uboot/drivers/mtd/ubi/eba.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
   5 * Author: Artem Bityutskiy (Битюцкий Артём)
   6 */
   7
   8/*
   9 * The UBI Eraseblock Association (EBA) sub-system.
  10 *
  11 * This sub-system is responsible for I/O to/from logical eraseblock.
  12 *
  13 * Although in this implementation the EBA table is fully kept and managed in
  14 * RAM, which assumes poor scalability, it might be (partially) maintained on
  15 * flash in future implementations.
  16 *
  17 * The EBA sub-system implements per-logical eraseblock locking. Before
  18 * accessing a logical eraseblock it is locked for reading or writing. The
  19 * per-logical eraseblock locking is implemented by means of the lock tree. The
  20 * lock tree is an RB-tree which refers all the currently locked logical
  21 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
  22 * They are indexed by (@vol_id, @lnum) pairs.
  23 *
  24 * EBA also maintains the global sequence counter which is incremented each
  25 * time a logical eraseblock is mapped to a physical eraseblock and it is
  26 * stored in the volume identifier header. This means that each VID header has
  27 * a unique sequence number. The sequence number is only increased an we assume
  28 * 64 bits is enough to never overflow.
  29 */
  30
  31#ifndef __UBOOT__
  32#include <linux/slab.h>
  33#include <linux/crc32.h>
  34#else
  35#include <ubi_uboot.h>
  36#endif
  37
  38#include <linux/err.h>
  39#include "ubi.h"
  40
  41/* Number of physical eraseblocks reserved for atomic LEB change operation */
  42#define EBA_RESERVED_PEBS 1
  43
  44/**
  45 * next_sqnum - get next sequence number.
  46 * @ubi: UBI device description object
  47 *
  48 * This function returns next sequence number to use, which is just the current
  49 * global sequence counter value. It also increases the global sequence
  50 * counter.
  51 */
  52unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
  53{
  54        unsigned long long sqnum;
  55
  56        spin_lock(&ubi->ltree_lock);
  57        sqnum = ubi->global_sqnum++;
  58        spin_unlock(&ubi->ltree_lock);
  59
  60        return sqnum;
  61}
  62
  63/**
  64 * ubi_get_compat - get compatibility flags of a volume.
  65 * @ubi: UBI device description object
  66 * @vol_id: volume ID
  67 *
  68 * This function returns compatibility flags for an internal volume. User
  69 * volumes have no compatibility flags, so %0 is returned.
  70 */
  71static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
  72{
  73        if (vol_id == UBI_LAYOUT_VOLUME_ID)
  74                return UBI_LAYOUT_VOLUME_COMPAT;
  75        return 0;
  76}
  77
  78/**
  79 * ltree_lookup - look up the lock tree.
  80 * @ubi: UBI device description object
  81 * @vol_id: volume ID
  82 * @lnum: logical eraseblock number
  83 *
  84 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
  85 * object if the logical eraseblock is locked and %NULL if it is not.
  86 * @ubi->ltree_lock has to be locked.
  87 */
  88static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
  89                                            int lnum)
  90{
  91        struct rb_node *p;
  92
  93        p = ubi->ltree.rb_node;
  94        while (p) {
  95                struct ubi_ltree_entry *le;
  96
  97                le = rb_entry(p, struct ubi_ltree_entry, rb);
  98
  99                if (vol_id < le->vol_id)
 100                        p = p->rb_left;
 101                else if (vol_id > le->vol_id)
 102                        p = p->rb_right;
 103                else {
 104                        if (lnum < le->lnum)
 105                                p = p->rb_left;
 106                        else if (lnum > le->lnum)
 107                                p = p->rb_right;
 108                        else
 109                                return le;
 110                }
 111        }
 112
 113        return NULL;
 114}
 115
 116/**
 117 * ltree_add_entry - add new entry to the lock tree.
 118 * @ubi: UBI device description object
 119 * @vol_id: volume ID
 120 * @lnum: logical eraseblock number
 121 *
 122 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
 123 * lock tree. If such entry is already there, its usage counter is increased.
 124 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
 125 * failed.
 126 */
 127static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
 128                                               int vol_id, int lnum)
 129{
 130        struct ubi_ltree_entry *le, *le1, *le_free;
 131
 132        le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
 133        if (!le)
 134                return ERR_PTR(-ENOMEM);
 135
 136        le->users = 0;
 137        init_rwsem(&le->mutex);
 138        le->vol_id = vol_id;
 139        le->lnum = lnum;
 140
 141        spin_lock(&ubi->ltree_lock);
 142        le1 = ltree_lookup(ubi, vol_id, lnum);
 143
 144        if (le1) {
 145                /*
 146                 * This logical eraseblock is already locked. The newly
 147                 * allocated lock entry is not needed.
 148                 */
 149                le_free = le;
 150                le = le1;
 151        } else {
 152                struct rb_node **p, *parent = NULL;
 153
 154                /*
 155                 * No lock entry, add the newly allocated one to the
 156                 * @ubi->ltree RB-tree.
 157                 */
 158                le_free = NULL;
 159
 160                p = &ubi->ltree.rb_node;
 161                while (*p) {
 162                        parent = *p;
 163                        le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
 164
 165                        if (vol_id < le1->vol_id)
 166                                p = &(*p)->rb_left;
 167                        else if (vol_id > le1->vol_id)
 168                                p = &(*p)->rb_right;
 169                        else {
 170                                ubi_assert(lnum != le1->lnum);
 171                                if (lnum < le1->lnum)
 172                                        p = &(*p)->rb_left;
 173                                else
 174                                        p = &(*p)->rb_right;
 175                        }
 176                }
 177
 178                rb_link_node(&le->rb, parent, p);
 179                rb_insert_color(&le->rb, &ubi->ltree);
 180        }
 181        le->users += 1;
 182        spin_unlock(&ubi->ltree_lock);
 183
 184        kfree(le_free);
 185        return le;
 186}
 187
 188/**
 189 * leb_read_lock - lock logical eraseblock for reading.
 190 * @ubi: UBI device description object
 191 * @vol_id: volume ID
 192 * @lnum: logical eraseblock number
 193 *
 194 * This function locks a logical eraseblock for reading. Returns zero in case
 195 * of success and a negative error code in case of failure.
 196 */
 197static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
 198{
 199        struct ubi_ltree_entry *le;
 200
 201        le = ltree_add_entry(ubi, vol_id, lnum);
 202        if (IS_ERR(le))
 203                return PTR_ERR(le);
 204        down_read(&le->mutex);
 205        return 0;
 206}
 207
 208/**
 209 * leb_read_unlock - unlock logical eraseblock.
 210 * @ubi: UBI device description object
 211 * @vol_id: volume ID
 212 * @lnum: logical eraseblock number
 213 */
 214static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 215{
 216        struct ubi_ltree_entry *le;
 217
 218        spin_lock(&ubi->ltree_lock);
 219        le = ltree_lookup(ubi, vol_id, lnum);
 220        le->users -= 1;
 221        ubi_assert(le->users >= 0);
 222        up_read(&le->mutex);
 223        if (le->users == 0) {
 224                rb_erase(&le->rb, &ubi->ltree);
 225                kfree(le);
 226        }
 227        spin_unlock(&ubi->ltree_lock);
 228}
 229
 230/**
 231 * leb_write_lock - lock logical eraseblock for writing.
 232 * @ubi: UBI device description object
 233 * @vol_id: volume ID
 234 * @lnum: logical eraseblock number
 235 *
 236 * This function locks a logical eraseblock for writing. Returns zero in case
 237 * of success and a negative error code in case of failure.
 238 */
 239static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
 240{
 241        struct ubi_ltree_entry *le;
 242
 243        le = ltree_add_entry(ubi, vol_id, lnum);
 244        if (IS_ERR(le))
 245                return PTR_ERR(le);
 246        down_write(&le->mutex);
 247        return 0;
 248}
 249
 250/**
 251 * leb_write_lock - lock logical eraseblock for writing.
 252 * @ubi: UBI device description object
 253 * @vol_id: volume ID
 254 * @lnum: logical eraseblock number
 255 *
 256 * This function locks a logical eraseblock for writing if there is no
 257 * contention and does nothing if there is contention. Returns %0 in case of
 258 * success, %1 in case of contention, and and a negative error code in case of
 259 * failure.
 260 */
 261static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
 262{
 263        struct ubi_ltree_entry *le;
 264
 265        le = ltree_add_entry(ubi, vol_id, lnum);
 266        if (IS_ERR(le))
 267                return PTR_ERR(le);
 268        if (down_write_trylock(&le->mutex))
 269                return 0;
 270
 271        /* Contention, cancel */
 272        spin_lock(&ubi->ltree_lock);
 273        le->users -= 1;
 274        ubi_assert(le->users >= 0);
 275        if (le->users == 0) {
 276                rb_erase(&le->rb, &ubi->ltree);
 277                kfree(le);
 278        }
 279        spin_unlock(&ubi->ltree_lock);
 280
 281        return 1;
 282}
 283
 284/**
 285 * leb_write_unlock - unlock logical eraseblock.
 286 * @ubi: UBI device description object
 287 * @vol_id: volume ID
 288 * @lnum: logical eraseblock number
 289 */
 290static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 291{
 292        struct ubi_ltree_entry *le;
 293
 294        spin_lock(&ubi->ltree_lock);
 295        le = ltree_lookup(ubi, vol_id, lnum);
 296        le->users -= 1;
 297        ubi_assert(le->users >= 0);
 298        up_write(&le->mutex);
 299        if (le->users == 0) {
 300                rb_erase(&le->rb, &ubi->ltree);
 301                kfree(le);
 302        }
 303        spin_unlock(&ubi->ltree_lock);
 304}
 305
 306/**
 307 * ubi_eba_unmap_leb - un-map logical eraseblock.
 308 * @ubi: UBI device description object
 309 * @vol: volume description object
 310 * @lnum: logical eraseblock number
 311 *
 312 * This function un-maps logical eraseblock @lnum and schedules corresponding
 313 * physical eraseblock for erasure. Returns zero in case of success and a
 314 * negative error code in case of failure.
 315 */
 316int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
 317                      int lnum)
 318{
 319        int err, pnum, vol_id = vol->vol_id;
 320
 321        if (ubi->ro_mode)
 322                return -EROFS;
 323
 324        err = leb_write_lock(ubi, vol_id, lnum);
 325        if (err)
 326                return err;
 327
 328        pnum = vol->eba_tbl[lnum];
 329        if (pnum < 0)
 330                /* This logical eraseblock is already unmapped */
 331                goto out_unlock;
 332
 333        dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
 334
 335        down_read(&ubi->fm_eba_sem);
 336        vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
 337        up_read(&ubi->fm_eba_sem);
 338        err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
 339
 340out_unlock:
 341        leb_write_unlock(ubi, vol_id, lnum);
 342        return err;
 343}
 344
 345/**
 346 * ubi_eba_read_leb - read data.
 347 * @ubi: UBI device description object
 348 * @vol: volume description object
 349 * @lnum: logical eraseblock number
 350 * @buf: buffer to store the read data
 351 * @offset: offset from where to read
 352 * @len: how many bytes to read
 353 * @check: data CRC check flag
 354 *
 355 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
 356 * bytes. The @check flag only makes sense for static volumes and forces
 357 * eraseblock data CRC checking.
 358 *
 359 * In case of success this function returns zero. In case of a static volume,
 360 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
 361 * returned for any volume type if an ECC error was detected by the MTD device
 362 * driver. Other negative error cored may be returned in case of other errors.
 363 */
 364int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 365                     void *buf, int offset, int len, int check)
 366{
 367        int err, pnum, scrub = 0, vol_id = vol->vol_id;
 368        struct ubi_vid_hdr *vid_hdr;
 369        uint32_t uninitialized_var(crc);
 370
 371        err = leb_read_lock(ubi, vol_id, lnum);
 372        if (err)
 373                return err;
 374
 375        pnum = vol->eba_tbl[lnum];
 376        if (pnum < 0) {
 377                /*
 378                 * The logical eraseblock is not mapped, fill the whole buffer
 379                 * with 0xFF bytes. The exception is static volumes for which
 380                 * it is an error to read unmapped logical eraseblocks.
 381                 */
 382                dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
 383                        len, offset, vol_id, lnum);
 384                leb_read_unlock(ubi, vol_id, lnum);
 385                ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
 386                memset(buf, 0xFF, len);
 387                return 0;
 388        }
 389
 390        dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
 391                len, offset, vol_id, lnum, pnum);
 392
 393        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 394                check = 0;
 395
 396retry:
 397        if (check) {
 398                vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 399                if (!vid_hdr) {
 400                        err = -ENOMEM;
 401                        goto out_unlock;
 402                }
 403
 404                err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
 405                if (err && err != UBI_IO_BITFLIPS) {
 406                        if (err > 0) {
 407                                /*
 408                                 * The header is either absent or corrupted.
 409                                 * The former case means there is a bug -
 410                                 * switch to read-only mode just in case.
 411                                 * The latter case means a real corruption - we
 412                                 * may try to recover data. FIXME: but this is
 413                                 * not implemented.
 414                                 */
 415                                if (err == UBI_IO_BAD_HDR_EBADMSG ||
 416                                    err == UBI_IO_BAD_HDR) {
 417                                        ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
 418                                                 pnum, vol_id, lnum);
 419                                        err = -EBADMSG;
 420                                } else {
 421                                        err = -EINVAL;
 422                                        ubi_ro_mode(ubi);
 423                                }
 424                        }
 425                        goto out_free;
 426                } else if (err == UBI_IO_BITFLIPS)
 427                        scrub = 1;
 428
 429                ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
 430                ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
 431
 432                crc = be32_to_cpu(vid_hdr->data_crc);
 433                ubi_free_vid_hdr(ubi, vid_hdr);
 434        }
 435
 436        err = ubi_io_read_data(ubi, buf, pnum, offset, len);
 437        if (err) {
 438                if (err == UBI_IO_BITFLIPS)
 439                        scrub = 1;
 440                else if (mtd_is_eccerr(err)) {
 441                        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 442                                goto out_unlock;
 443                        scrub = 1;
 444                        if (!check) {
 445                                ubi_msg(ubi, "force data checking");
 446                                check = 1;
 447                                goto retry;
 448                        }
 449                } else
 450                        goto out_unlock;
 451        }
 452
 453        if (check) {
 454                uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
 455                if (crc1 != crc) {
 456                        ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
 457                                 crc1, crc);
 458                        err = -EBADMSG;
 459                        goto out_unlock;
 460                }
 461        }
 462
 463        if (scrub)
 464                err = ubi_wl_scrub_peb(ubi, pnum);
 465
 466        leb_read_unlock(ubi, vol_id, lnum);
 467        return err;
 468
 469out_free:
 470        ubi_free_vid_hdr(ubi, vid_hdr);
 471out_unlock:
 472        leb_read_unlock(ubi, vol_id, lnum);
 473        return err;
 474}
 475
 476#ifndef __UBOOT__
 477/**
 478 * ubi_eba_read_leb_sg - read data into a scatter gather list.
 479 * @ubi: UBI device description object
 480 * @vol: volume description object
 481 * @lnum: logical eraseblock number
 482 * @sgl: UBI scatter gather list to store the read data
 483 * @offset: offset from where to read
 484 * @len: how many bytes to read
 485 * @check: data CRC check flag
 486 *
 487 * This function works exactly like ubi_eba_read_leb(). But instead of
 488 * storing the read data into a buffer it writes to an UBI scatter gather
 489 * list.
 490 */
 491int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
 492                        struct ubi_sgl *sgl, int lnum, int offset, int len,
 493                        int check)
 494{
 495        int to_read;
 496        int ret;
 497        struct scatterlist *sg;
 498
 499        for (;;) {
 500                ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
 501                sg = &sgl->sg[sgl->list_pos];
 502                if (len < sg->length - sgl->page_pos)
 503                        to_read = len;
 504                else
 505                        to_read = sg->length - sgl->page_pos;
 506
 507                ret = ubi_eba_read_leb(ubi, vol, lnum,
 508                                       sg_virt(sg) + sgl->page_pos, offset,
 509                                       to_read, check);
 510                if (ret < 0)
 511                        return ret;
 512
 513                offset += to_read;
 514                len -= to_read;
 515                if (!len) {
 516                        sgl->page_pos += to_read;
 517                        if (sgl->page_pos == sg->length) {
 518                                sgl->list_pos++;
 519                                sgl->page_pos = 0;
 520                        }
 521
 522                        break;
 523                }
 524
 525                sgl->list_pos++;
 526                sgl->page_pos = 0;
 527        }
 528
 529        return ret;
 530}
 531#endif
 532
 533/**
 534 * recover_peb - recover from write failure.
 535 * @ubi: UBI device description object
 536 * @pnum: the physical eraseblock to recover
 537 * @vol_id: volume ID
 538 * @lnum: logical eraseblock number
 539 * @buf: data which was not written because of the write failure
 540 * @offset: offset of the failed write
 541 * @len: how many bytes should have been written
 542 *
 543 * This function is called in case of a write failure and moves all good data
 544 * from the potentially bad physical eraseblock to a good physical eraseblock.
 545 * This function also writes the data which was not written due to the failure.
 546 * Returns new physical eraseblock number in case of success, and a negative
 547 * error code in case of failure.
 548 */
 549static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
 550                       const void *buf, int offset, int len)
 551{
 552        int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
 553        struct ubi_volume *vol = ubi->volumes[idx];
 554        struct ubi_vid_hdr *vid_hdr;
 555
 556        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 557        if (!vid_hdr)
 558                return -ENOMEM;
 559
 560retry:
 561        new_pnum = ubi_wl_get_peb(ubi);
 562        if (new_pnum < 0) {
 563                ubi_free_vid_hdr(ubi, vid_hdr);
 564                up_read(&ubi->fm_eba_sem);
 565                return new_pnum;
 566        }
 567
 568        ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
 569                pnum, new_pnum);
 570
 571        err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
 572        if (err && err != UBI_IO_BITFLIPS) {
 573                if (err > 0)
 574                        err = -EIO;
 575                up_read(&ubi->fm_eba_sem);
 576                goto out_put;
 577        }
 578
 579        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 580        err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
 581        if (err) {
 582                up_read(&ubi->fm_eba_sem);
 583                goto write_error;
 584        }
 585
 586        data_size = offset + len;
 587        mutex_lock(&ubi->buf_mutex);
 588        memset(ubi->peb_buf + offset, 0xFF, len);
 589
 590        /* Read everything before the area where the write failure happened */
 591        if (offset > 0) {
 592                err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
 593                if (err && err != UBI_IO_BITFLIPS) {
 594                        up_read(&ubi->fm_eba_sem);
 595                        goto out_unlock;
 596                }
 597        }
 598
 599        memcpy(ubi->peb_buf + offset, buf, len);
 600
 601        err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
 602        if (err) {
 603                mutex_unlock(&ubi->buf_mutex);
 604                up_read(&ubi->fm_eba_sem);
 605                goto write_error;
 606        }
 607
 608        mutex_unlock(&ubi->buf_mutex);
 609        ubi_free_vid_hdr(ubi, vid_hdr);
 610
 611        vol->eba_tbl[lnum] = new_pnum;
 612        up_read(&ubi->fm_eba_sem);
 613        ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 614
 615        ubi_msg(ubi, "data was successfully recovered");
 616        return 0;
 617
 618out_unlock:
 619        mutex_unlock(&ubi->buf_mutex);
 620out_put:
 621        ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
 622        ubi_free_vid_hdr(ubi, vid_hdr);
 623        return err;
 624
 625write_error:
 626        /*
 627         * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
 628         * get another one.
 629         */
 630        ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
 631        ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
 632        if (++tries > UBI_IO_RETRIES) {
 633                ubi_free_vid_hdr(ubi, vid_hdr);
 634                return err;
 635        }
 636        ubi_msg(ubi, "try again");
 637        goto retry;
 638}
 639
 640/**
 641 * ubi_eba_write_leb - write data to dynamic volume.
 642 * @ubi: UBI device description object
 643 * @vol: volume description object
 644 * @lnum: logical eraseblock number
 645 * @buf: the data to write
 646 * @offset: offset within the logical eraseblock where to write
 647 * @len: how many bytes to write
 648 *
 649 * This function writes data to logical eraseblock @lnum of a dynamic volume
 650 * @vol. Returns zero in case of success and a negative error code in case
 651 * of failure. In case of error, it is possible that something was still
 652 * written to the flash media, but may be some garbage.
 653 */
 654int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 655                      const void *buf, int offset, int len)
 656{
 657        int err, pnum, tries = 0, vol_id = vol->vol_id;
 658        struct ubi_vid_hdr *vid_hdr;
 659
 660        if (ubi->ro_mode)
 661                return -EROFS;
 662
 663        err = leb_write_lock(ubi, vol_id, lnum);
 664        if (err)
 665                return err;
 666
 667        pnum = vol->eba_tbl[lnum];
 668        if (pnum >= 0) {
 669                dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
 670                        len, offset, vol_id, lnum, pnum);
 671
 672                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 673                if (err) {
 674                        ubi_warn(ubi, "failed to write data to PEB %d", pnum);
 675                        if (err == -EIO && ubi->bad_allowed)
 676                                err = recover_peb(ubi, pnum, vol_id, lnum, buf,
 677                                                  offset, len);
 678                        if (err)
 679                                ubi_ro_mode(ubi);
 680                }
 681                leb_write_unlock(ubi, vol_id, lnum);
 682                return err;
 683        }
 684
 685        /*
 686         * The logical eraseblock is not mapped. We have to get a free physical
 687         * eraseblock and write the volume identifier header there first.
 688         */
 689        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 690        if (!vid_hdr) {
 691                leb_write_unlock(ubi, vol_id, lnum);
 692                return -ENOMEM;
 693        }
 694
 695        vid_hdr->vol_type = UBI_VID_DYNAMIC;
 696        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 697        vid_hdr->vol_id = cpu_to_be32(vol_id);
 698        vid_hdr->lnum = cpu_to_be32(lnum);
 699        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 700        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 701
 702retry:
 703        pnum = ubi_wl_get_peb(ubi);
 704        if (pnum < 0) {
 705                ubi_free_vid_hdr(ubi, vid_hdr);
 706                leb_write_unlock(ubi, vol_id, lnum);
 707                up_read(&ubi->fm_eba_sem);
 708                return pnum;
 709        }
 710
 711        dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
 712                len, offset, vol_id, lnum, pnum);
 713
 714        err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 715        if (err) {
 716                ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
 717                         vol_id, lnum, pnum);
 718                up_read(&ubi->fm_eba_sem);
 719                goto write_error;
 720        }
 721
 722        if (len) {
 723                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 724                if (err) {
 725                        ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
 726                                 len, offset, vol_id, lnum, pnum);
 727                        up_read(&ubi->fm_eba_sem);
 728                        goto write_error;
 729                }
 730        }
 731
 732        vol->eba_tbl[lnum] = pnum;
 733        up_read(&ubi->fm_eba_sem);
 734
 735        leb_write_unlock(ubi, vol_id, lnum);
 736        ubi_free_vid_hdr(ubi, vid_hdr);
 737        return 0;
 738
 739write_error:
 740        if (err != -EIO || !ubi->bad_allowed) {
 741                ubi_ro_mode(ubi);
 742                leb_write_unlock(ubi, vol_id, lnum);
 743                ubi_free_vid_hdr(ubi, vid_hdr);
 744                return err;
 745        }
 746
 747        /*
 748         * Fortunately, this is the first write operation to this physical
 749         * eraseblock, so just put it and request a new one. We assume that if
 750         * this physical eraseblock went bad, the erase code will handle that.
 751         */
 752        err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 753        if (err || ++tries > UBI_IO_RETRIES) {
 754                ubi_ro_mode(ubi);
 755                leb_write_unlock(ubi, vol_id, lnum);
 756                ubi_free_vid_hdr(ubi, vid_hdr);
 757                return err;
 758        }
 759
 760        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 761        ubi_msg(ubi, "try another PEB");
 762        goto retry;
 763}
 764
 765/**
 766 * ubi_eba_write_leb_st - write data to static volume.
 767 * @ubi: UBI device description object
 768 * @vol: volume description object
 769 * @lnum: logical eraseblock number
 770 * @buf: data to write
 771 * @len: how many bytes to write
 772 * @used_ebs: how many logical eraseblocks will this volume contain
 773 *
 774 * This function writes data to logical eraseblock @lnum of static volume
 775 * @vol. The @used_ebs argument should contain total number of logical
 776 * eraseblock in this static volume.
 777 *
 778 * When writing to the last logical eraseblock, the @len argument doesn't have
 779 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
 780 * to the real data size, although the @buf buffer has to contain the
 781 * alignment. In all other cases, @len has to be aligned.
 782 *
 783 * It is prohibited to write more than once to logical eraseblocks of static
 784 * volumes. This function returns zero in case of success and a negative error
 785 * code in case of failure.
 786 */
 787int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
 788                         int lnum, const void *buf, int len, int used_ebs)
 789{
 790        int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
 791        struct ubi_vid_hdr *vid_hdr;
 792        uint32_t crc;
 793
 794        if (ubi->ro_mode)
 795                return -EROFS;
 796
 797        if (lnum == used_ebs - 1)
 798                /* If this is the last LEB @len may be unaligned */
 799                len = ALIGN(data_size, ubi->min_io_size);
 800        else
 801                ubi_assert(!(len & (ubi->min_io_size - 1)));
 802
 803        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 804        if (!vid_hdr)
 805                return -ENOMEM;
 806
 807        err = leb_write_lock(ubi, vol_id, lnum);
 808        if (err) {
 809                ubi_free_vid_hdr(ubi, vid_hdr);
 810                return err;
 811        }
 812
 813        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 814        vid_hdr->vol_id = cpu_to_be32(vol_id);
 815        vid_hdr->lnum = cpu_to_be32(lnum);
 816        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 817        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 818
 819        crc = crc32(UBI_CRC32_INIT, buf, data_size);
 820        vid_hdr->vol_type = UBI_VID_STATIC;
 821        vid_hdr->data_size = cpu_to_be32(data_size);
 822        vid_hdr->used_ebs = cpu_to_be32(used_ebs);
 823        vid_hdr->data_crc = cpu_to_be32(crc);
 824
 825retry:
 826        pnum = ubi_wl_get_peb(ubi);
 827        if (pnum < 0) {
 828                ubi_free_vid_hdr(ubi, vid_hdr);
 829                leb_write_unlock(ubi, vol_id, lnum);
 830                up_read(&ubi->fm_eba_sem);
 831                return pnum;
 832        }
 833
 834        dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
 835                len, vol_id, lnum, pnum, used_ebs);
 836
 837        err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 838        if (err) {
 839                ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
 840                         vol_id, lnum, pnum);
 841                up_read(&ubi->fm_eba_sem);
 842                goto write_error;
 843        }
 844
 845        err = ubi_io_write_data(ubi, buf, pnum, 0, len);
 846        if (err) {
 847                ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
 848                         len, pnum);
 849                up_read(&ubi->fm_eba_sem);
 850                goto write_error;
 851        }
 852
 853        ubi_assert(vol->eba_tbl[lnum] < 0);
 854        vol->eba_tbl[lnum] = pnum;
 855        up_read(&ubi->fm_eba_sem);
 856
 857        leb_write_unlock(ubi, vol_id, lnum);
 858        ubi_free_vid_hdr(ubi, vid_hdr);
 859        return 0;
 860
 861write_error:
 862        if (err != -EIO || !ubi->bad_allowed) {
 863                /*
 864                 * This flash device does not admit of bad eraseblocks or
 865                 * something nasty and unexpected happened. Switch to read-only
 866                 * mode just in case.
 867                 */
 868                ubi_ro_mode(ubi);
 869                leb_write_unlock(ubi, vol_id, lnum);
 870                ubi_free_vid_hdr(ubi, vid_hdr);
 871                return err;
 872        }
 873
 874        err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
 875        if (err || ++tries > UBI_IO_RETRIES) {
 876                ubi_ro_mode(ubi);
 877                leb_write_unlock(ubi, vol_id, lnum);
 878                ubi_free_vid_hdr(ubi, vid_hdr);
 879                return err;
 880        }
 881
 882        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 883        ubi_msg(ubi, "try another PEB");
 884        goto retry;
 885}
 886
 887/*
 888 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
 889 * @ubi: UBI device description object
 890 * @vol: volume description object
 891 * @lnum: logical eraseblock number
 892 * @buf: data to write
 893 * @len: how many bytes to write
 894 *
 895 * This function changes the contents of a logical eraseblock atomically. @buf
 896 * has to contain new logical eraseblock data, and @len - the length of the
 897 * data, which has to be aligned. This function guarantees that in case of an
 898 * unclean reboot the old contents is preserved. Returns zero in case of
 899 * success and a negative error code in case of failure.
 900 *
 901 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
 902 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
 903 */
 904int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
 905                              int lnum, const void *buf, int len)
 906{
 907        int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id;
 908        struct ubi_vid_hdr *vid_hdr;
 909        uint32_t crc;
 910
 911        if (ubi->ro_mode)
 912                return -EROFS;
 913
 914        if (len == 0) {
 915                /*
 916                 * Special case when data length is zero. In this case the LEB
 917                 * has to be unmapped and mapped somewhere else.
 918                 */
 919                err = ubi_eba_unmap_leb(ubi, vol, lnum);
 920                if (err)
 921                        return err;
 922                return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
 923        }
 924
 925        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 926        if (!vid_hdr)
 927                return -ENOMEM;
 928
 929        mutex_lock(&ubi->alc_mutex);
 930        err = leb_write_lock(ubi, vol_id, lnum);
 931        if (err)
 932                goto out_mutex;
 933
 934        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
 935        vid_hdr->vol_id = cpu_to_be32(vol_id);
 936        vid_hdr->lnum = cpu_to_be32(lnum);
 937        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 938        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 939
 940        crc = crc32(UBI_CRC32_INIT, buf, len);
 941        vid_hdr->vol_type = UBI_VID_DYNAMIC;
 942        vid_hdr->data_size = cpu_to_be32(len);
 943        vid_hdr->copy_flag = 1;
 944        vid_hdr->data_crc = cpu_to_be32(crc);
 945
 946retry:
 947        pnum = ubi_wl_get_peb(ubi);
 948        if (pnum < 0) {
 949                err = pnum;
 950                up_read(&ubi->fm_eba_sem);
 951                goto out_leb_unlock;
 952        }
 953
 954        dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
 955                vol_id, lnum, vol->eba_tbl[lnum], pnum);
 956
 957        err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 958        if (err) {
 959                ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
 960                         vol_id, lnum, pnum);
 961                up_read(&ubi->fm_eba_sem);
 962                goto write_error;
 963        }
 964
 965        err = ubi_io_write_data(ubi, buf, pnum, 0, len);
 966        if (err) {
 967                ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
 968                         len, pnum);
 969                up_read(&ubi->fm_eba_sem);
 970                goto write_error;
 971        }
 972
 973        old_pnum = vol->eba_tbl[lnum];
 974        vol->eba_tbl[lnum] = pnum;
 975        up_read(&ubi->fm_eba_sem);
 976
 977        if (old_pnum >= 0) {
 978                err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0);
 979                if (err)
 980                        goto out_leb_unlock;
 981        }
 982
 983out_leb_unlock:
 984        leb_write_unlock(ubi, vol_id, lnum);
 985out_mutex:
 986        mutex_unlock(&ubi->alc_mutex);
 987        ubi_free_vid_hdr(ubi, vid_hdr);
 988        return err;
 989
 990write_error:
 991        if (err != -EIO || !ubi->bad_allowed) {
 992                /*
 993                 * This flash device does not admit of bad eraseblocks or
 994                 * something nasty and unexpected happened. Switch to read-only
 995                 * mode just in case.
 996                 */
 997                ubi_ro_mode(ubi);
 998                goto out_leb_unlock;
 999        }
1000
1001        err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
1002        if (err || ++tries > UBI_IO_RETRIES) {
1003                ubi_ro_mode(ubi);
1004                goto out_leb_unlock;
1005        }
1006
1007        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1008        ubi_msg(ubi, "try another PEB");
1009        goto retry;
1010}
1011
1012/**
1013 * is_error_sane - check whether a read error is sane.
1014 * @err: code of the error happened during reading
1015 *
1016 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1017 * cannot read data from the target PEB (an error @err happened). If the error
1018 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1019 * fatal and UBI will be switched to R/O mode later.
1020 *
1021 * The idea is that we try not to switch to R/O mode if the read error is
1022 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1023 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1024 * mode, simply because we do not know what happened at the MTD level, and we
1025 * cannot handle this. E.g., the underlying driver may have become crazy, and
1026 * it is safer to switch to R/O mode to preserve the data.
1027 *
1028 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1029 * which we have just written.
1030 */
1031static int is_error_sane(int err)
1032{
1033        if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1034            err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1035                return 0;
1036        return 1;
1037}
1038
1039/**
1040 * ubi_eba_copy_leb - copy logical eraseblock.
1041 * @ubi: UBI device description object
1042 * @from: physical eraseblock number from where to copy
1043 * @to: physical eraseblock number where to copy
1044 * @vid_hdr: VID header of the @from physical eraseblock
1045 *
1046 * This function copies logical eraseblock from physical eraseblock @from to
1047 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1048 * function. Returns:
1049 *   o %0 in case of success;
1050 *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1051 *   o a negative error code in case of failure.
1052 */
1053int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1054                     struct ubi_vid_hdr *vid_hdr)
1055{
1056        int err, vol_id, lnum, data_size, aldata_size, idx;
1057        struct ubi_volume *vol;
1058        uint32_t crc;
1059
1060        vol_id = be32_to_cpu(vid_hdr->vol_id);
1061        lnum = be32_to_cpu(vid_hdr->lnum);
1062
1063        dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1064
1065        if (vid_hdr->vol_type == UBI_VID_STATIC) {
1066                data_size = be32_to_cpu(vid_hdr->data_size);
1067                aldata_size = ALIGN(data_size, ubi->min_io_size);
1068        } else
1069                data_size = aldata_size =
1070                            ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1071
1072        idx = vol_id2idx(ubi, vol_id);
1073        spin_lock(&ubi->volumes_lock);
1074        /*
1075         * Note, we may race with volume deletion, which means that the volume
1076         * this logical eraseblock belongs to might be being deleted. Since the
1077         * volume deletion un-maps all the volume's logical eraseblocks, it will
1078         * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1079         */
1080        vol = ubi->volumes[idx];
1081        spin_unlock(&ubi->volumes_lock);
1082        if (!vol) {
1083                /* No need to do further work, cancel */
1084                dbg_wl("volume %d is being removed, cancel", vol_id);
1085                return MOVE_CANCEL_RACE;
1086        }
1087
1088        /*
1089         * We do not want anybody to write to this logical eraseblock while we
1090         * are moving it, so lock it.
1091         *
1092         * Note, we are using non-waiting locking here, because we cannot sleep
1093         * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1094         * unmapping the LEB which is mapped to the PEB we are going to move
1095         * (@from). This task locks the LEB and goes sleep in the
1096         * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1097         * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1098         * LEB is already locked, we just do not move it and return
1099         * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1100         * we do not know the reasons of the contention - it may be just a
1101         * normal I/O on this LEB, so we want to re-try.
1102         */
1103        err = leb_write_trylock(ubi, vol_id, lnum);
1104        if (err) {
1105                dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1106                return MOVE_RETRY;
1107        }
1108
1109        /*
1110         * The LEB might have been put meanwhile, and the task which put it is
1111         * probably waiting on @ubi->move_mutex. No need to continue the work,
1112         * cancel it.
1113         */
1114        if (vol->eba_tbl[lnum] != from) {
1115                dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1116                       vol_id, lnum, from, vol->eba_tbl[lnum]);
1117                err = MOVE_CANCEL_RACE;
1118                goto out_unlock_leb;
1119        }
1120
1121        /*
1122         * OK, now the LEB is locked and we can safely start moving it. Since
1123         * this function utilizes the @ubi->peb_buf buffer which is shared
1124         * with some other functions - we lock the buffer by taking the
1125         * @ubi->buf_mutex.
1126         */
1127        mutex_lock(&ubi->buf_mutex);
1128        dbg_wl("read %d bytes of data", aldata_size);
1129        err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1130        if (err && err != UBI_IO_BITFLIPS) {
1131                ubi_warn(ubi, "error %d while reading data from PEB %d",
1132                         err, from);
1133                err = MOVE_SOURCE_RD_ERR;
1134                goto out_unlock_buf;
1135        }
1136
1137        /*
1138         * Now we have got to calculate how much data we have to copy. In
1139         * case of a static volume it is fairly easy - the VID header contains
1140         * the data size. In case of a dynamic volume it is more difficult - we
1141         * have to read the contents, cut 0xFF bytes from the end and copy only
1142         * the first part. We must do this to avoid writing 0xFF bytes as it
1143         * may have some side-effects. And not only this. It is important not
1144         * to include those 0xFFs to CRC because later the they may be filled
1145         * by data.
1146         */
1147        if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1148                aldata_size = data_size =
1149                        ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1150
1151        cond_resched();
1152        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1153        cond_resched();
1154
1155        /*
1156         * It may turn out to be that the whole @from physical eraseblock
1157         * contains only 0xFF bytes. Then we have to only write the VID header
1158         * and do not write any data. This also means we should not set
1159         * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1160         */
1161        if (data_size > 0) {
1162                vid_hdr->copy_flag = 1;
1163                vid_hdr->data_size = cpu_to_be32(data_size);
1164                vid_hdr->data_crc = cpu_to_be32(crc);
1165        }
1166        vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1167
1168        err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1169        if (err) {
1170                if (err == -EIO)
1171                        err = MOVE_TARGET_WR_ERR;
1172                goto out_unlock_buf;
1173        }
1174
1175        cond_resched();
1176
1177        /* Read the VID header back and check if it was written correctly */
1178        err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1179        if (err) {
1180                if (err != UBI_IO_BITFLIPS) {
1181                        ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1182                                 err, to);
1183                        if (is_error_sane(err))
1184                                err = MOVE_TARGET_RD_ERR;
1185                } else
1186                        err = MOVE_TARGET_BITFLIPS;
1187                goto out_unlock_buf;
1188        }
1189
1190        if (data_size > 0) {
1191                err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1192                if (err) {
1193                        if (err == -EIO)
1194                                err = MOVE_TARGET_WR_ERR;
1195                        goto out_unlock_buf;
1196                }
1197
1198                cond_resched();
1199
1200                /*
1201                 * We've written the data and are going to read it back to make
1202                 * sure it was written correctly.
1203                 */
1204                memset(ubi->peb_buf, 0xFF, aldata_size);
1205                err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1206                if (err) {
1207                        if (err != UBI_IO_BITFLIPS) {
1208                                ubi_warn(ubi, "error %d while reading data back from PEB %d",
1209                                         err, to);
1210                                if (is_error_sane(err))
1211                                        err = MOVE_TARGET_RD_ERR;
1212                        } else
1213                                err = MOVE_TARGET_BITFLIPS;
1214                        goto out_unlock_buf;
1215                }
1216
1217                cond_resched();
1218
1219                if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1220                        ubi_warn(ubi, "read data back from PEB %d and it is different",
1221                                 to);
1222                        err = -EINVAL;
1223                        goto out_unlock_buf;
1224                }
1225        }
1226
1227        ubi_assert(vol->eba_tbl[lnum] == from);
1228        down_read(&ubi->fm_eba_sem);
1229        vol->eba_tbl[lnum] = to;
1230        up_read(&ubi->fm_eba_sem);
1231
1232out_unlock_buf:
1233        mutex_unlock(&ubi->buf_mutex);
1234out_unlock_leb:
1235        leb_write_unlock(ubi, vol_id, lnum);
1236        return err;
1237}
1238
1239/**
1240 * print_rsvd_warning - warn about not having enough reserved PEBs.
1241 * @ubi: UBI device description object
1242 *
1243 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1244 * cannot reserve enough PEBs for bad block handling. This function makes a
1245 * decision whether we have to print a warning or not. The algorithm is as
1246 * follows:
1247 *   o if this is a new UBI image, then just print the warning
1248 *   o if this is an UBI image which has already been used for some time, print
1249 *     a warning only if we can reserve less than 10% of the expected amount of
1250 *     the reserved PEB.
1251 *
1252 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1253 * of PEBs becomes smaller, which is normal and we do not want to scare users
1254 * with a warning every time they attach the MTD device. This was an issue
1255 * reported by real users.
1256 */
1257static void print_rsvd_warning(struct ubi_device *ubi,
1258                               struct ubi_attach_info *ai)
1259{
1260        /*
1261         * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1262         * large number to distinguish between newly flashed and used images.
1263         */
1264        if (ai->max_sqnum > (1 << 18)) {
1265                int min = ubi->beb_rsvd_level / 10;
1266
1267                if (!min)
1268                        min = 1;
1269                if (ubi->beb_rsvd_pebs > min)
1270                        return;
1271        }
1272
1273        ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1274                 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1275        if (ubi->corr_peb_count)
1276                ubi_warn(ubi, "%d PEBs are corrupted and not used",
1277                         ubi->corr_peb_count);
1278}
1279
1280/**
1281 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1282 * @ubi: UBI device description object
1283 * @ai_fastmap: UBI attach info object created by fastmap
1284 * @ai_scan: UBI attach info object created by scanning
1285 *
1286 * Returns < 0 in case of an internal error, 0 otherwise.
1287 * If a bad EBA table entry was found it will be printed out and
1288 * ubi_assert() triggers.
1289 */
1290int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1291                   struct ubi_attach_info *ai_scan)
1292{
1293        int i, j, num_volumes, ret = 0;
1294        int **scan_eba, **fm_eba;
1295        struct ubi_ainf_volume *av;
1296        struct ubi_volume *vol;
1297        struct ubi_ainf_peb *aeb;
1298        struct rb_node *rb;
1299
1300        num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1301
1302        scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1303        if (!scan_eba)
1304                return -ENOMEM;
1305
1306        fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1307        if (!fm_eba) {
1308                kfree(scan_eba);
1309                return -ENOMEM;
1310        }
1311
1312        for (i = 0; i < num_volumes; i++) {
1313                vol = ubi->volumes[i];
1314                if (!vol)
1315                        continue;
1316
1317                scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1318                                      GFP_KERNEL);
1319                if (!scan_eba[i]) {
1320                        ret = -ENOMEM;
1321                        goto out_free;
1322                }
1323
1324                fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1325                                    GFP_KERNEL);
1326                if (!fm_eba[i]) {
1327                        ret = -ENOMEM;
1328                        goto out_free;
1329                }
1330
1331                for (j = 0; j < vol->reserved_pebs; j++)
1332                        scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1333
1334                av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1335                if (!av)
1336                        continue;
1337
1338                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1339                        scan_eba[i][aeb->lnum] = aeb->pnum;
1340
1341                av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1342                if (!av)
1343                        continue;
1344
1345                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1346                        fm_eba[i][aeb->lnum] = aeb->pnum;
1347
1348                for (j = 0; j < vol->reserved_pebs; j++) {
1349                        if (scan_eba[i][j] != fm_eba[i][j]) {
1350                                if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1351                                        fm_eba[i][j] == UBI_LEB_UNMAPPED)
1352                                        continue;
1353
1354                                ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1355                                        vol->vol_id, i, fm_eba[i][j],
1356                                        scan_eba[i][j]);
1357                                ubi_assert(0);
1358                        }
1359                }
1360        }
1361
1362out_free:
1363        for (i = 0; i < num_volumes; i++) {
1364                if (!ubi->volumes[i])
1365                        continue;
1366
1367                kfree(scan_eba[i]);
1368                kfree(fm_eba[i]);
1369        }
1370
1371        kfree(scan_eba);
1372        kfree(fm_eba);
1373        return ret;
1374}
1375
1376/**
1377 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1378 * @ubi: UBI device description object
1379 * @ai: attaching information
1380 *
1381 * This function returns zero in case of success and a negative error code in
1382 * case of failure.
1383 */
1384int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1385{
1386        int i, j, err, num_volumes;
1387        struct ubi_ainf_volume *av;
1388        struct ubi_volume *vol;
1389        struct ubi_ainf_peb *aeb;
1390        struct rb_node *rb;
1391
1392        dbg_eba("initialize EBA sub-system");
1393
1394        spin_lock_init(&ubi->ltree_lock);
1395        mutex_init(&ubi->alc_mutex);
1396        ubi->ltree = RB_ROOT;
1397
1398        ubi->global_sqnum = ai->max_sqnum + 1;
1399        num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1400
1401        for (i = 0; i < num_volumes; i++) {
1402                vol = ubi->volumes[i];
1403                if (!vol)
1404                        continue;
1405
1406                cond_resched();
1407
1408                vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1409                                       GFP_KERNEL);
1410                if (!vol->eba_tbl) {
1411                        err = -ENOMEM;
1412                        goto out_free;
1413                }
1414
1415                for (j = 0; j < vol->reserved_pebs; j++)
1416                        vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1417
1418                av = ubi_find_av(ai, idx2vol_id(ubi, i));
1419                if (!av)
1420                        continue;
1421
1422                ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1423                        if (aeb->lnum >= vol->reserved_pebs)
1424                                /*
1425                                 * This may happen in case of an unclean reboot
1426                                 * during re-size.
1427                                 */
1428                                ubi_move_aeb_to_list(av, aeb, &ai->erase);
1429                        else
1430                                vol->eba_tbl[aeb->lnum] = aeb->pnum;
1431                }
1432        }
1433
1434        if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1435                ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1436                        ubi->avail_pebs, EBA_RESERVED_PEBS);
1437                if (ubi->corr_peb_count)
1438                        ubi_err(ubi, "%d PEBs are corrupted and not used",
1439                                ubi->corr_peb_count);
1440                err = -ENOSPC;
1441                goto out_free;
1442        }
1443        ubi->avail_pebs -= EBA_RESERVED_PEBS;
1444        ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1445
1446        if (ubi->bad_allowed) {
1447                ubi_calculate_reserved(ubi);
1448
1449                if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1450                        /* No enough free physical eraseblocks */
1451                        ubi->beb_rsvd_pebs = ubi->avail_pebs;
1452                        print_rsvd_warning(ubi, ai);
1453                } else
1454                        ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1455
1456                ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1457                ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1458        }
1459
1460        dbg_eba("EBA sub-system is initialized");
1461        return 0;
1462
1463out_free:
1464        for (i = 0; i < num_volumes; i++) {
1465                if (!ubi->volumes[i])
1466                        continue;
1467                kfree(ubi->volumes[i]->eba_tbl);
1468                ubi->volumes[i]->eba_tbl = NULL;
1469        }
1470        return err;
1471}
1472