578         */
2579
2580        /* We start at zero, so have one less dq to devide among */
2581        const u32 delay_step = iocfg->io_in_delay_max /
2582                               (rwcfg->mem_dq_per_read_dqs - 1);
2583        int ret;
2584        u32 i, p, d, r;
2585
2586        debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2587
2588        /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2589        for (r = 0; r < rwcfg->mem_number_of_ranks;
2590             r += NUM_RANKS_PER_SHADOW_REG) {
2591                for (i = 0, p = test_bgn, d = 0;
2592                     i < rwcfg->mem_dq_per_read_dqs;
2593                     i++, p++, d += delay_step) {
2594                        debug_cond(DLEVEL >= 1,
2595                                   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2596                                   __func__, __LINE__, rw_group, r, i, p, d);
2597
2598                        scc_mgr_set_dq_in_delay(p, d);
2599                        scc_mgr_load_dq(p);
2600                }
2601
2602                writel(0, &sdr_scc_mgr->update);
2603        }
2604
2605        /*
2606         * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2607         * dq_in_delay values
2608         */
2609        ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2610
2611        debug_cond(DLEVEL >= 1,
2612                   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2613                   __func__, __LINE__, rw_group, !ret);
2614
2615        for (r = 0; r < rwcfg->mem_number_of_ranks;
2616             r += NUM_RANKS_PER_SHADOW_REG) {
2617                scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2618                writel(0, &sdr_scc_mgr->update);
2619        }
2620
2621        return ret;
2622}
2623
2624/**
2625 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2626 * @rw_group:           Read/Write Group
2627 * @test_bgn:           Rank at which the test begins
2628 * @use_read_test:      Perform a read test
2629 * @update_fom:         Update FOM
2630 *
2631 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2632 * within a group.
2633 */
2634static int
2635rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2636                                      const int use_read_test,
2637                                      const int update_fom)
2638
2639{
2640        int ret, grp_calibrated;
2641        u32 rank_bgn, sr;
2642
2643        /*
2644         * Altera EMI_RM 2015.05.04 :: Figure 1-28
2645         * Read per-bit deskew can be done on a per shadow register basis.
2646         */
2647        grp_calibrated = 1;
2648        for (rank_bgn = 0, sr = 0;
2649             rank_bgn < rwcfg->mem_number_of_ranks;
2650             rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2651                ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2652                                                        test_bgn,
2653                                                        use_read_test,
2654                                                        update_fom);
2655                if (!ret)
2656                        continue;
2657
2658                grp_calibrated = 0;
2659        }
2660
2661        if (!grp_calibrated)
2662                return -EIO;
2663
2664        return 0;
2665}
2666
2667/**
2668 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2669 * @rw_group:           Read/Write Group
2670 * @test_bgn:           Rank at which the test begins
2671 *
2672 * Stage 1: Calibrate the read valid prediction FIFO.
2673 *
2674 * This function implements UniPHY calibration Stage 1, as explained in
2675 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2676 *
2677 * - read valid prediction will consist of finding:
2678 *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2679 *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2680 *  - we also do a per-bit deskew on the DQ lines.
2681 */
2682static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2683{
2684        u32 p, d;
2685        u32 dtaps_per_ptap;
2686        u32 failed_substage;
2687
2688        int ret;
2689
2690        debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2691
2692        /* Update info for sims */
2693        reg_file_set_group(rw_group);
2694        reg_file_set_stage(CAL_STAGE_VFIFO);
2695        reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2696
2697        failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2698
2699        /* USER Determine number of delay taps for each phase tap. */
2700        dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2701                                      iocfg->delay_per_dqs_en_dchain_tap) - 1;
2702
2703        for (d = 0; d <= dtaps_per_ptap; d += 2) {
2704                /*
2705                 * In RLDRAMX we may be messing the delay of pins in
2706                 * the same write rw_group but outside of the current read
2707                 * the rw_group, but that's ok because we haven't calibrated
2708                 * output side yet.
2709                 */
2710                if (d > 0) {
2711                        scc_mgr_apply_group_all_out_delay_add_all_ranks(
2712                                                                rw_group, d);
2713                }
2714
2715                for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2716                        /* 1) Guaranteed Write */
2717                        ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2718                        if (ret)
2719                                break;
2720
2721                        /* 2) DQS Enable Calibration */
2722                        ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2723                                                                          test_bgn);
2724                        if (ret) {
2725                                failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2726                                continue;
2727                        }
2728
2729                        /* 3) Centering DQ/DQS */
2730                        /*
2731                         * If doing read after write calibration, do not update
2732                         * FOM now. Do it then.
2733                         */
2734                        ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2735                                                                test_bgn, 1, 0);
2736                        if (ret) {
2737                                failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2738                                continue;
2739                        }
2740
2741                        /* All done. */
2742                        goto cal_done_ok;
2743                }
2744        }
2745
2746        /* Calibration Stage 1 failed. */
2747        set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2748        return 0;
2749
2750        /* Calibration Stage 1 completed OK. */
2751cal_done_ok:
2752        /*
2753         * Reset the delay chains back to zero if they have moved > 1
2754         * (check for > 1 because loop will increase d even when pass in
2755         * first case).
2756         */
2757        if (d > 2)
2758                scc_mgr_zero_group(rw_group, 1);
2759
2760        return 1;
2761}
2762
2763/**
2764 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2765 * @rw_group:           Read/Write Group
2766 * @test_bgn:           Rank at which the test begins
2767 *
2768 * Stage 3: DQ/DQS Centering.
2769 *
2770 * This function implements UniPHY calibration Stage 3, as explained in
2771 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2772 */
2773static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2774                                          const u32 test_bgn)
2775{
2776        int ret;
2777
2778        debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2779
2780        /* Update info for sims. */
2781        reg_file_set_group(rw_group);
2782        reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2783        reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2784
2785        ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2786        if (ret)
2787                set_failing_group_stage(rw_group,
2788                                        CAL_STAGE_VFIFO_AFTER_WRITES,
2789                                        CAL_SUBSTAGE_VFIFO_CENTER);
2790        return ret;
2791}
2792
2793/**
2794 * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2795 *
2796 * Stage 4: Minimize latency.
2797 *
2798 * This function implements UniPHY calibration Stage 4, as explained in
2799 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2800 * Calibrate LFIFO to find smallest read latency.
2801 */
2802static u32 rw_mgr_mem_calibrate_lfifo(void)
2803{
2804        int found_one = 0;
2805
2806        debug("%s:%d\n", __func__, __LINE__);
2807
2808        /* Update info for sims. */
2809        reg_file_set_stage(CAL_STAGE_LFIFO);
2810        reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2811
2812        /* Load up the patterns used by read calibration for all ranks */
2813        rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2814
2815        do {
2816                writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2817                debug_cond(DLEVEL >= 2, "%s:%d lfifo: read_lat=%u",
2818                           __func__, __LINE__, gbl->curr_read_lat);
2819
2820                if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2821                                                              PASS_ALL_BITS, 1))
2822                        break;
2823
2824                found_one = 1;
2825                /*
2826                 * Reduce read latency and see if things are
2827                 * working correctly.
2828                 */
2829                gbl->curr_read_lat--;
2830        } while (gbl->curr_read_lat > 0);
2831
2832        /* Reset the fifos to get pointers to known state. */
2833        writel(0, &phy_mgr_cmd->fifo_reset);
2834
2835        if (found_one) {
2836                /* Add a fudge factor to the read latency that was determined */
2837                gbl->curr_read_lat += 2;
2838                writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2839                debug_cond(DLEVEL >= 2,
2840                           "%s:%d lfifo: success: using read_lat=%u\n",
2841                           __func__, __LINE__, gbl->curr_read_lat);
2842        } else {
2843                set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2844                                        CAL_SUBSTAGE_READ_LATENCY);
2845
2846                debug_cond(DLEVEL >= 2,
2847                           "%s:%d lfifo: failed at initial read_lat=%u\n",
2848                           __func__, __LINE__, gbl->curr_read_lat);
2849        }
2850
2851        return found_one;
2852}
2853
2854/**
2855 * search_window() - Search for the/part of the window with DM/DQS shift
2856 * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2857 * @rank_bgn:           Rank number
2858 * @write_group:        Write Group
2859 * @bgn_curr:           Current window begin
2860 * @end_curr:           Current window end
2861 * @bgn_best:           Current best window begin
2862 * @end_best:           Current best window end
2863 * @win_best:           Size of the best window
2864 * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2865 *
2866 * Search for the/part of the window with DM/DQS shift.
2867 */
2868static void search_window(const int search_dm,
2869                          const u32 rank_bgn, const u32 write_group,
2870                          int *bgn_curr, int *end_curr, int *bgn_best,
2871                          int *end_best, int *win_best, int new_dqs)
2872{
2873        u32 bit_chk;
2874        const int max = iocfg->io_out1_delay_max - new_dqs;
2875        int d, di;
2876
2877        /* Search for the/part of the window with DM/DQS shift. */
2878        for (di = max; di >= 0; di -= DELTA_D) {
2879                if (search_dm) {
2880                        d = di;
2881                        scc_mgr_apply_group_dm_out1_delay(d);
2882                } else {
2883                        /* For DQS, we go from 0...max */
2884                        d = max - di;
2885                        /*
2886                         * Note: This only shifts DQS, so are we limiting
2887                         *       ourselves to width of DQ unnecessarily.
2888                         */
2889                        scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2890                                                                d + new_dqs);
2891                }
2892
2893                writel(0, &sdr_scc_mgr->update);
2894
2895                if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2896                                                    PASS_ALL_BITS, &bit_chk,
2897                                                    0)) {
2898                        /* Set current end of the window. */
2899                        *end_curr = search_dm ? -d : d;
2900
2901                        /*
2902                         * If a starting edge of our window has not been seen
2903                         * this is our current start of the DM window.
2904                         */
2905                        if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2906                                *bgn_curr = search_dm ? -d : d;
2907
2908                        /*
2909                         * If current window is bigger than best seen.
2910                         * Set best seen to be current window.
2911                         */
2912                        if ((*end_curr - *bgn_curr + 1) > *win_best) {
2913                                *win_best = *end_curr - *bgn_curr + 1;
2914                                *bgn_best = *bgn_curr;
2915                                *end_best = *end_curr;
2916                        }
2917                } else {
2918                        /* We just saw a failing test. Reset temp edge. */
2919                        *bgn_curr = iocfg->io_out1_delay_max + 1;
2920                        *end_curr = iocfg->io_out1_delay_max + 1;
2921
2922                        /* Early exit is only applicable to DQS. */
2923                        if (search_dm)
2924                                continue;
2925
2926                        /*
2927                         * Early exit optimization: if the remaining delay
2928                         * chain space is less than already seen largest
2929                         * window we can exit.
2930                         */
2931                        if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2932                                break;
2933                }
2934        }
2935}
2936
2937/*
2938 * rw_mgr_mem_calibrate_writes_center() - Center all windows
2939 * @rank_bgn:           Rank number
2940 * @write_group:        Write group
2941 * @test_bgn:           Rank at which the test begins
2942 *
2943 * Center all windows. Do per-bit-deskew to possibly increase size of
2944 * certain windows.
2945 */
2946static int
2947rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2948                                   const u32 test_bgn)
2949{
2950        int i;
2951        u32 sticky_bit_chk;
2952        u32 min_index;
2953        int left_edge[rwcfg->mem_dq_per_write_dqs];
2954        int right_edge[rwcfg->mem_dq_per_write_dqs];
2955        int mid;
2956        int mid_min, orig_mid_min;
2957        int new_dqs, start_dqs;
2958        int dq_margin, dqs_margin, dm_margin;
2959        int bgn_curr = iocfg->io_out1_delay_max + 1;
2960        int end_curr = iocfg->io_out1_delay_max + 1;
2961        int bgn_best = iocfg->io_out1_delay_max + 1;
2962        int end_best = iocfg->io_out1_delay_max + 1;
2963        int win_best = 0;
2964
2965        int ret;
2966
2967        debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2968
2969        dm_margin = 0;
2970
2971        start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2972                          SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2973                          (rwcfg->mem_dq_per_write_dqs << 2));
2974
2975        /* Per-bit deskew. */
2976
2977        /*
2978         * Set the left and right edge of each bit to an illegal value.
2979         * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2980         */
2981        sticky_bit_chk = 0;
2982        for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2983                left_edge[i]  = iocfg->io_out1_delay_max + 1;
2984                right_edge[i] = iocfg->io_out1_delay_max + 1;
2985        }
2986
2987        /* Search for the left edge of the window for each bit. */
2988        search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2989                         &sticky_bit_chk,
2990                         left_edge, right_edge, 0);
2991
2992        /* Search for the right edge of the window for each bit. */
2993        ret = search_right_edge(1, rank_bgn, write_group, 0,
2994                                start_dqs, 0,
2995                                &sticky_bit_chk,
2996                                left_edge, right_edge, 0);
2997        if (ret) {
2998                set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2999                                        CAL_SUBSTAGE_WRITES_CENTER);
3000                return -EINVAL;
3001        }
3002
3003        min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3004
3005        /* Determine the amount we can change DQS (which is -mid_min). */
3006        orig_mid_min = mid_min;
3007        new_dqs = start_dqs;
3008        mid_min = 0;
3009        debug_cond(DLEVEL >= 1,
3010                   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3011                   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3012
3013        /* Add delay to bring centre of all DQ windows to the same "level". */
3014        center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3015                          min_index, 0, &dq_margin, &dqs_margin);
3016
3017        /* Move DQS */
3018        scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3019        writel(0, &sdr_scc_mgr->update);
3020
3021        /* Centre DM */
3022        debug_cond(DLEVEL >= 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3023
3024        /*
3025         * Set the left and right edge of each bit to an illegal value.
3026         * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3027         */
3028        left_edge[0]  = iocfg->io_out1_delay_max + 1;
3029        right_edge[0] = iocfg->io_out1_delay_max + 1;
3030
3031        /* Search for the/part of the window with DM shift. */
3032        search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3033                      &bgn_best, &end_best, &win_best, 0);
3034
3035        /* Reset DM delay chains to 0. */
3036        scc_mgr_apply_group_dm_out1_delay(0);
3037
3038        /*
3039         * Check to see if the current window nudges up aganist 0 delay.
3040         * If so we need to continue the search by shifting DQS otherwise DQS
3041         * search begins as a new search.
3042         */
3043        if (end_curr != 0) {
3044                bgn_curr = iocfg->io_out1_delay_max + 1;
3045                end_curr = iocfg->io_out1_delay_max + 1;
3046        }
3047
3048        /* Search for the/part of the window with DQS shifts. */
3049        search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3050                      &bgn_best, &end_best, &win_best, new_dqs);
3051
3052        /* Assign left and right edge for cal and reporting. */
3053        left_edge[0] = -1 * bgn_best;
3054        right_edge[0] = end_best;
3055
3056        debug_cond(DLEVEL >= 2, "%s:%d dm_calib: left=%d right=%d\n",
3057                   __func__, __LINE__, left_edge[0], right_edge[0]);
3058
3059        /* Move DQS (back to orig). */
3060        scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3061
3062        /* Move DM */
3063
3064        /* Find middle of window for the DM bit. */
3065        mid = (left_edge[0] - right_edge[0]) / 2;
3066
3067        /* Only move right, since we are not moving DQS/DQ. */
3068        if (mid < 0)
3069                mid = 0;
3070
3071        /* dm_marign should fail if we never find a window. */
3072        if (win_best == 0)
3073                dm_margin = -1;
3074        else
3075                dm_margin = left_edge[0] - mid;
3076
3077        scc_mgr_apply_group_dm_out1_delay(mid);
3078        writel(0, &sdr_scc_mgr->update);
3079
3080        debug_cond(DLEVEL >= 2,
3081                   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3082                   __func__, __LINE__, left_edge[0], right_edge[0],
3083                   mid, dm_margin);
3084        /* Export values. */
3085        gbl->fom_out += dq_margin + dqs_margin;
3086
3087        debug_cond(DLEVEL >= 2,
3088                   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3089                   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3090
3091        /*
3092         * Do not remove this line as it makes sure all of our
3093         * decisions have been applied.
3094         */
3095        writel(0, &sdr_scc_mgr->update);
3096
3097        if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3098                return -EINVAL;
3099
3100        return 0;
3101}
3102
3103/**
3104 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3105 * @rank_bgn:           Rank number
3106 * @group:              Read/Write Group
3107 * @test_bgn:           Rank at which the test begins
3108 *
3109 * Stage 2: Write Calibration Part One.
3110 *
3111 * This function implements UniPHY calibration Stage 2, as explained in
3112 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3113 */
3114static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3115                                       const u32 test_bgn)
3116{
3117        int ret;
3118
3119        /* Update info for sims */
3120        debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3121
3122        reg_file_set_group(group);
3123        reg_file_set_stage(CAL_STAGE_WRITES);
3124        reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3125
3126        ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3127        if (ret)
3128                set_failing_group_stage(group, CAL_STAGE_WRITES,
3129                                        CAL_SUBSTAGE_WRITES_CENTER);
3130
3131        return ret;
3132}
3133
3134/**
3135 * mem_precharge_and_activate() - Precharge all banks and activate
3136 *
3137 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3138 */
3139static void mem_precharge_and_activate(void)
3140{
3141        int r;
3142
3143        for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3144                /* Set rank. */
3145                set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3146
3147                /* Precharge all banks. */
3148                writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3149                                             RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3150
3151                writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3152                writel(rwcfg->activate_0_and_1_wait1,
3153                       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3154
3155                writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3156                writel(rwcfg->activate_0_and_1_wait2,
3157                       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3158
3159                /* Activate rows. */
3160                writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3161                                                RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3162        }
3163}
3164
3165/**
3166 * mem_init_latency() - Configure memory RLAT and WLAT settings
3167 *
3168 * Configure memory RLAT and WLAT parameters.
3169 */
3170static void mem_init_latency(void)
3171{
3172        /*
3173         * For AV/CV, LFIFO is hardened and always runs at full rate
3174         * so max latency in AFI clocks, used here, is correspondingly
3175         * smaller.
3176         */
3177        const u32 max_latency = (1 << misccfg->max_latency_count_width) - 1;
3178        u32 rlat, wlat;
3179
3180        debug("%s:%d\n", __func__, __LINE__);
3181
3182        /*
3183         * Read in write latency.
3184         * WL for Hard PHY does not include additive latency.
3185         */
3186        wlat = readl(&data_mgr->t_wl_add);
3187        wlat += readl(&data_mgr->mem_t_add);
3188
3189        gbl->rw_wl_nop_cycles = wlat - 1;
3190
3191        /* Read in readl latency. */
3192        rlat = readl(&data_mgr->t_rl_add);
3193
3194        /* Set a pretty high read latency initially. */
3195        gbl->curr_read_lat = rlat + 16;
3196        if (gbl->curr_read_lat > max_latency)
3197                gbl->curr_read_lat = max_latency;
3198
3199        writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3200
3201        /* Advertise write latency. */
3202        writel(wlat, &phy_mgr_cfg->afi_wlat);
3203}
3204
3205/**
3206 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3207 *
3208 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3209 */
3210static void mem_skip_calibrate(void)
3211{
3212        u32 vfifo_offset;
3213        u32 i, j, r;
3214
3215        debug("%s:%d\n", __func__, __LINE__);
3216        /* Need to update every shadow register set used by the interface */
3217        for (r = 0; r < rwcfg->mem_number_of_ranks;
3218             r += NUM_RANKS_PER_SHADOW_REG) {
3219                /*
3220                 * Set output phase alignment settings appropriate for
3221                 * skip calibration.
3222                 */
3223                for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3224                        scc_mgr_set_dqs_en_phase(i, 0);
3225                        if (iocfg->dll_chain_length == 6)
3226                                scc_mgr_set_dqdqs_output_phase(i, 6);
3227                        else
3228                                scc_mgr_set_dqdqs_output_phase(i, 7);
3229                        /*
3230                         * Case:33398
3231                         *
3232                         * Write data arrives to the I/O two cycles before write
3233                         * latency is reached (720 deg).
3234                         *   -> due to bit-slip in a/c bus
3235                         *   -> to allow board skew where dqs is longer than ck
3236                         *      -> how often can this happen!?
3237                         *      -> can claim back some ptaps for high freq
3238                         *       support if we can relax this, but i digress...
3239                         *
3240                         * The write_clk leads mem_ck by 90 deg
3241                         * The minimum ptap of the OPA is 180 deg
3242                         * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3243                         * The write_clk is always delayed by 2 ptaps
3244                         *
3245                         * Hence, to make DQS aligned to CK, we need to delay
3246                         * DQS by:
3247                         *    (720 - 90 - 180 - 2) *
3248                         *      (360 / iocfg->dll_chain_length)
3249                         *
3250                         * Dividing the above by (360 / iocfg->dll_chain_length)
3251                         * gives us the number of ptaps, which simplies to:
3252                         *
3253                         *    (1.25 * iocfg->dll_chain_length - 2)
3254                         */
3255                        scc_mgr_set_dqdqs_output_phase(i,
3256                                       ((125 * iocfg->dll_chain_length) / 100) - 2);
3257                }
3258                writel(0xff, &sdr_scc_mgr->dqs_ena);
3259                writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3260
3261                for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3262                        writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3263                                  SCC_MGR_GROUP_COUNTER_OFFSET);
3264                }
3265                writel(0xff, &sdr_scc_mgr->dq_ena);
3266                writel(0xff, &sdr_scc_mgr->dm_ena);
3267                writel(0, &sdr_scc_mgr->update);
3268        }
3269
3270        /* Compensate for simulation model behaviour */
3271        for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3272                scc_mgr_set_dqs_bus_in_delay(i, 10);
3273                scc_mgr_load_dqs(i);
3274        }
3275        writel(0, &sdr_scc_mgr->update);
3276
3277        /*
3278         * ArriaV has hard FIFOs that can only be initialized by incrementing
3279         * in sequencer.
3280         */
3281        vfifo_offset = misccfg->calib_vfifo_offset;
3282        for (j = 0; j < vfifo_offset; j++)
3283                writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3284        writel(0, &phy_mgr_cmd->fifo_reset);
3285
3286        /*
3287         * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3288         * setting from generation-time constant.
3289         */
3290        gbl->curr_read_lat = misccfg->calib_lfifo_offset;
3291        writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3292}
3293
3294/**
3295 * mem_calibrate() - Memory calibration entry point.
3296 *
3297 * Perform memory calibration.
3298 */
3299static u32 mem_calibrate(void)
3300{
3301        u32 i;
3302        u32 rank_bgn, sr;
3303        u32 write_group, write_test_bgn;
3304        u32 read_group, read_test_bgn;
3305        u32 run_groups, current_run;
3306        u32 failing_groups = 0;
3307        u32 group_failed = 0;
3308
3309        const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3310                                rwcfg->mem_if_write_dqs_width;
3311
3312        debug("%s:%d\n", __func__, __LINE__);
3313
3314        /* Initialize the data settings */
3315        gbl->error_substage = CAL_SUBSTAGE_NIL;
3316        gbl->error_stage = CAL_STAGE_NIL;
3317        gbl->error_group = 0xff;
3318        gbl->fom_in = 0;
3319        gbl->fom_out = 0;
3320
3321        /* Initialize WLAT and RLAT. */
3322        mem_init_latency();
3323
3324        /* Initialize bit slips. */
3325        mem_precharge_and_activate();
3326
3327        for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3328                writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3329                          SCC_MGR_GROUP_COUNTER_OFFSET);
3330                /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3331                if (i == 0)
3332                        scc_mgr_set_hhp_extras();
3333
3334                scc_set_bypass_mode(i);
3335        }
3336
3337        /* Calibration is skipped. */
3338        if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3339                /*
3340                 * Set VFIFO and LFIFO to instant-on settings in skip
3341                 * calibration mode.
3342                 */
3343                mem_skip_calibrate();
3344
3345                /*
3346                 * Do not remove this line as it makes sure all of our
3347                 * decisions have been applied.
3348                 */
3349                writel(0, &sdr_scc_mgr->update);
3350                return 1;
3351        }
3352
3353        /* Calibration is not skipped. */
3354        for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3355                /*
3356                 * Zero all delay chain/phase settings for all
3357                 * groups and all shadow register sets.
3358                 */
3359                scc_mgr_zero_all();
3360
3361                run_groups = ~0;
3362
3363                for (write_group = 0, write_test_bgn = 0; write_group
3364                        < rwcfg->mem_if_write_dqs_width; write_group++,
3365                        write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3366                        /* Initialize the group failure */
3367                        group_failed = 0;
3368
3369                        current_run = run_groups & ((1 <<
3370                                RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3371                        run_groups = run_groups >>
3372                                RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3373
3374                        if (current_run == 0)
3375                                continue;
3376
3377                        writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3378                                            SCC_MGR_GROUP_COUNTER_OFFSET);
3379                        scc_mgr_zero_group(write_group, 0);
3380
3381                        for (read_group = write_group * rwdqs_ratio,
3382                             read_test_bgn = 0;
3383                             read_group < (write_group + 1) * rwdqs_ratio;
3384                             read_group++,
3385                             read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3386                                if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3387                                        continue;
3388
3389                                /* Calibrate the VFIFO */
3390                                if (rw_mgr_mem_calibrate_vfifo(read_group,
3391                                                               read_test_bgn))
3392                                        continue;
3393
3394                                if (!(gbl->phy_debug_mode_flags &
3395                                      PHY_DEBUG_SWEEP_ALL_GROUPS))
3396                                        return 0;
3397
3398                                /* The group failed, we're done. */
3399                                goto grp_failed;
3400                        }
3401
3402                        /* Calibrate the output side */
3403                        for (rank_bgn = 0, sr = 0;
3404                             rank_bgn < rwcfg->mem_number_of_ranks;
3405                             rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3406                                if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3407                                        continue;
3408
3409                                /* Not needed in quick mode! */
3410                                if (STATIC_CALIB_STEPS &
3411                                    CALIB_SKIP_DELAY_SWEEPS)
3412                                        continue;
3413
3414                                /* Calibrate WRITEs */
3415                                if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3416                                                                 write_group,
3417                                                                 write_test_bgn))
3418                                        continue;
3419
3420                                group_failed = 1;
3421                                if (!(gbl->phy_debug_mode_flags &
3422                                      PHY_DEBUG_SWEEP_ALL_GROUPS))
3423                                        return 0;
3424                        }
3425
3426                        /* Some group failed, we're done. */
3427                        if (group_failed)
3428                                goto grp_failed;
3429
3430                        for (read_group = write_group * rwdqs_ratio,
3431                             read_test_bgn = 0;
3432                             read_group < (write_group + 1) * rwdqs_ratio;
3433                             read_group++,
3434                             read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3435                                if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3436                                        continue;
3437
3438                                if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3439                                                                    read_test_bgn))
3440                                        continue;
3441
3442                                if (!(gbl->phy_debug_mode_flags &
3443                                      PHY_DEBUG_SWEEP_ALL_GROUPS))
3444                                        return 0;
3445
3446                                /* The group failed, we're done. */
3447                                goto grp_failed;
3448                        }
3449
3450                        /* No group failed, continue as usual. */
3451                        continue;
3452
3453grp_failed:             /* A group failed, increment the counter. */
3454                        failing_groups++;
3455                }
3456
3457                /*
3458                 * USER If there are any failing groups then report
3459                 * the failure.
3460                 */
3461                if (failing_groups != 0)
3462                        return 0;
3463
3464                if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3465                        continue;
3466
3467                /* Calibrate the LFIFO */
3468                if (!rw_mgr_mem_calibrate_lfifo())
3469                        return 0;
3470        }
3471
3472        /*
3473         * Do not remove this line as it makes sure all of our decisions
3474         * have been applied.
3475         */
3476        writel(0, &sdr_scc_mgr->update);
3477        return 1;
3478}
3479
3480/**
3481 * run_mem_calibrate() - Perform memory calibration
3482 *
3483 * This function triggers the entire memory calibration procedure.
3484 */
3485static int run_mem_calibrate(void)
3486{
3487        int pass;
3488        u32 ctrl_cfg;
3489
3490        debug("%s:%d\n", __func__, __LINE__);
3491
3492        /* Reset pass/fail status shown on afi_cal_success/fail */
3493        writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3494
3495        /* Stop tracking manager. */
3496        ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
3497        writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
3498               &sdr_ctrl->ctrl_cfg);
3499
3500        phy_mgr_initialize();
3501        rw_mgr_mem_initialize();
3502
3503        /* Perform the actual memory calibration. */
3504        pass = mem_calibrate();
3505
3506        mem_precharge_and_activate();
3507        writel(0, &phy_mgr_cmd->fifo_reset);
3508
3509        /* Handoff. */
3510        rw_mgr_mem_handoff();
3511        /*
3512         * In Hard PHY this is a 2-bit control:
3513         * 0: AFI Mux Select
3514         * 1: DDIO Mux Select
3515         */
3516        writel(0x2, &phy_mgr_cfg->mux_sel);
3517
3518        /* Start tracking manager. */
3519        writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
3520
3521        return pass;
3522}
3523
3524/**
3525 * debug_mem_calibrate() - Report result of memory calibration
3526 * @pass:       Value indicating whether calibration passed or failed
3527 *
3528 * This function reports the results of the memory calibration
3529 * and writes debug information into the register file.
3530 */
3531static void debug_mem_calibrate(int pass)
3532{
3533        u32 debug_info;
3534
3535        if (pass) {
3536                debug("%s: CALIBRATION PASSED\n", __FILE__);
3537
3538                gbl->fom_in /= 2;
3539                gbl->fom_out /= 2;
3540
3541                if (gbl->fom_in > 0xff)
3542                        gbl->fom_in = 0xff;
3543
3544                if (gbl->fom_out > 0xff)
3545                        gbl->fom_out = 0xff;
3546
3547                /* Update the FOM in the register file */
3548                debug_info = gbl->fom_in;
3549                debug_info |= gbl->fom_out << 8;
3550                writel(debug_info, &sdr_reg_file->fom);
3551
3552                writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3553                writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3554        } else {
3555                debug("%s: CALIBRATION FAILED\n", __FILE__);
3556
3557                debug_info = gbl->error_stage;
3558                debug_info |= gbl->error_substage << 8;
3559                debug_info |= gbl->error_group << 16;
3560
3561                writel(debug_info, &sdr_reg_file->failing_stage);
3562                writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3563                writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3564
3565                /* Update the failing group/stage in the register file */
3566                debug_info = gbl->error_stage;
3567                debug_info |= gbl->error_substage << 8;
3568                debug_info |= gbl->error_group << 16;
3569                writel(debug_info, &sdr_reg_file->failing_stage);
3570        }
3571
3572        debug("%s: Calibration complete\n", __FILE__);
3573}
3574
3575/**
3576 * hc_initialize_rom_data() - Initialize ROM data
3577 *
3578 * Initialize ROM data.
3579 */
3580static void hc_initialize_rom_data(void)
3581{
3582        unsigned int nelem = 0;
3583        const u32 *rom_init;
3584        u32 i, addr;
3585
3586        socfpga_get_seq_inst_init(&rom_init, &nelem);
3587        addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3588        for (i = 0; i < nelem; i++)
3589                writel(rom_init[i], addr + (i << 2));
3590
3591        socfpga_get_seq_ac_init(&rom_init, &nelem);
3592        addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3593        for (i = 0; i < nelem; i++)
3594                writel(rom_init[i], addr + (i << 2));
3595}
3596
3597/**
3598 * initialize_reg_file() - Initialize SDR register file
3599 *
3600 * Initialize SDR register file.
3601 */
3602static void initialize_reg_file(void)
3603{
3604        /* Initialize the register file with the correct data */
3605        writel(misccfg->reg_file_init_seq_signature, &sdr_reg_file->signature);
3606        writel(0, &sdr_reg_file->debug_data_addr);
3607        writel(0, &sdr_reg_file->cur_stage);
3608        writel(0, &sdr_reg_file->fom);
3609        writel(0, &sdr_reg_file->failing_stage);
3610        writel(0, &sdr_reg_file->debug1);
3611        writel(0, &sdr_reg_file->debug2);
3612}
3613
3614/**
3615 * initialize_hps_phy() - Initialize HPS PHY
3616 *
3617 * Initialize HPS PHY.
3618 */
3619static void initialize_hps_phy(void)
3620{
3621        u32 reg;
3622        /*
3623         * Tracking also gets configured here because it's in the
3624         * same register.
3625         */
3626        u32 trk_sample_count = 7500;
3627        u32 trk_long_idle_sample_count = (10 << 16) | 100;
3628        /*
3629         * Format is number of outer loops in the 16 MSB, sample
3630         * count in 16 LSB.
3631         */
3632
3633        reg = 0;
3634        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3635        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3636        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3637        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3638        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3639        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3640        /*
3641         * This field selects the intrinsic latency to RDATA_EN/FULL path.
3642         * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3643         */
3644        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3645        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3646                trk_sample_count);
3647        writel(reg, &sdr_ctrl->phy_ctrl0);
3648
3649        reg = 0;
3650        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3651                trk_sample_count >>
3652                SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3653        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3654                trk_long_idle_sample_count);
3655        writel(reg, &sdr_ctrl->phy_ctrl1);
3656
3657        reg = 0;
3658        reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3659                trk_long_idle_sample_count >>
3660                SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3661        writel(reg, &sdr_ctrl->phy_ctrl2);
3662}
3663
3664/**
3665 * initialize_tracking() - Initialize tracking
3666 *
3667 * Initialize the register file with usable initial data.
3668 */
3669static void initialize_tracking(void)
3670{
3671        /*
3672         * Initialize the register file with the correct data.
3673         * Compute usable version of value in case we skip full
3674         * computation later.
3675         */
3676        writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap,
3677                            iocfg->delay_per_dchain_tap) - 1,
3678               &sdr_reg_file->dtaps_per_ptap);
3679
3680        /* trk_sample_count */
3681        writel(7500, &sdr_reg_file->trk_sample_count);
3682
3683        /* longidle outer loop [15:0] */
3684        writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3685
3686        /*
3687         * longidle sample count [31:24]
3688         * trfc, worst case of 933Mhz 4Gb [23:16]
3689         * trcd, worst case [15:8]
3690         * vfifo wait [7:0]
3691         */
3692        writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3693               &sdr_reg_file->delays);
3694
3695        /* mux delay */
3696        writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3697               (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3698               &sdr_reg_file->trk_rw_mgr_addr);
3699
3700        writel(rwcfg->mem_if_read_dqs_width,
3701               &sdr_reg_file->trk_read_dqs_width);
3702
3703        /* trefi [7:0] */
3704        writel((rwcfg->refresh_all << 24) | (1000 << 0),
3705               &sdr_reg_file->trk_rfsh);
3706}
3707
3708int sdram_calibration_full(void)
3709{
3710        struct param_type my_param;
3711        struct gbl_type my_gbl;
3712        u32 pass;
3713
3714        memset(&my_param, 0, sizeof(my_param));
3715        memset(&my_gbl, 0, sizeof(my_gbl));
3716
3717        param = &my_param;
3718        gbl = &my_gbl;
3719
3720        rwcfg = socfpga_get_sdram_rwmgr_config();
3721        iocfg = socfpga_get_sdram_io_config();
3722        misccfg = socfpga_get_sdram_misc_config();
3723
3724        /* Set the calibration enabled by default */
3725        gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3726        /*
3727         * Only sweep all groups (regardless of fail state) by default
3728         * Set enabled read test by default.
3729         */
3730#if DISABLE_GUARANTEED_READ
3731        gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3732#endif
3733        /* Initialize the register file */
3734        initialize_reg_file();
3735
3736        /* Initialize any PHY CSR */
3737        initialize_hps_phy();
3738
3739        scc_mgr_initialize();
3740
3741        initialize_tracking();
3742
3743        debug("%s: Preparing to start memory calibration\n", __FILE__);
3744
3745        debug("%s:%d\n", __func__, __LINE__);
3746        debug_cond(DLEVEL >= 1,
3747                   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3748                   rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3749                   rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3750                   rwcfg->mem_virtual_groups_per_read_dqs,
3751                   rwcfg->mem_virtual_groups_per_write_dqs);
3752        debug_cond(DLEVEL >= 1,
3753                   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3754                   rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3755                   rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3756                   iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3757        debug_cond(DLEVEL >= 1, "dtap_dqsen_delay=%u, dll=%u",
3758                   iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3759        debug_cond(DLEVEL >= 1,
3760                   "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3761                   iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3762                   iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3763        debug_cond(DLEVEL >= 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3764                   iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3765                   iocfg->io_out2_delay_max);
3766        debug_cond(DLEVEL >= 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3767                   iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3768
3769        hc_initialize_rom_data();
3770
3771        /* update info for sims */
3772        reg_file_set_stage(CAL_STAGE_NIL);
3773        reg_file_set_group(0);
3774
3775        /*
3776         * Load global needed for those actions that require
3777         * some dynamic calibration support.
3778         */
3779        dyn_calib_steps = STATIC_CALIB_STEPS;
3780        /*
3781         * Load global to allow dynamic selection of delay loop settings
3782         * based on calibration mode.
3783         */
3784        if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3785                skip_delay_mask = 0xff;
3786        else
3787                skip_delay_mask = 0x0;
3788
3789        pass = run_mem_calibrate();
3790        debug_mem_calibrate(pass);
3791        return pass;
3792}
3793