uboot/drivers/mtd/nand/raw/mxs_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Freescale i.MX28 NAND flash driver
   4 *
   5 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
   6 * on behalf of DENX Software Engineering GmbH
   7 *
   8 * Based on code from LTIB:
   9 * Freescale GPMI NFC NAND Flash Driver
  10 *
  11 * Copyright (C) 2010 Freescale Semiconductor, Inc.
  12 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
  13 */
  14
  15#include <common.h>
  16#include <dm.h>
  17#include <linux/mtd/rawnand.h>
  18#include <linux/sizes.h>
  19#include <linux/types.h>
  20#include <malloc.h>
  21#include <linux/errno.h>
  22#include <asm/io.h>
  23#include <asm/arch/clock.h>
  24#include <asm/arch/imx-regs.h>
  25#include <asm/mach-imx/regs-bch.h>
  26#include <asm/mach-imx/regs-gpmi.h>
  27#include <asm/arch/sys_proto.h>
  28#include "mxs_nand.h"
  29
  30#define MXS_NAND_DMA_DESCRIPTOR_COUNT           4
  31
  32#if (defined(CONFIG_MX6) || defined(CONFIG_MX7))
  33#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT    2
  34#else
  35#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT    0
  36#endif
  37#define MXS_NAND_METADATA_SIZE                  10
  38#define MXS_NAND_BITS_PER_ECC_LEVEL             13
  39
  40#if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32
  41#define MXS_NAND_COMMAND_BUFFER_SIZE            32
  42#else
  43#define MXS_NAND_COMMAND_BUFFER_SIZE            CONFIG_SYS_CACHELINE_SIZE
  44#endif
  45
  46#define MXS_NAND_BCH_TIMEOUT                    10000
  47
  48struct nand_ecclayout fake_ecc_layout;
  49
  50/*
  51 * Cache management functions
  52 */
  53#ifndef CONFIG_SYS_DCACHE_OFF
  54static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
  55{
  56        uint32_t addr = (uint32_t)info->data_buf;
  57
  58        flush_dcache_range(addr, addr + info->data_buf_size);
  59}
  60
  61static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
  62{
  63        uint32_t addr = (uint32_t)info->data_buf;
  64
  65        invalidate_dcache_range(addr, addr + info->data_buf_size);
  66}
  67
  68static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
  69{
  70        uint32_t addr = (uint32_t)info->cmd_buf;
  71
  72        flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
  73}
  74#else
  75static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
  76static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
  77static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
  78#endif
  79
  80static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
  81{
  82        struct mxs_dma_desc *desc;
  83
  84        if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
  85                printf("MXS NAND: Too many DMA descriptors requested\n");
  86                return NULL;
  87        }
  88
  89        desc = info->desc[info->desc_index];
  90        info->desc_index++;
  91
  92        return desc;
  93}
  94
  95static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
  96{
  97        int i;
  98        struct mxs_dma_desc *desc;
  99
 100        for (i = 0; i < info->desc_index; i++) {
 101                desc = info->desc[i];
 102                memset(desc, 0, sizeof(struct mxs_dma_desc));
 103                desc->address = (dma_addr_t)desc;
 104        }
 105
 106        info->desc_index = 0;
 107}
 108
 109static uint32_t mxs_nand_aux_status_offset(void)
 110{
 111        return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
 112}
 113
 114static inline int mxs_nand_calc_mark_offset(struct bch_geometry *geo,
 115                                            uint32_t page_data_size)
 116{
 117        uint32_t chunk_data_size_in_bits = geo->ecc_chunk_size * 8;
 118        uint32_t chunk_ecc_size_in_bits = geo->ecc_strength * geo->gf_len;
 119        uint32_t chunk_total_size_in_bits;
 120        uint32_t block_mark_chunk_number;
 121        uint32_t block_mark_chunk_bit_offset;
 122        uint32_t block_mark_bit_offset;
 123
 124        chunk_total_size_in_bits =
 125                        chunk_data_size_in_bits + chunk_ecc_size_in_bits;
 126
 127        /* Compute the bit offset of the block mark within the physical page. */
 128        block_mark_bit_offset = page_data_size * 8;
 129
 130        /* Subtract the metadata bits. */
 131        block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
 132
 133        /*
 134         * Compute the chunk number (starting at zero) in which the block mark
 135         * appears.
 136         */
 137        block_mark_chunk_number =
 138                        block_mark_bit_offset / chunk_total_size_in_bits;
 139
 140        /*
 141         * Compute the bit offset of the block mark within its chunk, and
 142         * validate it.
 143         */
 144        block_mark_chunk_bit_offset = block_mark_bit_offset -
 145                        (block_mark_chunk_number * chunk_total_size_in_bits);
 146
 147        if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
 148                return -EINVAL;
 149
 150        /*
 151         * Now that we know the chunk number in which the block mark appears,
 152         * we can subtract all the ECC bits that appear before it.
 153         */
 154        block_mark_bit_offset -=
 155                block_mark_chunk_number * chunk_ecc_size_in_bits;
 156
 157        geo->block_mark_byte_offset = block_mark_bit_offset >> 3;
 158        geo->block_mark_bit_offset = block_mark_bit_offset & 0x7;
 159
 160        return 0;
 161}
 162
 163static inline int mxs_nand_calc_ecc_layout_by_info(struct bch_geometry *geo,
 164                                                   struct mtd_info *mtd,
 165                                                   unsigned int ecc_strength,
 166                                                   unsigned int ecc_step)
 167{
 168        struct nand_chip *chip = mtd_to_nand(mtd);
 169        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 170
 171        switch (ecc_step) {
 172        case SZ_512:
 173                geo->gf_len = 13;
 174                break;
 175        case SZ_1K:
 176                geo->gf_len = 14;
 177                break;
 178        default:
 179                return -EINVAL;
 180        }
 181
 182        geo->ecc_chunk_size = ecc_step;
 183        geo->ecc_strength = round_up(ecc_strength, 2);
 184
 185        /* Keep the C >= O */
 186        if (geo->ecc_chunk_size < mtd->oobsize)
 187                return -EINVAL;
 188
 189        if (geo->ecc_strength > nand_info->max_ecc_strength_supported)
 190                return -EINVAL;
 191
 192        geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
 193
 194        return 0;
 195}
 196
 197static inline int mxs_nand_calc_ecc_layout(struct bch_geometry *geo,
 198                                           struct mtd_info *mtd)
 199{
 200        struct nand_chip *chip = mtd_to_nand(mtd);
 201        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 202
 203        /* The default for the length of Galois Field. */
 204        geo->gf_len = 13;
 205
 206        /* The default for chunk size. */
 207        geo->ecc_chunk_size = 512;
 208
 209        if (geo->ecc_chunk_size < mtd->oobsize) {
 210                geo->gf_len = 14;
 211                geo->ecc_chunk_size *= 2;
 212        }
 213
 214        if (mtd->oobsize > geo->ecc_chunk_size) {
 215                printf("Not support the NAND chips whose oob size is larger then %d bytes!\n",
 216                       geo->ecc_chunk_size);
 217                return -EINVAL;
 218        }
 219
 220        geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
 221
 222        /*
 223         * Determine the ECC layout with the formula:
 224         *      ECC bits per chunk = (total page spare data bits) /
 225         *              (bits per ECC level) / (chunks per page)
 226         * where:
 227         *      total page spare data bits =
 228         *              (page oob size - meta data size) * (bits per byte)
 229         */
 230        geo->ecc_strength = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8)
 231                        / (geo->gf_len * geo->ecc_chunk_count);
 232
 233        geo->ecc_strength = min(round_down(geo->ecc_strength, 2),
 234                                nand_info->max_ecc_strength_supported);
 235
 236        return 0;
 237}
 238
 239/*
 240 * Wait for BCH complete IRQ and clear the IRQ
 241 */
 242static int mxs_nand_wait_for_bch_complete(struct mxs_nand_info *nand_info)
 243{
 244        int timeout = MXS_NAND_BCH_TIMEOUT;
 245        int ret;
 246
 247        ret = mxs_wait_mask_set(&nand_info->bch_regs->hw_bch_ctrl_reg,
 248                BCH_CTRL_COMPLETE_IRQ, timeout);
 249
 250        writel(BCH_CTRL_COMPLETE_IRQ, &nand_info->bch_regs->hw_bch_ctrl_clr);
 251
 252        return ret;
 253}
 254
 255/*
 256 * This is the function that we install in the cmd_ctrl function pointer of the
 257 * owning struct nand_chip. The only functions in the reference implementation
 258 * that use these functions pointers are cmdfunc and select_chip.
 259 *
 260 * In this driver, we implement our own select_chip, so this function will only
 261 * be called by the reference implementation's cmdfunc. For this reason, we can
 262 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
 263 * Flash.
 264 */
 265static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
 266{
 267        struct nand_chip *nand = mtd_to_nand(mtd);
 268        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 269        struct mxs_dma_desc *d;
 270        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 271        int ret;
 272
 273        /*
 274         * If this condition is true, something is _VERY_ wrong in MTD
 275         * subsystem!
 276         */
 277        if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
 278                printf("MXS NAND: Command queue too long\n");
 279                return;
 280        }
 281
 282        /*
 283         * Every operation begins with a command byte and a series of zero or
 284         * more address bytes. These are distinguished by either the Address
 285         * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
 286         * asserted. When MTD is ready to execute the command, it will
 287         * deasert both latch enables.
 288         *
 289         * Rather than run a separate DMA operation for every single byte, we
 290         * queue them up and run a single DMA operation for the entire series
 291         * of command and data bytes.
 292         */
 293        if (ctrl & (NAND_ALE | NAND_CLE)) {
 294                if (data != NAND_CMD_NONE)
 295                        nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
 296                return;
 297        }
 298
 299        /*
 300         * If control arrives here, MTD has deasserted both the ALE and CLE,
 301         * which means it's ready to run an operation. Check if we have any
 302         * bytes to send.
 303         */
 304        if (nand_info->cmd_queue_len == 0)
 305                return;
 306
 307        /* Compile the DMA descriptor -- a descriptor that sends command. */
 308        d = mxs_nand_get_dma_desc(nand_info);
 309        d->cmd.data =
 310                MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
 311                MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
 312                MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 313                (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
 314
 315        d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
 316
 317        d->cmd.pio_words[0] =
 318                GPMI_CTRL0_COMMAND_MODE_WRITE |
 319                GPMI_CTRL0_WORD_LENGTH |
 320                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 321                GPMI_CTRL0_ADDRESS_NAND_CLE |
 322                GPMI_CTRL0_ADDRESS_INCREMENT |
 323                nand_info->cmd_queue_len;
 324
 325        mxs_dma_desc_append(channel, d);
 326
 327        /* Flush caches */
 328        mxs_nand_flush_cmd_buf(nand_info);
 329
 330        /* Execute the DMA chain. */
 331        ret = mxs_dma_go(channel);
 332        if (ret)
 333                printf("MXS NAND: Error sending command\n");
 334
 335        mxs_nand_return_dma_descs(nand_info);
 336
 337        /* Reset the command queue. */
 338        nand_info->cmd_queue_len = 0;
 339}
 340
 341/*
 342 * Test if the NAND flash is ready.
 343 */
 344static int mxs_nand_device_ready(struct mtd_info *mtd)
 345{
 346        struct nand_chip *chip = mtd_to_nand(mtd);
 347        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 348        uint32_t tmp;
 349
 350        tmp = readl(&nand_info->gpmi_regs->hw_gpmi_stat);
 351        tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
 352
 353        return tmp & 1;
 354}
 355
 356/*
 357 * Select the NAND chip.
 358 */
 359static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
 360{
 361        struct nand_chip *nand = mtd_to_nand(mtd);
 362        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 363
 364        nand_info->cur_chip = chip;
 365}
 366
 367/*
 368 * Handle block mark swapping.
 369 *
 370 * Note that, when this function is called, it doesn't know whether it's
 371 * swapping the block mark, or swapping it *back* -- but it doesn't matter
 372 * because the the operation is the same.
 373 */
 374static void mxs_nand_swap_block_mark(struct bch_geometry *geo,
 375                                     uint8_t *data_buf, uint8_t *oob_buf)
 376{
 377        uint32_t bit_offset = geo->block_mark_bit_offset;
 378        uint32_t buf_offset = geo->block_mark_byte_offset;
 379
 380        uint32_t src;
 381        uint32_t dst;
 382
 383        /*
 384         * Get the byte from the data area that overlays the block mark. Since
 385         * the ECC engine applies its own view to the bits in the page, the
 386         * physical block mark won't (in general) appear on a byte boundary in
 387         * the data.
 388         */
 389        src = data_buf[buf_offset] >> bit_offset;
 390        src |= data_buf[buf_offset + 1] << (8 - bit_offset);
 391
 392        dst = oob_buf[0];
 393
 394        oob_buf[0] = src;
 395
 396        data_buf[buf_offset] &= ~(0xff << bit_offset);
 397        data_buf[buf_offset + 1] &= 0xff << bit_offset;
 398
 399        data_buf[buf_offset] |= dst << bit_offset;
 400        data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
 401}
 402
 403/*
 404 * Read data from NAND.
 405 */
 406static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
 407{
 408        struct nand_chip *nand = mtd_to_nand(mtd);
 409        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 410        struct mxs_dma_desc *d;
 411        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 412        int ret;
 413
 414        if (length > NAND_MAX_PAGESIZE) {
 415                printf("MXS NAND: DMA buffer too big\n");
 416                return;
 417        }
 418
 419        if (!buf) {
 420                printf("MXS NAND: DMA buffer is NULL\n");
 421                return;
 422        }
 423
 424        /* Compile the DMA descriptor - a descriptor that reads data. */
 425        d = mxs_nand_get_dma_desc(nand_info);
 426        d->cmd.data =
 427                MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
 428                MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 429                (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 430                (length << MXS_DMA_DESC_BYTES_OFFSET);
 431
 432        d->cmd.address = (dma_addr_t)nand_info->data_buf;
 433
 434        d->cmd.pio_words[0] =
 435                GPMI_CTRL0_COMMAND_MODE_READ |
 436                GPMI_CTRL0_WORD_LENGTH |
 437                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 438                GPMI_CTRL0_ADDRESS_NAND_DATA |
 439                length;
 440
 441        mxs_dma_desc_append(channel, d);
 442
 443        /*
 444         * A DMA descriptor that waits for the command to end and the chip to
 445         * become ready.
 446         *
 447         * I think we actually should *not* be waiting for the chip to become
 448         * ready because, after all, we don't care. I think the original code
 449         * did that and no one has re-thought it yet.
 450         */
 451        d = mxs_nand_get_dma_desc(nand_info);
 452        d->cmd.data =
 453                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 454                MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
 455                MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 456
 457        d->cmd.address = 0;
 458
 459        d->cmd.pio_words[0] =
 460                GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 461                GPMI_CTRL0_WORD_LENGTH |
 462                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 463                GPMI_CTRL0_ADDRESS_NAND_DATA;
 464
 465        mxs_dma_desc_append(channel, d);
 466
 467        /* Invalidate caches */
 468        mxs_nand_inval_data_buf(nand_info);
 469
 470        /* Execute the DMA chain. */
 471        ret = mxs_dma_go(channel);
 472        if (ret) {
 473                printf("MXS NAND: DMA read error\n");
 474                goto rtn;
 475        }
 476
 477        /* Invalidate caches */
 478        mxs_nand_inval_data_buf(nand_info);
 479
 480        memcpy(buf, nand_info->data_buf, length);
 481
 482rtn:
 483        mxs_nand_return_dma_descs(nand_info);
 484}
 485
 486/*
 487 * Write data to NAND.
 488 */
 489static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
 490                                int length)
 491{
 492        struct nand_chip *nand = mtd_to_nand(mtd);
 493        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 494        struct mxs_dma_desc *d;
 495        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 496        int ret;
 497
 498        if (length > NAND_MAX_PAGESIZE) {
 499                printf("MXS NAND: DMA buffer too big\n");
 500                return;
 501        }
 502
 503        if (!buf) {
 504                printf("MXS NAND: DMA buffer is NULL\n");
 505                return;
 506        }
 507
 508        memcpy(nand_info->data_buf, buf, length);
 509
 510        /* Compile the DMA descriptor - a descriptor that writes data. */
 511        d = mxs_nand_get_dma_desc(nand_info);
 512        d->cmd.data =
 513                MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
 514                MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 515                (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 516                (length << MXS_DMA_DESC_BYTES_OFFSET);
 517
 518        d->cmd.address = (dma_addr_t)nand_info->data_buf;
 519
 520        d->cmd.pio_words[0] =
 521                GPMI_CTRL0_COMMAND_MODE_WRITE |
 522                GPMI_CTRL0_WORD_LENGTH |
 523                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 524                GPMI_CTRL0_ADDRESS_NAND_DATA |
 525                length;
 526
 527        mxs_dma_desc_append(channel, d);
 528
 529        /* Flush caches */
 530        mxs_nand_flush_data_buf(nand_info);
 531
 532        /* Execute the DMA chain. */
 533        ret = mxs_dma_go(channel);
 534        if (ret)
 535                printf("MXS NAND: DMA write error\n");
 536
 537        mxs_nand_return_dma_descs(nand_info);
 538}
 539
 540/*
 541 * Read a single byte from NAND.
 542 */
 543static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
 544{
 545        uint8_t buf;
 546        mxs_nand_read_buf(mtd, &buf, 1);
 547        return buf;
 548}
 549
 550/*
 551 * Read a page from NAND.
 552 */
 553static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
 554                                        uint8_t *buf, int oob_required,
 555                                        int page)
 556{
 557        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 558        struct bch_geometry *geo = &nand_info->bch_geometry;
 559        struct mxs_dma_desc *d;
 560        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 561        uint32_t corrected = 0, failed = 0;
 562        uint8_t *status;
 563        int i, ret;
 564
 565        /* Compile the DMA descriptor - wait for ready. */
 566        d = mxs_nand_get_dma_desc(nand_info);
 567        d->cmd.data =
 568                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 569                MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
 570                (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 571
 572        d->cmd.address = 0;
 573
 574        d->cmd.pio_words[0] =
 575                GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 576                GPMI_CTRL0_WORD_LENGTH |
 577                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 578                GPMI_CTRL0_ADDRESS_NAND_DATA;
 579
 580        mxs_dma_desc_append(channel, d);
 581
 582        /* Compile the DMA descriptor - enable the BCH block and read. */
 583        d = mxs_nand_get_dma_desc(nand_info);
 584        d->cmd.data =
 585                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 586                MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 587
 588        d->cmd.address = 0;
 589
 590        d->cmd.pio_words[0] =
 591                GPMI_CTRL0_COMMAND_MODE_READ |
 592                GPMI_CTRL0_WORD_LENGTH |
 593                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 594                GPMI_CTRL0_ADDRESS_NAND_DATA |
 595                (mtd->writesize + mtd->oobsize);
 596        d->cmd.pio_words[1] = 0;
 597        d->cmd.pio_words[2] =
 598                GPMI_ECCCTRL_ENABLE_ECC |
 599                GPMI_ECCCTRL_ECC_CMD_DECODE |
 600                GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
 601        d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
 602        d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
 603        d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
 604
 605        mxs_dma_desc_append(channel, d);
 606
 607        /* Compile the DMA descriptor - disable the BCH block. */
 608        d = mxs_nand_get_dma_desc(nand_info);
 609        d->cmd.data =
 610                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 611                MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
 612                (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 613
 614        d->cmd.address = 0;
 615
 616        d->cmd.pio_words[0] =
 617                GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 618                GPMI_CTRL0_WORD_LENGTH |
 619                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 620                GPMI_CTRL0_ADDRESS_NAND_DATA |
 621                (mtd->writesize + mtd->oobsize);
 622        d->cmd.pio_words[1] = 0;
 623        d->cmd.pio_words[2] = 0;
 624
 625        mxs_dma_desc_append(channel, d);
 626
 627        /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
 628        d = mxs_nand_get_dma_desc(nand_info);
 629        d->cmd.data =
 630                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 631                MXS_DMA_DESC_DEC_SEM;
 632
 633        d->cmd.address = 0;
 634
 635        mxs_dma_desc_append(channel, d);
 636
 637        /* Invalidate caches */
 638        mxs_nand_inval_data_buf(nand_info);
 639
 640        /* Execute the DMA chain. */
 641        ret = mxs_dma_go(channel);
 642        if (ret) {
 643                printf("MXS NAND: DMA read error\n");
 644                goto rtn;
 645        }
 646
 647        ret = mxs_nand_wait_for_bch_complete(nand_info);
 648        if (ret) {
 649                printf("MXS NAND: BCH read timeout\n");
 650                goto rtn;
 651        }
 652
 653        /* Invalidate caches */
 654        mxs_nand_inval_data_buf(nand_info);
 655
 656        /* Read DMA completed, now do the mark swapping. */
 657        mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
 658
 659        /* Loop over status bytes, accumulating ECC status. */
 660        status = nand_info->oob_buf + mxs_nand_aux_status_offset();
 661        for (i = 0; i < geo->ecc_chunk_count; i++) {
 662                if (status[i] == 0x00)
 663                        continue;
 664
 665                if (status[i] == 0xff)
 666                        continue;
 667
 668                if (status[i] == 0xfe) {
 669                        failed++;
 670                        continue;
 671                }
 672
 673                corrected += status[i];
 674        }
 675
 676        /* Propagate ECC status to the owning MTD. */
 677        mtd->ecc_stats.failed += failed;
 678        mtd->ecc_stats.corrected += corrected;
 679
 680        /*
 681         * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
 682         * details about our policy for delivering the OOB.
 683         *
 684         * We fill the caller's buffer with set bits, and then copy the block
 685         * mark to the caller's buffer. Note that, if block mark swapping was
 686         * necessary, it has already been done, so we can rely on the first
 687         * byte of the auxiliary buffer to contain the block mark.
 688         */
 689        memset(nand->oob_poi, 0xff, mtd->oobsize);
 690
 691        nand->oob_poi[0] = nand_info->oob_buf[0];
 692
 693        memcpy(buf, nand_info->data_buf, mtd->writesize);
 694
 695rtn:
 696        mxs_nand_return_dma_descs(nand_info);
 697
 698        return ret;
 699}
 700
 701/*
 702 * Write a page to NAND.
 703 */
 704static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
 705                                struct nand_chip *nand, const uint8_t *buf,
 706                                int oob_required, int page)
 707{
 708        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 709        struct bch_geometry *geo = &nand_info->bch_geometry;
 710        struct mxs_dma_desc *d;
 711        uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 712        int ret;
 713
 714        memcpy(nand_info->data_buf, buf, mtd->writesize);
 715        memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
 716
 717        /* Handle block mark swapping. */
 718        mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
 719
 720        /* Compile the DMA descriptor - write data. */
 721        d = mxs_nand_get_dma_desc(nand_info);
 722        d->cmd.data =
 723                MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 724                MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 725                (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 726
 727        d->cmd.address = 0;
 728
 729        d->cmd.pio_words[0] =
 730                GPMI_CTRL0_COMMAND_MODE_WRITE |
 731                GPMI_CTRL0_WORD_LENGTH |
 732                (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 733                GPMI_CTRL0_ADDRESS_NAND_DATA;
 734        d->cmd.pio_words[1] = 0;
 735        d->cmd.pio_words[2] =
 736                GPMI_ECCCTRL_ENABLE_ECC |
 737                GPMI_ECCCTRL_ECC_CMD_ENCODE |
 738                GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
 739        d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
 740        d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
 741        d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
 742
 743        mxs_dma_desc_append(channel, d);
 744
 745        /* Flush caches */
 746        mxs_nand_flush_data_buf(nand_info);
 747
 748        /* Execute the DMA chain. */
 749        ret = mxs_dma_go(channel);
 750        if (ret) {
 751                printf("MXS NAND: DMA write error\n");
 752                goto rtn;
 753        }
 754
 755        ret = mxs_nand_wait_for_bch_complete(nand_info);
 756        if (ret) {
 757                printf("MXS NAND: BCH write timeout\n");
 758                goto rtn;
 759        }
 760
 761rtn:
 762        mxs_nand_return_dma_descs(nand_info);
 763        return 0;
 764}
 765
 766/*
 767 * Read OOB from NAND.
 768 *
 769 * This function is a veneer that replaces the function originally installed by
 770 * the NAND Flash MTD code.
 771 */
 772static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
 773                                        struct mtd_oob_ops *ops)
 774{
 775        struct nand_chip *chip = mtd_to_nand(mtd);
 776        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 777        int ret;
 778
 779        if (ops->mode == MTD_OPS_RAW)
 780                nand_info->raw_oob_mode = 1;
 781        else
 782                nand_info->raw_oob_mode = 0;
 783
 784        ret = nand_info->hooked_read_oob(mtd, from, ops);
 785
 786        nand_info->raw_oob_mode = 0;
 787
 788        return ret;
 789}
 790
 791/*
 792 * Write OOB to NAND.
 793 *
 794 * This function is a veneer that replaces the function originally installed by
 795 * the NAND Flash MTD code.
 796 */
 797static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
 798                                        struct mtd_oob_ops *ops)
 799{
 800        struct nand_chip *chip = mtd_to_nand(mtd);
 801        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 802        int ret;
 803
 804        if (ops->mode == MTD_OPS_RAW)
 805                nand_info->raw_oob_mode = 1;
 806        else
 807                nand_info->raw_oob_mode = 0;
 808
 809        ret = nand_info->hooked_write_oob(mtd, to, ops);
 810
 811        nand_info->raw_oob_mode = 0;
 812
 813        return ret;
 814}
 815
 816/*
 817 * Mark a block bad in NAND.
 818 *
 819 * This function is a veneer that replaces the function originally installed by
 820 * the NAND Flash MTD code.
 821 */
 822static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
 823{
 824        struct nand_chip *chip = mtd_to_nand(mtd);
 825        struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 826        int ret;
 827
 828        nand_info->marking_block_bad = 1;
 829
 830        ret = nand_info->hooked_block_markbad(mtd, ofs);
 831
 832        nand_info->marking_block_bad = 0;
 833
 834        return ret;
 835}
 836
 837/*
 838 * There are several places in this driver where we have to handle the OOB and
 839 * block marks. This is the function where things are the most complicated, so
 840 * this is where we try to explain it all. All the other places refer back to
 841 * here.
 842 *
 843 * These are the rules, in order of decreasing importance:
 844 *
 845 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
 846 *    write operations take measures to protect it.
 847 *
 848 * 2) In read operations, the first byte of the OOB we return must reflect the
 849 *    true state of the block mark, no matter where that block mark appears in
 850 *    the physical page.
 851 *
 852 * 3) ECC-based read operations return an OOB full of set bits (since we never
 853 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 854 *    return).
 855 *
 856 * 4) "Raw" read operations return a direct view of the physical bytes in the
 857 *    page, using the conventional definition of which bytes are data and which
 858 *    are OOB. This gives the caller a way to see the actual, physical bytes
 859 *    in the page, without the distortions applied by our ECC engine.
 860 *
 861 * What we do for this specific read operation depends on whether we're doing
 862 * "raw" read, or an ECC-based read.
 863 *
 864 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 865 * easy. When reading a page, for example, the NAND Flash MTD code calls our
 866 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 867 * ECC-based or raw view of the page is implicit in which function it calls
 868 * (there is a similar pair of ECC-based/raw functions for writing).
 869 *
 870 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
 871 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
 872 * caller wants an ECC-based or raw view of the page is not propagated down to
 873 * this driver.
 874 *
 875 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
 876 * ecc.read_oob and ecc.write_oob function pointers in the owning
 877 * struct mtd_info with our own functions. These hook functions set the
 878 * raw_oob_mode field so that, when control finally arrives here, we'll know
 879 * what to do.
 880 */
 881static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
 882                                int page)
 883{
 884        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 885
 886        /*
 887         * First, fill in the OOB buffer. If we're doing a raw read, we need to
 888         * get the bytes from the physical page. If we're not doing a raw read,
 889         * we need to fill the buffer with set bits.
 890         */
 891        if (nand_info->raw_oob_mode) {
 892                /*
 893                 * If control arrives here, we're doing a "raw" read. Send the
 894                 * command to read the conventional OOB and read it.
 895                 */
 896                nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
 897                nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
 898        } else {
 899                /*
 900                 * If control arrives here, we're not doing a "raw" read. Fill
 901                 * the OOB buffer with set bits and correct the block mark.
 902                 */
 903                memset(nand->oob_poi, 0xff, mtd->oobsize);
 904
 905                nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
 906                mxs_nand_read_buf(mtd, nand->oob_poi, 1);
 907        }
 908
 909        return 0;
 910
 911}
 912
 913/*
 914 * Write OOB data to NAND.
 915 */
 916static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
 917                                        int page)
 918{
 919        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 920        uint8_t block_mark = 0;
 921
 922        /*
 923         * There are fundamental incompatibilities between the i.MX GPMI NFC and
 924         * the NAND Flash MTD model that make it essentially impossible to write
 925         * the out-of-band bytes.
 926         *
 927         * We permit *ONE* exception. If the *intent* of writing the OOB is to
 928         * mark a block bad, we can do that.
 929         */
 930
 931        if (!nand_info->marking_block_bad) {
 932                printf("NXS NAND: Writing OOB isn't supported\n");
 933                return -EIO;
 934        }
 935
 936        /* Write the block mark. */
 937        nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 938        nand->write_buf(mtd, &block_mark, 1);
 939        nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 940
 941        /* Check if it worked. */
 942        if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
 943                return -EIO;
 944
 945        return 0;
 946}
 947
 948/*
 949 * Claims all blocks are good.
 950 *
 951 * In principle, this function is *only* called when the NAND Flash MTD system
 952 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
 953 * the driver for bad block information.
 954 *
 955 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
 956 * this function is *only* called when we take it away.
 957 *
 958 * Thus, this function is only called when we want *all* blocks to look good,
 959 * so it *always* return success.
 960 */
 961static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
 962{
 963        return 0;
 964}
 965
 966static int mxs_nand_set_geometry(struct mtd_info *mtd, struct bch_geometry *geo)
 967{
 968        struct nand_chip *chip = mtd_to_nand(mtd);
 969        struct nand_chip *nand = mtd_to_nand(mtd);
 970        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 971
 972        if (chip->ecc.strength > 0 && chip->ecc.size > 0)
 973                return mxs_nand_calc_ecc_layout_by_info(geo, mtd,
 974                                chip->ecc.strength, chip->ecc.size);
 975
 976        if (nand_info->use_minimum_ecc ||
 977                mxs_nand_calc_ecc_layout(geo, mtd)) {
 978                if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
 979                        return -EINVAL;
 980
 981                return mxs_nand_calc_ecc_layout_by_info(geo, mtd,
 982                                chip->ecc_strength_ds, chip->ecc_step_ds);
 983        }
 984
 985        return 0;
 986}
 987
 988/*
 989 * At this point, the physical NAND Flash chips have been identified and
 990 * counted, so we know the physical geometry. This enables us to make some
 991 * important configuration decisions.
 992 *
 993 * The return value of this function propagates directly back to this driver's
 994 * board_nand_init(). Anything other than zero will cause this driver to
 995 * tear everything down and declare failure.
 996 */
 997int mxs_nand_setup_ecc(struct mtd_info *mtd)
 998{
 999        struct nand_chip *nand = mtd_to_nand(mtd);
1000        struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
1001        struct bch_geometry *geo = &nand_info->bch_geometry;
1002        struct mxs_bch_regs *bch_regs = nand_info->bch_regs;
1003        uint32_t tmp;
1004        int ret;
1005
1006        ret = mxs_nand_set_geometry(mtd, geo);
1007        if (ret)
1008                return ret;
1009
1010        mxs_nand_calc_mark_offset(geo, mtd->writesize);
1011
1012        /* Configure BCH and set NFC geometry */
1013        mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1014
1015        /* Configure layout 0 */
1016        tmp = (geo->ecc_chunk_count - 1) << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
1017        tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
1018        tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT0_ECC0_OFFSET;
1019        tmp |= geo->ecc_chunk_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1020        tmp |= (geo->gf_len == 14 ? 1 : 0) <<
1021                BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
1022        writel(tmp, &bch_regs->hw_bch_flash0layout0);
1023
1024        tmp = (mtd->writesize + mtd->oobsize)
1025                << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
1026        tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT1_ECCN_OFFSET;
1027        tmp |= geo->ecc_chunk_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
1028        tmp |= (geo->gf_len == 14 ? 1 : 0) <<
1029                BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
1030        writel(tmp, &bch_regs->hw_bch_flash0layout1);
1031
1032        /* Set *all* chip selects to use layout 0 */
1033        writel(0, &bch_regs->hw_bch_layoutselect);
1034
1035        /* Enable BCH complete interrupt */
1036        writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
1037
1038        /* Hook some operations at the MTD level. */
1039        if (mtd->_read_oob != mxs_nand_hook_read_oob) {
1040                nand_info->hooked_read_oob = mtd->_read_oob;
1041                mtd->_read_oob = mxs_nand_hook_read_oob;
1042        }
1043
1044        if (mtd->_write_oob != mxs_nand_hook_write_oob) {
1045                nand_info->hooked_write_oob = mtd->_write_oob;
1046                mtd->_write_oob = mxs_nand_hook_write_oob;
1047        }
1048
1049        if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
1050                nand_info->hooked_block_markbad = mtd->_block_markbad;
1051                mtd->_block_markbad = mxs_nand_hook_block_markbad;
1052        }
1053
1054        return 0;
1055}
1056
1057/*
1058 * Allocate DMA buffers
1059 */
1060int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1061{
1062        uint8_t *buf;
1063        const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1064
1065        nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1066
1067        /* DMA buffers */
1068        buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
1069        if (!buf) {
1070                printf("MXS NAND: Error allocating DMA buffers\n");
1071                return -ENOMEM;
1072        }
1073
1074        memset(buf, 0, nand_info->data_buf_size);
1075
1076        nand_info->data_buf = buf;
1077        nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
1078        /* Command buffers */
1079        nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1080                                MXS_NAND_COMMAND_BUFFER_SIZE);
1081        if (!nand_info->cmd_buf) {
1082                free(buf);
1083                printf("MXS NAND: Error allocating command buffers\n");
1084                return -ENOMEM;
1085        }
1086        memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1087        nand_info->cmd_queue_len = 0;
1088
1089        return 0;
1090}
1091
1092/*
1093 * Initializes the NFC hardware.
1094 */
1095static int mxs_nand_init_dma(struct mxs_nand_info *info)
1096{
1097        int i = 0, j, ret = 0;
1098
1099        info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1100                                MXS_NAND_DMA_DESCRIPTOR_COUNT);
1101        if (!info->desc) {
1102                ret = -ENOMEM;
1103                goto err1;
1104        }
1105
1106        /* Allocate the DMA descriptors. */
1107        for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1108                info->desc[i] = mxs_dma_desc_alloc();
1109                if (!info->desc[i]) {
1110                        ret = -ENOMEM;
1111                        goto err2;
1112                }
1113        }
1114
1115        /* Init the DMA controller. */
1116        mxs_dma_init();
1117        for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1118                j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1119                ret = mxs_dma_init_channel(j);
1120                if (ret)
1121                        goto err3;
1122        }
1123
1124        /* Reset the GPMI block. */
1125        mxs_reset_block(&info->gpmi_regs->hw_gpmi_ctrl0_reg);
1126        mxs_reset_block(&info->bch_regs->hw_bch_ctrl_reg);
1127
1128        /*
1129         * Choose NAND mode, set IRQ polarity, disable write protection and
1130         * select BCH ECC.
1131         */
1132        clrsetbits_le32(&info->gpmi_regs->hw_gpmi_ctrl1,
1133                        GPMI_CTRL1_GPMI_MODE,
1134                        GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1135                        GPMI_CTRL1_BCH_MODE);
1136
1137        return 0;
1138
1139err3:
1140        for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
1141                mxs_dma_release(j);
1142err2:
1143        for (--i; i >= 0; i--)
1144                mxs_dma_desc_free(info->desc[i]);
1145        free(info->desc);
1146err1:
1147        if (ret == -ENOMEM)
1148                printf("MXS NAND: Unable to allocate DMA descriptors\n");
1149        return ret;
1150}
1151
1152int mxs_nand_init_spl(struct nand_chip *nand)
1153{
1154        struct mxs_nand_info *nand_info;
1155        int err;
1156
1157        nand_info = malloc(sizeof(struct mxs_nand_info));
1158        if (!nand_info) {
1159                printf("MXS NAND: Failed to allocate private data\n");
1160                return -ENOMEM;
1161        }
1162        memset(nand_info, 0, sizeof(struct mxs_nand_info));
1163
1164        nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1165        nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
1166
1167        if (is_mx6sx() || is_mx7())
1168                nand_info->max_ecc_strength_supported = 62;
1169        else
1170                nand_info->max_ecc_strength_supported = 40;
1171
1172        err = mxs_nand_alloc_buffers(nand_info);
1173        if (err)
1174                return err;
1175
1176        err = mxs_nand_init_dma(nand_info);
1177        if (err)
1178                return err;
1179
1180        nand_set_controller_data(nand, nand_info);
1181
1182        nand->options |= NAND_NO_SUBPAGE_WRITE;
1183
1184        nand->cmd_ctrl          = mxs_nand_cmd_ctrl;
1185        nand->dev_ready         = mxs_nand_device_ready;
1186        nand->select_chip       = mxs_nand_select_chip;
1187
1188        nand->read_byte         = mxs_nand_read_byte;
1189        nand->read_buf          = mxs_nand_read_buf;
1190
1191        nand->ecc.read_page     = mxs_nand_ecc_read_page;
1192
1193        nand->ecc.mode          = NAND_ECC_HW;
1194
1195        return 0;
1196}
1197
1198int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info)
1199{
1200        struct mtd_info *mtd;
1201        struct nand_chip *nand;
1202        int err;
1203
1204        nand = &nand_info->chip;
1205        mtd = nand_to_mtd(nand);
1206        err = mxs_nand_alloc_buffers(nand_info);
1207        if (err)
1208                return err;
1209
1210        err = mxs_nand_init_dma(nand_info);
1211        if (err)
1212                goto err_free_buffers;
1213
1214        memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1215
1216#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1217        nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1218#endif
1219
1220        nand_set_controller_data(nand, nand_info);
1221        nand->options |= NAND_NO_SUBPAGE_WRITE;
1222
1223        if (nand_info->dev)
1224                nand->flash_node = dev_of_offset(nand_info->dev);
1225
1226        nand->cmd_ctrl          = mxs_nand_cmd_ctrl;
1227
1228        nand->dev_ready         = mxs_nand_device_ready;
1229        nand->select_chip       = mxs_nand_select_chip;
1230        nand->block_bad         = mxs_nand_block_bad;
1231
1232        nand->read_byte         = mxs_nand_read_byte;
1233
1234        nand->read_buf          = mxs_nand_read_buf;
1235        nand->write_buf         = mxs_nand_write_buf;
1236
1237        /* first scan to find the device and get the page size */
1238        if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
1239                goto err_free_buffers;
1240
1241        if (mxs_nand_setup_ecc(mtd))
1242                goto err_free_buffers;
1243
1244        nand->ecc.read_page     = mxs_nand_ecc_read_page;
1245        nand->ecc.write_page    = mxs_nand_ecc_write_page;
1246        nand->ecc.read_oob      = mxs_nand_ecc_read_oob;
1247        nand->ecc.write_oob     = mxs_nand_ecc_write_oob;
1248
1249        nand->ecc.layout        = &fake_ecc_layout;
1250        nand->ecc.mode          = NAND_ECC_HW;
1251        nand->ecc.size          = nand_info->bch_geometry.ecc_chunk_size;
1252        nand->ecc.strength      = nand_info->bch_geometry.ecc_strength;
1253
1254        /* second phase scan */
1255        err = nand_scan_tail(mtd);
1256        if (err)
1257                goto err_free_buffers;
1258
1259        err = nand_register(0, mtd);
1260        if (err)
1261                goto err_free_buffers;
1262
1263        return 0;
1264
1265err_free_buffers:
1266        free(nand_info->data_buf);
1267        free(nand_info->cmd_buf);
1268
1269        return err;
1270}
1271
1272#ifndef CONFIG_NAND_MXS_DT
1273void board_nand_init(void)
1274{
1275        struct mxs_nand_info *nand_info;
1276
1277        nand_info = malloc(sizeof(struct mxs_nand_info));
1278        if (!nand_info) {
1279                printf("MXS NAND: Failed to allocate private data\n");
1280                        return;
1281        }
1282        memset(nand_info, 0, sizeof(struct mxs_nand_info));
1283
1284        nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1285        nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
1286
1287        /* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
1288        if (is_mx6sx() || is_mx7())
1289                nand_info->max_ecc_strength_supported = 62;
1290        else
1291                nand_info->max_ecc_strength_supported = 40;
1292
1293#ifdef CONFIG_NAND_MXS_USE_MINIMUM_ECC
1294        nand_info->use_minimum_ecc = true;
1295#endif
1296
1297        if (mxs_nand_init_ctrl(nand_info) < 0)
1298                goto err;
1299
1300        return;
1301
1302err:
1303        free(nand_info);
1304}
1305#endif
1306