uboot/fs/ubifs/debug.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements most of the debugging stuff which is compiled in only
  13 * when it is enabled. But some debugging check functions are implemented in
  14 * corresponding subsystem, just because they are closely related and utilize
  15 * various local functions of those subsystems.
  16 */
  17
  18#include <hexdump.h>
  19
  20#ifndef __UBOOT__
  21#include <linux/module.h>
  22#include <linux/debugfs.h>
  23#include <linux/math64.h>
  24#include <linux/uaccess.h>
  25#include <linux/random.h>
  26#else
  27#include <linux/compat.h>
  28#include <linux/err.h>
  29#endif
  30#include "ubifs.h"
  31
  32#ifndef __UBOOT__
  33static DEFINE_SPINLOCK(dbg_lock);
  34#endif
  35
  36static const char *get_key_fmt(int fmt)
  37{
  38        switch (fmt) {
  39        case UBIFS_SIMPLE_KEY_FMT:
  40                return "simple";
  41        default:
  42                return "unknown/invalid format";
  43        }
  44}
  45
  46static const char *get_key_hash(int hash)
  47{
  48        switch (hash) {
  49        case UBIFS_KEY_HASH_R5:
  50                return "R5";
  51        case UBIFS_KEY_HASH_TEST:
  52                return "test";
  53        default:
  54                return "unknown/invalid name hash";
  55        }
  56}
  57
  58static const char *get_key_type(int type)
  59{
  60        switch (type) {
  61        case UBIFS_INO_KEY:
  62                return "inode";
  63        case UBIFS_DENT_KEY:
  64                return "direntry";
  65        case UBIFS_XENT_KEY:
  66                return "xentry";
  67        case UBIFS_DATA_KEY:
  68                return "data";
  69        case UBIFS_TRUN_KEY:
  70                return "truncate";
  71        default:
  72                return "unknown/invalid key";
  73        }
  74}
  75
  76#ifndef __UBOOT__
  77static const char *get_dent_type(int type)
  78{
  79        switch (type) {
  80        case UBIFS_ITYPE_REG:
  81                return "file";
  82        case UBIFS_ITYPE_DIR:
  83                return "dir";
  84        case UBIFS_ITYPE_LNK:
  85                return "symlink";
  86        case UBIFS_ITYPE_BLK:
  87                return "blkdev";
  88        case UBIFS_ITYPE_CHR:
  89                return "char dev";
  90        case UBIFS_ITYPE_FIFO:
  91                return "fifo";
  92        case UBIFS_ITYPE_SOCK:
  93                return "socket";
  94        default:
  95                return "unknown/invalid type";
  96        }
  97}
  98#endif
  99
 100const char *dbg_snprintf_key(const struct ubifs_info *c,
 101                             const union ubifs_key *key, char *buffer, int len)
 102{
 103        char *p = buffer;
 104        int type = key_type(c, key);
 105
 106        if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 107                switch (type) {
 108                case UBIFS_INO_KEY:
 109                        len -= snprintf(p, len, "(%lu, %s)",
 110                                        (unsigned long)key_inum(c, key),
 111                                        get_key_type(type));
 112                        break;
 113                case UBIFS_DENT_KEY:
 114                case UBIFS_XENT_KEY:
 115                        len -= snprintf(p, len, "(%lu, %s, %#08x)",
 116                                        (unsigned long)key_inum(c, key),
 117                                        get_key_type(type), key_hash(c, key));
 118                        break;
 119                case UBIFS_DATA_KEY:
 120                        len -= snprintf(p, len, "(%lu, %s, %u)",
 121                                        (unsigned long)key_inum(c, key),
 122                                        get_key_type(type), key_block(c, key));
 123                        break;
 124                case UBIFS_TRUN_KEY:
 125                        len -= snprintf(p, len, "(%lu, %s)",
 126                                        (unsigned long)key_inum(c, key),
 127                                        get_key_type(type));
 128                        break;
 129                default:
 130                        len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 131                                        key->u32[0], key->u32[1]);
 132                }
 133        } else
 134                len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 135        ubifs_assert(len > 0);
 136        return p;
 137}
 138
 139const char *dbg_ntype(int type)
 140{
 141        switch (type) {
 142        case UBIFS_PAD_NODE:
 143                return "padding node";
 144        case UBIFS_SB_NODE:
 145                return "superblock node";
 146        case UBIFS_MST_NODE:
 147                return "master node";
 148        case UBIFS_REF_NODE:
 149                return "reference node";
 150        case UBIFS_INO_NODE:
 151                return "inode node";
 152        case UBIFS_DENT_NODE:
 153                return "direntry node";
 154        case UBIFS_XENT_NODE:
 155                return "xentry node";
 156        case UBIFS_DATA_NODE:
 157                return "data node";
 158        case UBIFS_TRUN_NODE:
 159                return "truncate node";
 160        case UBIFS_IDX_NODE:
 161                return "indexing node";
 162        case UBIFS_CS_NODE:
 163                return "commit start node";
 164        case UBIFS_ORPH_NODE:
 165                return "orphan node";
 166        default:
 167                return "unknown node";
 168        }
 169}
 170
 171static const char *dbg_gtype(int type)
 172{
 173        switch (type) {
 174        case UBIFS_NO_NODE_GROUP:
 175                return "no node group";
 176        case UBIFS_IN_NODE_GROUP:
 177                return "in node group";
 178        case UBIFS_LAST_OF_NODE_GROUP:
 179                return "last of node group";
 180        default:
 181                return "unknown";
 182        }
 183}
 184
 185const char *dbg_cstate(int cmt_state)
 186{
 187        switch (cmt_state) {
 188        case COMMIT_RESTING:
 189                return "commit resting";
 190        case COMMIT_BACKGROUND:
 191                return "background commit requested";
 192        case COMMIT_REQUIRED:
 193                return "commit required";
 194        case COMMIT_RUNNING_BACKGROUND:
 195                return "BACKGROUND commit running";
 196        case COMMIT_RUNNING_REQUIRED:
 197                return "commit running and required";
 198        case COMMIT_BROKEN:
 199                return "broken commit";
 200        default:
 201                return "unknown commit state";
 202        }
 203}
 204
 205const char *dbg_jhead(int jhead)
 206{
 207        switch (jhead) {
 208        case GCHD:
 209                return "0 (GC)";
 210        case BASEHD:
 211                return "1 (base)";
 212        case DATAHD:
 213                return "2 (data)";
 214        default:
 215                return "unknown journal head";
 216        }
 217}
 218
 219static void dump_ch(const struct ubifs_ch *ch)
 220{
 221        pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 222        pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 223        pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 224               dbg_ntype(ch->node_type));
 225        pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 226               dbg_gtype(ch->group_type));
 227        pr_err("\tsqnum          %llu\n",
 228               (unsigned long long)le64_to_cpu(ch->sqnum));
 229        pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 230}
 231
 232void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 233{
 234#ifndef __UBOOT__
 235        const struct ubifs_inode *ui = ubifs_inode(inode);
 236        struct qstr nm = { .name = NULL };
 237        union ubifs_key key;
 238        struct ubifs_dent_node *dent, *pdent = NULL;
 239        int count = 2;
 240
 241        pr_err("Dump in-memory inode:");
 242        pr_err("\tinode          %lu\n", inode->i_ino);
 243        pr_err("\tsize           %llu\n",
 244               (unsigned long long)i_size_read(inode));
 245        pr_err("\tnlink          %u\n", inode->i_nlink);
 246        pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 247        pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 248        pr_err("\tatime          %u.%u\n",
 249               (unsigned int)inode->i_atime.tv_sec,
 250               (unsigned int)inode->i_atime.tv_nsec);
 251        pr_err("\tmtime          %u.%u\n",
 252               (unsigned int)inode->i_mtime.tv_sec,
 253               (unsigned int)inode->i_mtime.tv_nsec);
 254        pr_err("\tctime          %u.%u\n",
 255               (unsigned int)inode->i_ctime.tv_sec,
 256               (unsigned int)inode->i_ctime.tv_nsec);
 257        pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 258        pr_err("\txattr_size     %u\n", ui->xattr_size);
 259        pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 260        pr_err("\txattr_names    %u\n", ui->xattr_names);
 261        pr_err("\tdirty          %u\n", ui->dirty);
 262        pr_err("\txattr          %u\n", ui->xattr);
 263        pr_err("\tbulk_read      %u\n", ui->xattr);
 264        pr_err("\tsynced_i_size  %llu\n",
 265               (unsigned long long)ui->synced_i_size);
 266        pr_err("\tui_size        %llu\n",
 267               (unsigned long long)ui->ui_size);
 268        pr_err("\tflags          %d\n", ui->flags);
 269        pr_err("\tcompr_type     %d\n", ui->compr_type);
 270        pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 271        pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 272        pr_err("\tdata_len       %d\n", ui->data_len);
 273
 274        if (!S_ISDIR(inode->i_mode))
 275                return;
 276
 277        pr_err("List of directory entries:\n");
 278        ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 279
 280        lowest_dent_key(c, &key, inode->i_ino);
 281        while (1) {
 282                dent = ubifs_tnc_next_ent(c, &key, &nm);
 283                if (IS_ERR(dent)) {
 284                        if (PTR_ERR(dent) != -ENOENT)
 285                                pr_err("error %ld\n", PTR_ERR(dent));
 286                        break;
 287                }
 288
 289                pr_err("\t%d: %s (%s)\n",
 290                       count++, dent->name, get_dent_type(dent->type));
 291
 292                nm.name = dent->name;
 293                nm.len = le16_to_cpu(dent->nlen);
 294                kfree(pdent);
 295                pdent = dent;
 296                key_read(c, &dent->key, &key);
 297        }
 298        kfree(pdent);
 299#endif
 300}
 301
 302void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 303{
 304        int i, n;
 305        union ubifs_key key;
 306        const struct ubifs_ch *ch = node;
 307        char key_buf[DBG_KEY_BUF_LEN];
 308
 309        /* If the magic is incorrect, just hexdump the first bytes */
 310        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 311                pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 312                print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
 313                               (void *)node, UBIFS_CH_SZ, 1);
 314                return;
 315        }
 316
 317        spin_lock(&dbg_lock);
 318        dump_ch(node);
 319
 320        switch (ch->node_type) {
 321        case UBIFS_PAD_NODE:
 322        {
 323                const struct ubifs_pad_node *pad = node;
 324
 325                pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 326                break;
 327        }
 328        case UBIFS_SB_NODE:
 329        {
 330                const struct ubifs_sb_node *sup = node;
 331                unsigned int sup_flags = le32_to_cpu(sup->flags);
 332
 333                pr_err("\tkey_hash       %d (%s)\n",
 334                       (int)sup->key_hash, get_key_hash(sup->key_hash));
 335                pr_err("\tkey_fmt        %d (%s)\n",
 336                       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 337                pr_err("\tflags          %#x\n", sup_flags);
 338                pr_err("\tbig_lpt        %u\n",
 339                       !!(sup_flags & UBIFS_FLG_BIGLPT));
 340                pr_err("\tspace_fixup    %u\n",
 341                       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 342                pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 343                pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 344                pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 345                pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 346                pr_err("\tmax_bud_bytes  %llu\n",
 347                       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 348                pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 349                pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 350                pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 351                pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 352                pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 353                pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 354                pr_err("\tdefault_compr  %u\n",
 355                       (int)le16_to_cpu(sup->default_compr));
 356                pr_err("\trp_size        %llu\n",
 357                       (unsigned long long)le64_to_cpu(sup->rp_size));
 358                pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 359                pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 360                pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 361                pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 362                pr_err("\tUUID           %pUB\n", sup->uuid);
 363                break;
 364        }
 365        case UBIFS_MST_NODE:
 366        {
 367                const struct ubifs_mst_node *mst = node;
 368
 369                pr_err("\thighest_inum   %llu\n",
 370                       (unsigned long long)le64_to_cpu(mst->highest_inum));
 371                pr_err("\tcommit number  %llu\n",
 372                       (unsigned long long)le64_to_cpu(mst->cmt_no));
 373                pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 374                pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 375                pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 376                pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 377                pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 378                pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 379                pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 380                pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 381                pr_err("\tindex_size     %llu\n",
 382                       (unsigned long long)le64_to_cpu(mst->index_size));
 383                pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 384                pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 385                pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 386                pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 387                pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 388                pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 389                pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 390                pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 391                pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 392                pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 393                pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 394                pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 395                pr_err("\ttotal_free     %llu\n",
 396                       (unsigned long long)le64_to_cpu(mst->total_free));
 397                pr_err("\ttotal_dirty    %llu\n",
 398                       (unsigned long long)le64_to_cpu(mst->total_dirty));
 399                pr_err("\ttotal_used     %llu\n",
 400                       (unsigned long long)le64_to_cpu(mst->total_used));
 401                pr_err("\ttotal_dead     %llu\n",
 402                       (unsigned long long)le64_to_cpu(mst->total_dead));
 403                pr_err("\ttotal_dark     %llu\n",
 404                       (unsigned long long)le64_to_cpu(mst->total_dark));
 405                break;
 406        }
 407        case UBIFS_REF_NODE:
 408        {
 409                const struct ubifs_ref_node *ref = node;
 410
 411                pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 412                pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 413                pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 414                break;
 415        }
 416        case UBIFS_INO_NODE:
 417        {
 418                const struct ubifs_ino_node *ino = node;
 419
 420                key_read(c, &ino->key, &key);
 421                pr_err("\tkey            %s\n",
 422                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 423                pr_err("\tcreat_sqnum    %llu\n",
 424                       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 425                pr_err("\tsize           %llu\n",
 426                       (unsigned long long)le64_to_cpu(ino->size));
 427                pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 428                pr_err("\tatime          %lld.%u\n",
 429                       (long long)le64_to_cpu(ino->atime_sec),
 430                       le32_to_cpu(ino->atime_nsec));
 431                pr_err("\tmtime          %lld.%u\n",
 432                       (long long)le64_to_cpu(ino->mtime_sec),
 433                       le32_to_cpu(ino->mtime_nsec));
 434                pr_err("\tctime          %lld.%u\n",
 435                       (long long)le64_to_cpu(ino->ctime_sec),
 436                       le32_to_cpu(ino->ctime_nsec));
 437                pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 438                pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 439                pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 440                pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 441                pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 442                pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 443                pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 444                pr_err("\tcompr_type     %#x\n",
 445                       (int)le16_to_cpu(ino->compr_type));
 446                pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 447                break;
 448        }
 449        case UBIFS_DENT_NODE:
 450        case UBIFS_XENT_NODE:
 451        {
 452                const struct ubifs_dent_node *dent = node;
 453                int nlen = le16_to_cpu(dent->nlen);
 454
 455                key_read(c, &dent->key, &key);
 456                pr_err("\tkey            %s\n",
 457                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 458                pr_err("\tinum           %llu\n",
 459                       (unsigned long long)le64_to_cpu(dent->inum));
 460                pr_err("\ttype           %d\n", (int)dent->type);
 461                pr_err("\tnlen           %d\n", nlen);
 462                pr_err("\tname           ");
 463
 464                if (nlen > UBIFS_MAX_NLEN)
 465                        pr_err("(bad name length, not printing, bad or corrupted node)");
 466                else {
 467                        for (i = 0; i < nlen && dent->name[i]; i++)
 468                                pr_cont("%c", dent->name[i]);
 469                }
 470                pr_cont("\n");
 471
 472                break;
 473        }
 474        case UBIFS_DATA_NODE:
 475        {
 476                const struct ubifs_data_node *dn = node;
 477                int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 478
 479                key_read(c, &dn->key, &key);
 480                pr_err("\tkey            %s\n",
 481                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 482                pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 483                pr_err("\tcompr_typ      %d\n",
 484                       (int)le16_to_cpu(dn->compr_type));
 485                pr_err("\tdata size      %d\n", dlen);
 486                pr_err("\tdata:\n");
 487                print_hex_dump("\t", DUMP_PREFIX_OFFSET, 32, 1,
 488                               (void *)&dn->data, dlen, 0);
 489                break;
 490        }
 491        case UBIFS_TRUN_NODE:
 492        {
 493                const struct ubifs_trun_node *trun = node;
 494
 495                pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 496                pr_err("\told_size       %llu\n",
 497                       (unsigned long long)le64_to_cpu(trun->old_size));
 498                pr_err("\tnew_size       %llu\n",
 499                       (unsigned long long)le64_to_cpu(trun->new_size));
 500                break;
 501        }
 502        case UBIFS_IDX_NODE:
 503        {
 504                const struct ubifs_idx_node *idx = node;
 505
 506                n = le16_to_cpu(idx->child_cnt);
 507                pr_err("\tchild_cnt      %d\n", n);
 508                pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 509                pr_err("\tBranches:\n");
 510
 511                for (i = 0; i < n && i < c->fanout - 1; i++) {
 512                        const struct ubifs_branch *br;
 513
 514                        br = ubifs_idx_branch(c, idx, i);
 515                        key_read(c, &br->key, &key);
 516                        pr_err("\t%d: LEB %d:%d len %d key %s\n",
 517                               i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 518                               le32_to_cpu(br->len),
 519                               dbg_snprintf_key(c, &key, key_buf,
 520                                                DBG_KEY_BUF_LEN));
 521                }
 522                break;
 523        }
 524        case UBIFS_CS_NODE:
 525                break;
 526        case UBIFS_ORPH_NODE:
 527        {
 528                const struct ubifs_orph_node *orph = node;
 529
 530                pr_err("\tcommit number  %llu\n",
 531                       (unsigned long long)
 532                                le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 533                pr_err("\tlast node flag %llu\n",
 534                       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 535                n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 536                pr_err("\t%d orphan inode numbers:\n", n);
 537                for (i = 0; i < n; i++)
 538                        pr_err("\t  ino %llu\n",
 539                               (unsigned long long)le64_to_cpu(orph->inos[i]));
 540                break;
 541        }
 542        default:
 543                pr_err("node type %d was not recognized\n",
 544                       (int)ch->node_type);
 545        }
 546        spin_unlock(&dbg_lock);
 547}
 548
 549void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 550{
 551        spin_lock(&dbg_lock);
 552        pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 553               req->new_ino, req->dirtied_ino);
 554        pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 555               req->new_ino_d, req->dirtied_ino_d);
 556        pr_err("\tnew_page    %d, dirtied_page %d\n",
 557               req->new_page, req->dirtied_page);
 558        pr_err("\tnew_dent    %d, mod_dent     %d\n",
 559               req->new_dent, req->mod_dent);
 560        pr_err("\tidx_growth  %d\n", req->idx_growth);
 561        pr_err("\tdata_growth %d dd_growth     %d\n",
 562               req->data_growth, req->dd_growth);
 563        spin_unlock(&dbg_lock);
 564}
 565
 566void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 567{
 568        spin_lock(&dbg_lock);
 569        pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 570               current->pid, lst->empty_lebs, lst->idx_lebs);
 571        pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 572               lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 573        pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 574               lst->total_used, lst->total_dark, lst->total_dead);
 575        spin_unlock(&dbg_lock);
 576}
 577
 578#ifndef __UBOOT__
 579void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 580{
 581        int i;
 582        struct rb_node *rb;
 583        struct ubifs_bud *bud;
 584        struct ubifs_gced_idx_leb *idx_gc;
 585        long long available, outstanding, free;
 586
 587        spin_lock(&c->space_lock);
 588        spin_lock(&dbg_lock);
 589        pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 590               current->pid, bi->data_growth + bi->dd_growth,
 591               bi->data_growth + bi->dd_growth + bi->idx_growth);
 592        pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 593               bi->data_growth, bi->dd_growth, bi->idx_growth);
 594        pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 595               bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 596        pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 597               bi->page_budget, bi->inode_budget, bi->dent_budget);
 598        pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 599        pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 600               c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 601
 602        if (bi != &c->bi)
 603                /*
 604                 * If we are dumping saved budgeting data, do not print
 605                 * additional information which is about the current state, not
 606                 * the old one which corresponded to the saved budgeting data.
 607                 */
 608                goto out_unlock;
 609
 610        pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 611               c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 612        pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 613               atomic_long_read(&c->dirty_pg_cnt),
 614               atomic_long_read(&c->dirty_zn_cnt),
 615               atomic_long_read(&c->clean_zn_cnt));
 616        pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 617
 618        /* If we are in R/O mode, journal heads do not exist */
 619        if (c->jheads)
 620                for (i = 0; i < c->jhead_cnt; i++)
 621                        pr_err("\tjhead %s\t LEB %d\n",
 622                               dbg_jhead(c->jheads[i].wbuf.jhead),
 623                               c->jheads[i].wbuf.lnum);
 624        for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 625                bud = rb_entry(rb, struct ubifs_bud, rb);
 626                pr_err("\tbud LEB %d\n", bud->lnum);
 627        }
 628        list_for_each_entry(bud, &c->old_buds, list)
 629                pr_err("\told bud LEB %d\n", bud->lnum);
 630        list_for_each_entry(idx_gc, &c->idx_gc, list)
 631                pr_err("\tGC'ed idx LEB %d unmap %d\n",
 632                       idx_gc->lnum, idx_gc->unmap);
 633        pr_err("\tcommit state %d\n", c->cmt_state);
 634
 635        /* Print budgeting predictions */
 636        available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 637        outstanding = c->bi.data_growth + c->bi.dd_growth;
 638        free = ubifs_get_free_space_nolock(c);
 639        pr_err("Budgeting predictions:\n");
 640        pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 641               available, outstanding, free);
 642out_unlock:
 643        spin_unlock(&dbg_lock);
 644        spin_unlock(&c->space_lock);
 645}
 646#else
 647void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 648{
 649}
 650#endif
 651
 652void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 653{
 654        int i, spc, dark = 0, dead = 0;
 655        struct rb_node *rb;
 656        struct ubifs_bud *bud;
 657
 658        spc = lp->free + lp->dirty;
 659        if (spc < c->dead_wm)
 660                dead = spc;
 661        else
 662                dark = ubifs_calc_dark(c, spc);
 663
 664        if (lp->flags & LPROPS_INDEX)
 665                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 666                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 667                       lp->flags);
 668        else
 669                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 670                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 671                       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 672
 673        if (lp->flags & LPROPS_TAKEN) {
 674                if (lp->flags & LPROPS_INDEX)
 675                        pr_cont("index, taken");
 676                else
 677                        pr_cont("taken");
 678        } else {
 679                const char *s;
 680
 681                if (lp->flags & LPROPS_INDEX) {
 682                        switch (lp->flags & LPROPS_CAT_MASK) {
 683                        case LPROPS_DIRTY_IDX:
 684                                s = "dirty index";
 685                                break;
 686                        case LPROPS_FRDI_IDX:
 687                                s = "freeable index";
 688                                break;
 689                        default:
 690                                s = "index";
 691                        }
 692                } else {
 693                        switch (lp->flags & LPROPS_CAT_MASK) {
 694                        case LPROPS_UNCAT:
 695                                s = "not categorized";
 696                                break;
 697                        case LPROPS_DIRTY:
 698                                s = "dirty";
 699                                break;
 700                        case LPROPS_FREE:
 701                                s = "free";
 702                                break;
 703                        case LPROPS_EMPTY:
 704                                s = "empty";
 705                                break;
 706                        case LPROPS_FREEABLE:
 707                                s = "freeable";
 708                                break;
 709                        default:
 710                                s = NULL;
 711                                break;
 712                        }
 713                }
 714                pr_cont("%s", s);
 715        }
 716
 717        for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 718                bud = rb_entry(rb, struct ubifs_bud, rb);
 719                if (bud->lnum == lp->lnum) {
 720                        int head = 0;
 721                        for (i = 0; i < c->jhead_cnt; i++) {
 722                                /*
 723                                 * Note, if we are in R/O mode or in the middle
 724                                 * of mounting/re-mounting, the write-buffers do
 725                                 * not exist.
 726                                 */
 727                                if (c->jheads &&
 728                                    lp->lnum == c->jheads[i].wbuf.lnum) {
 729                                        pr_cont(", jhead %s", dbg_jhead(i));
 730                                        head = 1;
 731                                }
 732                        }
 733                        if (!head)
 734                                pr_cont(", bud of jhead %s",
 735                                       dbg_jhead(bud->jhead));
 736                }
 737        }
 738        if (lp->lnum == c->gc_lnum)
 739                pr_cont(", GC LEB");
 740        pr_cont(")\n");
 741}
 742
 743void ubifs_dump_lprops(struct ubifs_info *c)
 744{
 745        int lnum, err;
 746        struct ubifs_lprops lp;
 747        struct ubifs_lp_stats lst;
 748
 749        pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 750        ubifs_get_lp_stats(c, &lst);
 751        ubifs_dump_lstats(&lst);
 752
 753        for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 754                err = ubifs_read_one_lp(c, lnum, &lp);
 755                if (err) {
 756                        ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 757                        continue;
 758                }
 759
 760                ubifs_dump_lprop(c, &lp);
 761        }
 762        pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 763}
 764
 765void ubifs_dump_lpt_info(struct ubifs_info *c)
 766{
 767        int i;
 768
 769        spin_lock(&dbg_lock);
 770        pr_err("(pid %d) dumping LPT information\n", current->pid);
 771        pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 772        pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 773        pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 774        pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 775        pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 776        pr_err("\tbig_lpt:       %d\n", c->big_lpt);
 777        pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 778        pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 779        pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 780        pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 781        pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 782        pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 783        pr_err("\tspace_bits:    %d\n", c->space_bits);
 784        pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 785        pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 786        pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 787        pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 788        pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 789        pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 790        pr_err("\tLPT head is at %d:%d\n",
 791               c->nhead_lnum, c->nhead_offs);
 792        pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 793        if (c->big_lpt)
 794                pr_err("\tLPT lsave is at %d:%d\n",
 795                       c->lsave_lnum, c->lsave_offs);
 796        for (i = 0; i < c->lpt_lebs; i++)
 797                pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 798                       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 799                       c->ltab[i].tgc, c->ltab[i].cmt);
 800        spin_unlock(&dbg_lock);
 801}
 802
 803void ubifs_dump_sleb(const struct ubifs_info *c,
 804                     const struct ubifs_scan_leb *sleb, int offs)
 805{
 806        struct ubifs_scan_node *snod;
 807
 808        pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
 809               current->pid, sleb->lnum, offs);
 810
 811        list_for_each_entry(snod, &sleb->nodes, list) {
 812                cond_resched();
 813                pr_err("Dumping node at LEB %d:%d len %d\n",
 814                       sleb->lnum, snod->offs, snod->len);
 815                ubifs_dump_node(c, snod->node);
 816        }
 817}
 818
 819void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 820{
 821        struct ubifs_scan_leb *sleb;
 822        struct ubifs_scan_node *snod;
 823        void *buf;
 824
 825        pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 826
 827        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 828        if (!buf) {
 829                ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 830                return;
 831        }
 832
 833        sleb = ubifs_scan(c, lnum, 0, buf, 0);
 834        if (IS_ERR(sleb)) {
 835                ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 836                goto out;
 837        }
 838
 839        pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 840               sleb->nodes_cnt, sleb->endpt);
 841
 842        list_for_each_entry(snod, &sleb->nodes, list) {
 843                cond_resched();
 844                pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 845                       snod->offs, snod->len);
 846                ubifs_dump_node(c, snod->node);
 847        }
 848
 849        pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 850        ubifs_scan_destroy(sleb);
 851
 852out:
 853        vfree(buf);
 854        return;
 855}
 856
 857void ubifs_dump_znode(const struct ubifs_info *c,
 858                      const struct ubifs_znode *znode)
 859{
 860        int n;
 861        const struct ubifs_zbranch *zbr;
 862        char key_buf[DBG_KEY_BUF_LEN];
 863
 864        spin_lock(&dbg_lock);
 865        if (znode->parent)
 866                zbr = &znode->parent->zbranch[znode->iip];
 867        else
 868                zbr = &c->zroot;
 869
 870        pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 871               znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 872               znode->level, znode->child_cnt, znode->flags);
 873
 874        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 875                spin_unlock(&dbg_lock);
 876                return;
 877        }
 878
 879        pr_err("zbranches:\n");
 880        for (n = 0; n < znode->child_cnt; n++) {
 881                zbr = &znode->zbranch[n];
 882                if (znode->level > 0)
 883                        pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 884                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 885                               dbg_snprintf_key(c, &zbr->key, key_buf,
 886                                                DBG_KEY_BUF_LEN));
 887                else
 888                        pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 889                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 890                               dbg_snprintf_key(c, &zbr->key, key_buf,
 891                                                DBG_KEY_BUF_LEN));
 892        }
 893        spin_unlock(&dbg_lock);
 894}
 895
 896void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 897{
 898        int i;
 899
 900        pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 901               current->pid, cat, heap->cnt);
 902        for (i = 0; i < heap->cnt; i++) {
 903                struct ubifs_lprops *lprops = heap->arr[i];
 904
 905                pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 906                       i, lprops->lnum, lprops->hpos, lprops->free,
 907                       lprops->dirty, lprops->flags);
 908        }
 909        pr_err("(pid %d) finish dumping heap\n", current->pid);
 910}
 911
 912void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 913                      struct ubifs_nnode *parent, int iip)
 914{
 915        int i;
 916
 917        pr_err("(pid %d) dumping pnode:\n", current->pid);
 918        pr_err("\taddress %zx parent %zx cnext %zx\n",
 919               (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 920        pr_err("\tflags %lu iip %d level %d num %d\n",
 921               pnode->flags, iip, pnode->level, pnode->num);
 922        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 923                struct ubifs_lprops *lp = &pnode->lprops[i];
 924
 925                pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 926                       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 927        }
 928}
 929
 930void ubifs_dump_tnc(struct ubifs_info *c)
 931{
 932        struct ubifs_znode *znode;
 933        int level;
 934
 935        pr_err("\n");
 936        pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 937        znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 938        level = znode->level;
 939        pr_err("== Level %d ==\n", level);
 940        while (znode) {
 941                if (level != znode->level) {
 942                        level = znode->level;
 943                        pr_err("== Level %d ==\n", level);
 944                }
 945                ubifs_dump_znode(c, znode);
 946                znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 947        }
 948        pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 949}
 950
 951static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 952                      void *priv)
 953{
 954        ubifs_dump_znode(c, znode);
 955        return 0;
 956}
 957
 958/**
 959 * ubifs_dump_index - dump the on-flash index.
 960 * @c: UBIFS file-system description object
 961 *
 962 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 963 * which dumps only in-memory znodes and does not read znodes which from flash.
 964 */
 965void ubifs_dump_index(struct ubifs_info *c)
 966{
 967        dbg_walk_index(c, NULL, dump_znode, NULL);
 968}
 969
 970#ifndef __UBOOT__
 971/**
 972 * dbg_save_space_info - save information about flash space.
 973 * @c: UBIFS file-system description object
 974 *
 975 * This function saves information about UBIFS free space, dirty space, etc, in
 976 * order to check it later.
 977 */
 978void dbg_save_space_info(struct ubifs_info *c)
 979{
 980        struct ubifs_debug_info *d = c->dbg;
 981        int freeable_cnt;
 982
 983        spin_lock(&c->space_lock);
 984        memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 985        memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 986        d->saved_idx_gc_cnt = c->idx_gc_cnt;
 987
 988        /*
 989         * We use a dirty hack here and zero out @c->freeable_cnt, because it
 990         * affects the free space calculations, and UBIFS might not know about
 991         * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
 992         * only when we read their lprops, and we do this only lazily, upon the
 993         * need. So at any given point of time @c->freeable_cnt might be not
 994         * exactly accurate.
 995         *
 996         * Just one example about the issue we hit when we did not zero
 997         * @c->freeable_cnt.
 998         * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
 999         *    amount of free space in @d->saved_free
1000         * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1001         *    information from flash, where we cache LEBs from various
1002         *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1003         *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1004         *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1005         *    -> 'ubifs_add_to_cat()').
1006         * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1007         *    becomes %1.
1008         * 4. We calculate the amount of free space when the re-mount is
1009         *    finished in 'dbg_check_space_info()' and it does not match
1010         *    @d->saved_free.
1011         */
1012        freeable_cnt = c->freeable_cnt;
1013        c->freeable_cnt = 0;
1014        d->saved_free = ubifs_get_free_space_nolock(c);
1015        c->freeable_cnt = freeable_cnt;
1016        spin_unlock(&c->space_lock);
1017}
1018
1019/**
1020 * dbg_check_space_info - check flash space information.
1021 * @c: UBIFS file-system description object
1022 *
1023 * This function compares current flash space information with the information
1024 * which was saved when the 'dbg_save_space_info()' function was called.
1025 * Returns zero if the information has not changed, and %-EINVAL it it has
1026 * changed.
1027 */
1028int dbg_check_space_info(struct ubifs_info *c)
1029{
1030        struct ubifs_debug_info *d = c->dbg;
1031        struct ubifs_lp_stats lst;
1032        long long free;
1033        int freeable_cnt;
1034
1035        spin_lock(&c->space_lock);
1036        freeable_cnt = c->freeable_cnt;
1037        c->freeable_cnt = 0;
1038        free = ubifs_get_free_space_nolock(c);
1039        c->freeable_cnt = freeable_cnt;
1040        spin_unlock(&c->space_lock);
1041
1042        if (free != d->saved_free) {
1043                ubifs_err(c, "free space changed from %lld to %lld",
1044                          d->saved_free, free);
1045                goto out;
1046        }
1047
1048        return 0;
1049
1050out:
1051        ubifs_msg(c, "saved lprops statistics dump");
1052        ubifs_dump_lstats(&d->saved_lst);
1053        ubifs_msg(c, "saved budgeting info dump");
1054        ubifs_dump_budg(c, &d->saved_bi);
1055        ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1056        ubifs_msg(c, "current lprops statistics dump");
1057        ubifs_get_lp_stats(c, &lst);
1058        ubifs_dump_lstats(&lst);
1059        ubifs_msg(c, "current budgeting info dump");
1060        ubifs_dump_budg(c, &c->bi);
1061        dump_stack();
1062        return -EINVAL;
1063}
1064
1065/**
1066 * dbg_check_synced_i_size - check synchronized inode size.
1067 * @c: UBIFS file-system description object
1068 * @inode: inode to check
1069 *
1070 * If inode is clean, synchronized inode size has to be equivalent to current
1071 * inode size. This function has to be called only for locked inodes (@i_mutex
1072 * has to be locked). Returns %0 if synchronized inode size if correct, and
1073 * %-EINVAL if not.
1074 */
1075int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1076{
1077        int err = 0;
1078        struct ubifs_inode *ui = ubifs_inode(inode);
1079
1080        if (!dbg_is_chk_gen(c))
1081                return 0;
1082        if (!S_ISREG(inode->i_mode))
1083                return 0;
1084
1085        mutex_lock(&ui->ui_mutex);
1086        spin_lock(&ui->ui_lock);
1087        if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1088                ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1089                          ui->ui_size, ui->synced_i_size);
1090                ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1091                          inode->i_mode, i_size_read(inode));
1092                dump_stack();
1093                err = -EINVAL;
1094        }
1095        spin_unlock(&ui->ui_lock);
1096        mutex_unlock(&ui->ui_mutex);
1097        return err;
1098}
1099
1100/*
1101 * dbg_check_dir - check directory inode size and link count.
1102 * @c: UBIFS file-system description object
1103 * @dir: the directory to calculate size for
1104 * @size: the result is returned here
1105 *
1106 * This function makes sure that directory size and link count are correct.
1107 * Returns zero in case of success and a negative error code in case of
1108 * failure.
1109 *
1110 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1111 * calling this function.
1112 */
1113int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1114{
1115        unsigned int nlink = 2;
1116        union ubifs_key key;
1117        struct ubifs_dent_node *dent, *pdent = NULL;
1118        struct qstr nm = { .name = NULL };
1119        loff_t size = UBIFS_INO_NODE_SZ;
1120
1121        if (!dbg_is_chk_gen(c))
1122                return 0;
1123
1124        if (!S_ISDIR(dir->i_mode))
1125                return 0;
1126
1127        lowest_dent_key(c, &key, dir->i_ino);
1128        while (1) {
1129                int err;
1130
1131                dent = ubifs_tnc_next_ent(c, &key, &nm);
1132                if (IS_ERR(dent)) {
1133                        err = PTR_ERR(dent);
1134                        if (err == -ENOENT)
1135                                break;
1136                        return err;
1137                }
1138
1139                nm.name = dent->name;
1140                nm.len = le16_to_cpu(dent->nlen);
1141                size += CALC_DENT_SIZE(nm.len);
1142                if (dent->type == UBIFS_ITYPE_DIR)
1143                        nlink += 1;
1144                kfree(pdent);
1145                pdent = dent;
1146                key_read(c, &dent->key, &key);
1147        }
1148        kfree(pdent);
1149
1150        if (i_size_read(dir) != size) {
1151                ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1152                          dir->i_ino, (unsigned long long)i_size_read(dir),
1153                          (unsigned long long)size);
1154                ubifs_dump_inode(c, dir);
1155                dump_stack();
1156                return -EINVAL;
1157        }
1158        if (dir->i_nlink != nlink) {
1159                ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1160                          dir->i_ino, dir->i_nlink, nlink);
1161                ubifs_dump_inode(c, dir);
1162                dump_stack();
1163                return -EINVAL;
1164        }
1165
1166        return 0;
1167}
1168
1169/**
1170 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1171 * @c: UBIFS file-system description object
1172 * @zbr1: first zbranch
1173 * @zbr2: following zbranch
1174 *
1175 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1176 * names of the direntries/xentries which are referred by the keys. This
1177 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1178 * sure the name of direntry/xentry referred by @zbr1 is less than
1179 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1180 * and a negative error code in case of failure.
1181 */
1182static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1183                               struct ubifs_zbranch *zbr2)
1184{
1185        int err, nlen1, nlen2, cmp;
1186        struct ubifs_dent_node *dent1, *dent2;
1187        union ubifs_key key;
1188        char key_buf[DBG_KEY_BUF_LEN];
1189
1190        ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1191        dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1192        if (!dent1)
1193                return -ENOMEM;
1194        dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1195        if (!dent2) {
1196                err = -ENOMEM;
1197                goto out_free;
1198        }
1199
1200        err = ubifs_tnc_read_node(c, zbr1, dent1);
1201        if (err)
1202                goto out_free;
1203        err = ubifs_validate_entry(c, dent1);
1204        if (err)
1205                goto out_free;
1206
1207        err = ubifs_tnc_read_node(c, zbr2, dent2);
1208        if (err)
1209                goto out_free;
1210        err = ubifs_validate_entry(c, dent2);
1211        if (err)
1212                goto out_free;
1213
1214        /* Make sure node keys are the same as in zbranch */
1215        err = 1;
1216        key_read(c, &dent1->key, &key);
1217        if (keys_cmp(c, &zbr1->key, &key)) {
1218                ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1219                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1220                                                       DBG_KEY_BUF_LEN));
1221                ubifs_err(c, "but it should have key %s according to tnc",
1222                          dbg_snprintf_key(c, &zbr1->key, key_buf,
1223                                           DBG_KEY_BUF_LEN));
1224                ubifs_dump_node(c, dent1);
1225                goto out_free;
1226        }
1227
1228        key_read(c, &dent2->key, &key);
1229        if (keys_cmp(c, &zbr2->key, &key)) {
1230                ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1231                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1232                                                       DBG_KEY_BUF_LEN));
1233                ubifs_err(c, "but it should have key %s according to tnc",
1234                          dbg_snprintf_key(c, &zbr2->key, key_buf,
1235                                           DBG_KEY_BUF_LEN));
1236                ubifs_dump_node(c, dent2);
1237                goto out_free;
1238        }
1239
1240        nlen1 = le16_to_cpu(dent1->nlen);
1241        nlen2 = le16_to_cpu(dent2->nlen);
1242
1243        cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1244        if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1245                err = 0;
1246                goto out_free;
1247        }
1248        if (cmp == 0 && nlen1 == nlen2)
1249                ubifs_err(c, "2 xent/dent nodes with the same name");
1250        else
1251                ubifs_err(c, "bad order of colliding key %s",
1252                          dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1253
1254        ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1255        ubifs_dump_node(c, dent1);
1256        ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1257        ubifs_dump_node(c, dent2);
1258
1259out_free:
1260        kfree(dent2);
1261        kfree(dent1);
1262        return err;
1263}
1264
1265/**
1266 * dbg_check_znode - check if znode is all right.
1267 * @c: UBIFS file-system description object
1268 * @zbr: zbranch which points to this znode
1269 *
1270 * This function makes sure that znode referred to by @zbr is all right.
1271 * Returns zero if it is, and %-EINVAL if it is not.
1272 */
1273static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1274{
1275        struct ubifs_znode *znode = zbr->znode;
1276        struct ubifs_znode *zp = znode->parent;
1277        int n, err, cmp;
1278
1279        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1280                err = 1;
1281                goto out;
1282        }
1283        if (znode->level < 0) {
1284                err = 2;
1285                goto out;
1286        }
1287        if (znode->iip < 0 || znode->iip >= c->fanout) {
1288                err = 3;
1289                goto out;
1290        }
1291
1292        if (zbr->len == 0)
1293                /* Only dirty zbranch may have no on-flash nodes */
1294                if (!ubifs_zn_dirty(znode)) {
1295                        err = 4;
1296                        goto out;
1297                }
1298
1299        if (ubifs_zn_dirty(znode)) {
1300                /*
1301                 * If znode is dirty, its parent has to be dirty as well. The
1302                 * order of the operation is important, so we have to have
1303                 * memory barriers.
1304                 */
1305                smp_mb();
1306                if (zp && !ubifs_zn_dirty(zp)) {
1307                        /*
1308                         * The dirty flag is atomic and is cleared outside the
1309                         * TNC mutex, so znode's dirty flag may now have
1310                         * been cleared. The child is always cleared before the
1311                         * parent, so we just need to check again.
1312                         */
1313                        smp_mb();
1314                        if (ubifs_zn_dirty(znode)) {
1315                                err = 5;
1316                                goto out;
1317                        }
1318                }
1319        }
1320
1321        if (zp) {
1322                const union ubifs_key *min, *max;
1323
1324                if (znode->level != zp->level - 1) {
1325                        err = 6;
1326                        goto out;
1327                }
1328
1329                /* Make sure the 'parent' pointer in our znode is correct */
1330                err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1331                if (!err) {
1332                        /* This zbranch does not exist in the parent */
1333                        err = 7;
1334                        goto out;
1335                }
1336
1337                if (znode->iip >= zp->child_cnt) {
1338                        err = 8;
1339                        goto out;
1340                }
1341
1342                if (znode->iip != n) {
1343                        /* This may happen only in case of collisions */
1344                        if (keys_cmp(c, &zp->zbranch[n].key,
1345                                     &zp->zbranch[znode->iip].key)) {
1346                                err = 9;
1347                                goto out;
1348                        }
1349                        n = znode->iip;
1350                }
1351
1352                /*
1353                 * Make sure that the first key in our znode is greater than or
1354                 * equal to the key in the pointing zbranch.
1355                 */
1356                min = &zbr->key;
1357                cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1358                if (cmp == 1) {
1359                        err = 10;
1360                        goto out;
1361                }
1362
1363                if (n + 1 < zp->child_cnt) {
1364                        max = &zp->zbranch[n + 1].key;
1365
1366                        /*
1367                         * Make sure the last key in our znode is less or
1368                         * equivalent than the key in the zbranch which goes
1369                         * after our pointing zbranch.
1370                         */
1371                        cmp = keys_cmp(c, max,
1372                                &znode->zbranch[znode->child_cnt - 1].key);
1373                        if (cmp == -1) {
1374                                err = 11;
1375                                goto out;
1376                        }
1377                }
1378        } else {
1379                /* This may only be root znode */
1380                if (zbr != &c->zroot) {
1381                        err = 12;
1382                        goto out;
1383                }
1384        }
1385
1386        /*
1387         * Make sure that next key is greater or equivalent then the previous
1388         * one.
1389         */
1390        for (n = 1; n < znode->child_cnt; n++) {
1391                cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1392                               &znode->zbranch[n].key);
1393                if (cmp > 0) {
1394                        err = 13;
1395                        goto out;
1396                }
1397                if (cmp == 0) {
1398                        /* This can only be keys with colliding hash */
1399                        if (!is_hash_key(c, &znode->zbranch[n].key)) {
1400                                err = 14;
1401                                goto out;
1402                        }
1403
1404                        if (znode->level != 0 || c->replaying)
1405                                continue;
1406
1407                        /*
1408                         * Colliding keys should follow binary order of
1409                         * corresponding xentry/dentry names.
1410                         */
1411                        err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1412                                                  &znode->zbranch[n]);
1413                        if (err < 0)
1414                                return err;
1415                        if (err) {
1416                                err = 15;
1417                                goto out;
1418                        }
1419                }
1420        }
1421
1422        for (n = 0; n < znode->child_cnt; n++) {
1423                if (!znode->zbranch[n].znode &&
1424                    (znode->zbranch[n].lnum == 0 ||
1425                     znode->zbranch[n].len == 0)) {
1426                        err = 16;
1427                        goto out;
1428                }
1429
1430                if (znode->zbranch[n].lnum != 0 &&
1431                    znode->zbranch[n].len == 0) {
1432                        err = 17;
1433                        goto out;
1434                }
1435
1436                if (znode->zbranch[n].lnum == 0 &&
1437                    znode->zbranch[n].len != 0) {
1438                        err = 18;
1439                        goto out;
1440                }
1441
1442                if (znode->zbranch[n].lnum == 0 &&
1443                    znode->zbranch[n].offs != 0) {
1444                        err = 19;
1445                        goto out;
1446                }
1447
1448                if (znode->level != 0 && znode->zbranch[n].znode)
1449                        if (znode->zbranch[n].znode->parent != znode) {
1450                                err = 20;
1451                                goto out;
1452                        }
1453        }
1454
1455        return 0;
1456
1457out:
1458        ubifs_err(c, "failed, error %d", err);
1459        ubifs_msg(c, "dump of the znode");
1460        ubifs_dump_znode(c, znode);
1461        if (zp) {
1462                ubifs_msg(c, "dump of the parent znode");
1463                ubifs_dump_znode(c, zp);
1464        }
1465        dump_stack();
1466        return -EINVAL;
1467}
1468#else
1469
1470int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1471{
1472        return 0;
1473}
1474
1475void dbg_debugfs_exit_fs(struct ubifs_info *c)
1476{
1477        return;
1478}
1479
1480int ubifs_debugging_init(struct ubifs_info *c)
1481{
1482        return 0;
1483}
1484void ubifs_debugging_exit(struct ubifs_info *c)
1485{
1486}
1487int dbg_check_filesystem(struct ubifs_info *c)
1488{
1489        return 0;
1490}
1491int dbg_debugfs_init_fs(struct ubifs_info *c)
1492{
1493        return 0;
1494}
1495#endif
1496
1497#ifndef __UBOOT__
1498/**
1499 * dbg_check_tnc - check TNC tree.
1500 * @c: UBIFS file-system description object
1501 * @extra: do extra checks that are possible at start commit
1502 *
1503 * This function traverses whole TNC tree and checks every znode. Returns zero
1504 * if everything is all right and %-EINVAL if something is wrong with TNC.
1505 */
1506int dbg_check_tnc(struct ubifs_info *c, int extra)
1507{
1508        struct ubifs_znode *znode;
1509        long clean_cnt = 0, dirty_cnt = 0;
1510        int err, last;
1511
1512        if (!dbg_is_chk_index(c))
1513                return 0;
1514
1515        ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1516        if (!c->zroot.znode)
1517                return 0;
1518
1519        znode = ubifs_tnc_postorder_first(c->zroot.znode);
1520        while (1) {
1521                struct ubifs_znode *prev;
1522                struct ubifs_zbranch *zbr;
1523
1524                if (!znode->parent)
1525                        zbr = &c->zroot;
1526                else
1527                        zbr = &znode->parent->zbranch[znode->iip];
1528
1529                err = dbg_check_znode(c, zbr);
1530                if (err)
1531                        return err;
1532
1533                if (extra) {
1534                        if (ubifs_zn_dirty(znode))
1535                                dirty_cnt += 1;
1536                        else
1537                                clean_cnt += 1;
1538                }
1539
1540                prev = znode;
1541                znode = ubifs_tnc_postorder_next(znode);
1542                if (!znode)
1543                        break;
1544
1545                /*
1546                 * If the last key of this znode is equivalent to the first key
1547                 * of the next znode (collision), then check order of the keys.
1548                 */
1549                last = prev->child_cnt - 1;
1550                if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1551                    !keys_cmp(c, &prev->zbranch[last].key,
1552                              &znode->zbranch[0].key)) {
1553                        err = dbg_check_key_order(c, &prev->zbranch[last],
1554                                                  &znode->zbranch[0]);
1555                        if (err < 0)
1556                                return err;
1557                        if (err) {
1558                                ubifs_msg(c, "first znode");
1559                                ubifs_dump_znode(c, prev);
1560                                ubifs_msg(c, "second znode");
1561                                ubifs_dump_znode(c, znode);
1562                                return -EINVAL;
1563                        }
1564                }
1565        }
1566
1567        if (extra) {
1568                if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1569                        ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1570                                  atomic_long_read(&c->clean_zn_cnt),
1571                                  clean_cnt);
1572                        return -EINVAL;
1573                }
1574                if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1575                        ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1576                                  atomic_long_read(&c->dirty_zn_cnt),
1577                                  dirty_cnt);
1578                        return -EINVAL;
1579                }
1580        }
1581
1582        return 0;
1583}
1584#else
1585int dbg_check_tnc(struct ubifs_info *c, int extra)
1586{
1587        return 0;
1588}
1589#endif
1590
1591/**
1592 * dbg_walk_index - walk the on-flash index.
1593 * @c: UBIFS file-system description object
1594 * @leaf_cb: called for each leaf node
1595 * @znode_cb: called for each indexing node
1596 * @priv: private data which is passed to callbacks
1597 *
1598 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1599 * node and @znode_cb for each indexing node. Returns zero in case of success
1600 * and a negative error code in case of failure.
1601 *
1602 * It would be better if this function removed every znode it pulled to into
1603 * the TNC, so that the behavior more closely matched the non-debugging
1604 * behavior.
1605 */
1606int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1607                   dbg_znode_callback znode_cb, void *priv)
1608{
1609        int err;
1610        struct ubifs_zbranch *zbr;
1611        struct ubifs_znode *znode, *child;
1612
1613        mutex_lock(&c->tnc_mutex);
1614        /* If the root indexing node is not in TNC - pull it */
1615        if (!c->zroot.znode) {
1616                c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1617                if (IS_ERR(c->zroot.znode)) {
1618                        err = PTR_ERR(c->zroot.znode);
1619                        c->zroot.znode = NULL;
1620                        goto out_unlock;
1621                }
1622        }
1623
1624        /*
1625         * We are going to traverse the indexing tree in the postorder manner.
1626         * Go down and find the leftmost indexing node where we are going to
1627         * start from.
1628         */
1629        znode = c->zroot.znode;
1630        while (znode->level > 0) {
1631                zbr = &znode->zbranch[0];
1632                child = zbr->znode;
1633                if (!child) {
1634                        child = ubifs_load_znode(c, zbr, znode, 0);
1635                        if (IS_ERR(child)) {
1636                                err = PTR_ERR(child);
1637                                goto out_unlock;
1638                        }
1639                        zbr->znode = child;
1640                }
1641
1642                znode = child;
1643        }
1644
1645        /* Iterate over all indexing nodes */
1646        while (1) {
1647                int idx;
1648
1649                cond_resched();
1650
1651                if (znode_cb) {
1652                        err = znode_cb(c, znode, priv);
1653                        if (err) {
1654                                ubifs_err(c, "znode checking function returned error %d",
1655                                          err);
1656                                ubifs_dump_znode(c, znode);
1657                                goto out_dump;
1658                        }
1659                }
1660                if (leaf_cb && znode->level == 0) {
1661                        for (idx = 0; idx < znode->child_cnt; idx++) {
1662                                zbr = &znode->zbranch[idx];
1663                                err = leaf_cb(c, zbr, priv);
1664                                if (err) {
1665                                        ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1666                                                  err, zbr->lnum, zbr->offs);
1667                                        goto out_dump;
1668                                }
1669                        }
1670                }
1671
1672                if (!znode->parent)
1673                        break;
1674
1675                idx = znode->iip + 1;
1676                znode = znode->parent;
1677                if (idx < znode->child_cnt) {
1678                        /* Switch to the next index in the parent */
1679                        zbr = &znode->zbranch[idx];
1680                        child = zbr->znode;
1681                        if (!child) {
1682                                child = ubifs_load_znode(c, zbr, znode, idx);
1683                                if (IS_ERR(child)) {
1684                                        err = PTR_ERR(child);
1685                                        goto out_unlock;
1686                                }
1687                                zbr->znode = child;
1688                        }
1689                        znode = child;
1690                } else
1691                        /*
1692                         * This is the last child, switch to the parent and
1693                         * continue.
1694                         */
1695                        continue;
1696
1697                /* Go to the lowest leftmost znode in the new sub-tree */
1698                while (znode->level > 0) {
1699                        zbr = &znode->zbranch[0];
1700                        child = zbr->znode;
1701                        if (!child) {
1702                                child = ubifs_load_znode(c, zbr, znode, 0);
1703                                if (IS_ERR(child)) {
1704                                        err = PTR_ERR(child);
1705                                        goto out_unlock;
1706                                }
1707                                zbr->znode = child;
1708                        }
1709                        znode = child;
1710                }
1711        }
1712
1713        mutex_unlock(&c->tnc_mutex);
1714        return 0;
1715
1716out_dump:
1717        if (znode->parent)
1718                zbr = &znode->parent->zbranch[znode->iip];
1719        else
1720                zbr = &c->zroot;
1721        ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1722        ubifs_dump_znode(c, znode);
1723out_unlock:
1724        mutex_unlock(&c->tnc_mutex);
1725        return err;
1726}
1727
1728/**
1729 * add_size - add znode size to partially calculated index size.
1730 * @c: UBIFS file-system description object
1731 * @znode: znode to add size for
1732 * @priv: partially calculated index size
1733 *
1734 * This is a helper function for 'dbg_check_idx_size()' which is called for
1735 * every indexing node and adds its size to the 'long long' variable pointed to
1736 * by @priv.
1737 */
1738static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1739{
1740        long long *idx_size = priv;
1741        int add;
1742
1743        add = ubifs_idx_node_sz(c, znode->child_cnt);
1744        add = ALIGN(add, 8);
1745        *idx_size += add;
1746        return 0;
1747}
1748
1749/**
1750 * dbg_check_idx_size - check index size.
1751 * @c: UBIFS file-system description object
1752 * @idx_size: size to check
1753 *
1754 * This function walks the UBIFS index, calculates its size and checks that the
1755 * size is equivalent to @idx_size. Returns zero in case of success and a
1756 * negative error code in case of failure.
1757 */
1758int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1759{
1760        int err;
1761        long long calc = 0;
1762
1763        if (!dbg_is_chk_index(c))
1764                return 0;
1765
1766        err = dbg_walk_index(c, NULL, add_size, &calc);
1767        if (err) {
1768                ubifs_err(c, "error %d while walking the index", err);
1769                return err;
1770        }
1771
1772        if (calc != idx_size) {
1773                ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1774                          calc, idx_size);
1775                dump_stack();
1776                return -EINVAL;
1777        }
1778
1779        return 0;
1780}
1781
1782#ifndef __UBOOT__
1783/**
1784 * struct fsck_inode - information about an inode used when checking the file-system.
1785 * @rb: link in the RB-tree of inodes
1786 * @inum: inode number
1787 * @mode: inode type, permissions, etc
1788 * @nlink: inode link count
1789 * @xattr_cnt: count of extended attributes
1790 * @references: how many directory/xattr entries refer this inode (calculated
1791 *              while walking the index)
1792 * @calc_cnt: for directory inode count of child directories
1793 * @size: inode size (read from on-flash inode)
1794 * @xattr_sz: summary size of all extended attributes (read from on-flash
1795 *            inode)
1796 * @calc_sz: for directories calculated directory size
1797 * @calc_xcnt: count of extended attributes
1798 * @calc_xsz: calculated summary size of all extended attributes
1799 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1800 *             inode (read from on-flash inode)
1801 * @calc_xnms: calculated sum of lengths of all extended attribute names
1802 */
1803struct fsck_inode {
1804        struct rb_node rb;
1805        ino_t inum;
1806        umode_t mode;
1807        unsigned int nlink;
1808        unsigned int xattr_cnt;
1809        int references;
1810        int calc_cnt;
1811        long long size;
1812        unsigned int xattr_sz;
1813        long long calc_sz;
1814        long long calc_xcnt;
1815        long long calc_xsz;
1816        unsigned int xattr_nms;
1817        long long calc_xnms;
1818};
1819
1820/**
1821 * struct fsck_data - private FS checking information.
1822 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1823 */
1824struct fsck_data {
1825        struct rb_root inodes;
1826};
1827
1828/**
1829 * add_inode - add inode information to RB-tree of inodes.
1830 * @c: UBIFS file-system description object
1831 * @fsckd: FS checking information
1832 * @ino: raw UBIFS inode to add
1833 *
1834 * This is a helper function for 'check_leaf()' which adds information about
1835 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1836 * case of success and a negative error code in case of failure.
1837 */
1838static struct fsck_inode *add_inode(struct ubifs_info *c,
1839                                    struct fsck_data *fsckd,
1840                                    struct ubifs_ino_node *ino)
1841{
1842        struct rb_node **p, *parent = NULL;
1843        struct fsck_inode *fscki;
1844        ino_t inum = key_inum_flash(c, &ino->key);
1845        struct inode *inode;
1846        struct ubifs_inode *ui;
1847
1848        p = &fsckd->inodes.rb_node;
1849        while (*p) {
1850                parent = *p;
1851                fscki = rb_entry(parent, struct fsck_inode, rb);
1852                if (inum < fscki->inum)
1853                        p = &(*p)->rb_left;
1854                else if (inum > fscki->inum)
1855                        p = &(*p)->rb_right;
1856                else
1857                        return fscki;
1858        }
1859
1860        if (inum > c->highest_inum) {
1861                ubifs_err(c, "too high inode number, max. is %lu",
1862                          (unsigned long)c->highest_inum);
1863                return ERR_PTR(-EINVAL);
1864        }
1865
1866        fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1867        if (!fscki)
1868                return ERR_PTR(-ENOMEM);
1869
1870        inode = ilookup(c->vfs_sb, inum);
1871
1872        fscki->inum = inum;
1873        /*
1874         * If the inode is present in the VFS inode cache, use it instead of
1875         * the on-flash inode which might be out-of-date. E.g., the size might
1876         * be out-of-date. If we do not do this, the following may happen, for
1877         * example:
1878         *   1. A power cut happens
1879         *   2. We mount the file-system R/O, the replay process fixes up the
1880         *      inode size in the VFS cache, but on on-flash.
1881         *   3. 'check_leaf()' fails because it hits a data node beyond inode
1882         *      size.
1883         */
1884        if (!inode) {
1885                fscki->nlink = le32_to_cpu(ino->nlink);
1886                fscki->size = le64_to_cpu(ino->size);
1887                fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1888                fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1889                fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1890                fscki->mode = le32_to_cpu(ino->mode);
1891        } else {
1892                ui = ubifs_inode(inode);
1893                fscki->nlink = inode->i_nlink;
1894                fscki->size = inode->i_size;
1895                fscki->xattr_cnt = ui->xattr_cnt;
1896                fscki->xattr_sz = ui->xattr_size;
1897                fscki->xattr_nms = ui->xattr_names;
1898                fscki->mode = inode->i_mode;
1899                iput(inode);
1900        }
1901
1902        if (S_ISDIR(fscki->mode)) {
1903                fscki->calc_sz = UBIFS_INO_NODE_SZ;
1904                fscki->calc_cnt = 2;
1905        }
1906
1907        rb_link_node(&fscki->rb, parent, p);
1908        rb_insert_color(&fscki->rb, &fsckd->inodes);
1909
1910        return fscki;
1911}
1912
1913/**
1914 * search_inode - search inode in the RB-tree of inodes.
1915 * @fsckd: FS checking information
1916 * @inum: inode number to search
1917 *
1918 * This is a helper function for 'check_leaf()' which searches inode @inum in
1919 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1920 * the inode was not found.
1921 */
1922static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1923{
1924        struct rb_node *p;
1925        struct fsck_inode *fscki;
1926
1927        p = fsckd->inodes.rb_node;
1928        while (p) {
1929                fscki = rb_entry(p, struct fsck_inode, rb);
1930                if (inum < fscki->inum)
1931                        p = p->rb_left;
1932                else if (inum > fscki->inum)
1933                        p = p->rb_right;
1934                else
1935                        return fscki;
1936        }
1937        return NULL;
1938}
1939
1940/**
1941 * read_add_inode - read inode node and add it to RB-tree of inodes.
1942 * @c: UBIFS file-system description object
1943 * @fsckd: FS checking information
1944 * @inum: inode number to read
1945 *
1946 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1947 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1948 * information pointer in case of success and a negative error code in case of
1949 * failure.
1950 */
1951static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1952                                         struct fsck_data *fsckd, ino_t inum)
1953{
1954        int n, err;
1955        union ubifs_key key;
1956        struct ubifs_znode *znode;
1957        struct ubifs_zbranch *zbr;
1958        struct ubifs_ino_node *ino;
1959        struct fsck_inode *fscki;
1960
1961        fscki = search_inode(fsckd, inum);
1962        if (fscki)
1963                return fscki;
1964
1965        ino_key_init(c, &key, inum);
1966        err = ubifs_lookup_level0(c, &key, &znode, &n);
1967        if (!err) {
1968                ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1969                return ERR_PTR(-ENOENT);
1970        } else if (err < 0) {
1971                ubifs_err(c, "error %d while looking up inode %lu",
1972                          err, (unsigned long)inum);
1973                return ERR_PTR(err);
1974        }
1975
1976        zbr = &znode->zbranch[n];
1977        if (zbr->len < UBIFS_INO_NODE_SZ) {
1978                ubifs_err(c, "bad node %lu node length %d",
1979                          (unsigned long)inum, zbr->len);
1980                return ERR_PTR(-EINVAL);
1981        }
1982
1983        ino = kmalloc(zbr->len, GFP_NOFS);
1984        if (!ino)
1985                return ERR_PTR(-ENOMEM);
1986
1987        err = ubifs_tnc_read_node(c, zbr, ino);
1988        if (err) {
1989                ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1990                          zbr->lnum, zbr->offs, err);
1991                kfree(ino);
1992                return ERR_PTR(err);
1993        }
1994
1995        fscki = add_inode(c, fsckd, ino);
1996        kfree(ino);
1997        if (IS_ERR(fscki)) {
1998                ubifs_err(c, "error %ld while adding inode %lu node",
1999                          PTR_ERR(fscki), (unsigned long)inum);
2000                return fscki;
2001        }
2002
2003        return fscki;
2004}
2005
2006/**
2007 * check_leaf - check leaf node.
2008 * @c: UBIFS file-system description object
2009 * @zbr: zbranch of the leaf node to check
2010 * @priv: FS checking information
2011 *
2012 * This is a helper function for 'dbg_check_filesystem()' which is called for
2013 * every single leaf node while walking the indexing tree. It checks that the
2014 * leaf node referred from the indexing tree exists, has correct CRC, and does
2015 * some other basic validation. This function is also responsible for building
2016 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2017 * calculates reference count, size, etc for each inode in order to later
2018 * compare them to the information stored inside the inodes and detect possible
2019 * inconsistencies. Returns zero in case of success and a negative error code
2020 * in case of failure.
2021 */
2022static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2023                      void *priv)
2024{
2025        ino_t inum;
2026        void *node;
2027        struct ubifs_ch *ch;
2028        int err, type = key_type(c, &zbr->key);
2029        struct fsck_inode *fscki;
2030
2031        if (zbr->len < UBIFS_CH_SZ) {
2032                ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2033                          zbr->len, zbr->lnum, zbr->offs);
2034                return -EINVAL;
2035        }
2036
2037        node = kmalloc(zbr->len, GFP_NOFS);
2038        if (!node)
2039                return -ENOMEM;
2040
2041        err = ubifs_tnc_read_node(c, zbr, node);
2042        if (err) {
2043                ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2044                          zbr->lnum, zbr->offs, err);
2045                goto out_free;
2046        }
2047
2048        /* If this is an inode node, add it to RB-tree of inodes */
2049        if (type == UBIFS_INO_KEY) {
2050                fscki = add_inode(c, priv, node);
2051                if (IS_ERR(fscki)) {
2052                        err = PTR_ERR(fscki);
2053                        ubifs_err(c, "error %d while adding inode node", err);
2054                        goto out_dump;
2055                }
2056                goto out;
2057        }
2058
2059        if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2060            type != UBIFS_DATA_KEY) {
2061                ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2062                          type, zbr->lnum, zbr->offs);
2063                err = -EINVAL;
2064                goto out_free;
2065        }
2066
2067        ch = node;
2068        if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2069                ubifs_err(c, "too high sequence number, max. is %llu",
2070                          c->max_sqnum);
2071                err = -EINVAL;
2072                goto out_dump;
2073        }
2074
2075        if (type == UBIFS_DATA_KEY) {
2076                long long blk_offs;
2077                struct ubifs_data_node *dn = node;
2078
2079                ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2080
2081                /*
2082                 * Search the inode node this data node belongs to and insert
2083                 * it to the RB-tree of inodes.
2084                 */
2085                inum = key_inum_flash(c, &dn->key);
2086                fscki = read_add_inode(c, priv, inum);
2087                if (IS_ERR(fscki)) {
2088                        err = PTR_ERR(fscki);
2089                        ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2090                                  err, (unsigned long)inum);
2091                        goto out_dump;
2092                }
2093
2094                /* Make sure the data node is within inode size */
2095                blk_offs = key_block_flash(c, &dn->key);
2096                blk_offs <<= UBIFS_BLOCK_SHIFT;
2097                blk_offs += le32_to_cpu(dn->size);
2098                if (blk_offs > fscki->size) {
2099                        ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2100                                  zbr->lnum, zbr->offs, fscki->size);
2101                        err = -EINVAL;
2102                        goto out_dump;
2103                }
2104        } else {
2105                int nlen;
2106                struct ubifs_dent_node *dent = node;
2107                struct fsck_inode *fscki1;
2108
2109                ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2110
2111                err = ubifs_validate_entry(c, dent);
2112                if (err)
2113                        goto out_dump;
2114
2115                /*
2116                 * Search the inode node this entry refers to and the parent
2117                 * inode node and insert them to the RB-tree of inodes.
2118                 */
2119                inum = le64_to_cpu(dent->inum);
2120                fscki = read_add_inode(c, priv, inum);
2121                if (IS_ERR(fscki)) {
2122                        err = PTR_ERR(fscki);
2123                        ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2124                                  err, (unsigned long)inum);
2125                        goto out_dump;
2126                }
2127
2128                /* Count how many direntries or xentries refers this inode */
2129                fscki->references += 1;
2130
2131                inum = key_inum_flash(c, &dent->key);
2132                fscki1 = read_add_inode(c, priv, inum);
2133                if (IS_ERR(fscki1)) {
2134                        err = PTR_ERR(fscki1);
2135                        ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2136                                  err, (unsigned long)inum);
2137                        goto out_dump;
2138                }
2139
2140                nlen = le16_to_cpu(dent->nlen);
2141                if (type == UBIFS_XENT_KEY) {
2142                        fscki1->calc_xcnt += 1;
2143                        fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2144                        fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2145                        fscki1->calc_xnms += nlen;
2146                } else {
2147                        fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2148                        if (dent->type == UBIFS_ITYPE_DIR)
2149                                fscki1->calc_cnt += 1;
2150                }
2151        }
2152
2153out:
2154        kfree(node);
2155        return 0;
2156
2157out_dump:
2158        ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2159        ubifs_dump_node(c, node);
2160out_free:
2161        kfree(node);
2162        return err;
2163}
2164
2165/**
2166 * free_inodes - free RB-tree of inodes.
2167 * @fsckd: FS checking information
2168 */
2169static void free_inodes(struct fsck_data *fsckd)
2170{
2171        struct fsck_inode *fscki, *n;
2172
2173        rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2174                kfree(fscki);
2175}
2176
2177/**
2178 * check_inodes - checks all inodes.
2179 * @c: UBIFS file-system description object
2180 * @fsckd: FS checking information
2181 *
2182 * This is a helper function for 'dbg_check_filesystem()' which walks the
2183 * RB-tree of inodes after the index scan has been finished, and checks that
2184 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2185 * %-EINVAL if not, and a negative error code in case of failure.
2186 */
2187static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2188{
2189        int n, err;
2190        union ubifs_key key;
2191        struct ubifs_znode *znode;
2192        struct ubifs_zbranch *zbr;
2193        struct ubifs_ino_node *ino;
2194        struct fsck_inode *fscki;
2195        struct rb_node *this = rb_first(&fsckd->inodes);
2196
2197        while (this) {
2198                fscki = rb_entry(this, struct fsck_inode, rb);
2199                this = rb_next(this);
2200
2201                if (S_ISDIR(fscki->mode)) {
2202                        /*
2203                         * Directories have to have exactly one reference (they
2204                         * cannot have hardlinks), although root inode is an
2205                         * exception.
2206                         */
2207                        if (fscki->inum != UBIFS_ROOT_INO &&
2208                            fscki->references != 1) {
2209                                ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2210                                          (unsigned long)fscki->inum,
2211                                          fscki->references);
2212                                goto out_dump;
2213                        }
2214                        if (fscki->inum == UBIFS_ROOT_INO &&
2215                            fscki->references != 0) {
2216                                ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2217                                          (unsigned long)fscki->inum,
2218                                          fscki->references);
2219                                goto out_dump;
2220                        }
2221                        if (fscki->calc_sz != fscki->size) {
2222                                ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2223                                          (unsigned long)fscki->inum,
2224                                          fscki->size, fscki->calc_sz);
2225                                goto out_dump;
2226                        }
2227                        if (fscki->calc_cnt != fscki->nlink) {
2228                                ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2229                                          (unsigned long)fscki->inum,
2230                                          fscki->nlink, fscki->calc_cnt);
2231                                goto out_dump;
2232                        }
2233                } else {
2234                        if (fscki->references != fscki->nlink) {
2235                                ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2236                                          (unsigned long)fscki->inum,
2237                                          fscki->nlink, fscki->references);
2238                                goto out_dump;
2239                        }
2240                }
2241                if (fscki->xattr_sz != fscki->calc_xsz) {
2242                        ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2243                                  (unsigned long)fscki->inum, fscki->xattr_sz,
2244                                  fscki->calc_xsz);
2245                        goto out_dump;
2246                }
2247                if (fscki->xattr_cnt != fscki->calc_xcnt) {
2248                        ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2249                                  (unsigned long)fscki->inum,
2250                                  fscki->xattr_cnt, fscki->calc_xcnt);
2251                        goto out_dump;
2252                }
2253                if (fscki->xattr_nms != fscki->calc_xnms) {
2254                        ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2255                                  (unsigned long)fscki->inum, fscki->xattr_nms,
2256                                  fscki->calc_xnms);
2257                        goto out_dump;
2258                }
2259        }
2260
2261        return 0;
2262
2263out_dump:
2264        /* Read the bad inode and dump it */
2265        ino_key_init(c, &key, fscki->inum);
2266        err = ubifs_lookup_level0(c, &key, &znode, &n);
2267        if (!err) {
2268                ubifs_err(c, "inode %lu not found in index",
2269                          (unsigned long)fscki->inum);
2270                return -ENOENT;
2271        } else if (err < 0) {
2272                ubifs_err(c, "error %d while looking up inode %lu",
2273                          err, (unsigned long)fscki->inum);
2274                return err;
2275        }
2276
2277        zbr = &znode->zbranch[n];
2278        ino = kmalloc(zbr->len, GFP_NOFS);
2279        if (!ino)
2280                return -ENOMEM;
2281
2282        err = ubifs_tnc_read_node(c, zbr, ino);
2283        if (err) {
2284                ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2285                          zbr->lnum, zbr->offs, err);
2286                kfree(ino);
2287                return err;
2288        }
2289
2290        ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2291                  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2292        ubifs_dump_node(c, ino);
2293        kfree(ino);
2294        return -EINVAL;
2295}
2296
2297/**
2298 * dbg_check_filesystem - check the file-system.
2299 * @c: UBIFS file-system description object
2300 *
2301 * This function checks the file system, namely:
2302 * o makes sure that all leaf nodes exist and their CRCs are correct;
2303 * o makes sure inode nlink, size, xattr size/count are correct (for all
2304 *   inodes).
2305 *
2306 * The function reads whole indexing tree and all nodes, so it is pretty
2307 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2308 * not, and a negative error code in case of failure.
2309 */
2310int dbg_check_filesystem(struct ubifs_info *c)
2311{
2312        int err;
2313        struct fsck_data fsckd;
2314
2315        if (!dbg_is_chk_fs(c))
2316                return 0;
2317
2318        fsckd.inodes = RB_ROOT;
2319        err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2320        if (err)
2321                goto out_free;
2322
2323        err = check_inodes(c, &fsckd);
2324        if (err)
2325                goto out_free;
2326
2327        free_inodes(&fsckd);
2328        return 0;
2329
2330out_free:
2331        ubifs_err(c, "file-system check failed with error %d", err);
2332        dump_stack();
2333        free_inodes(&fsckd);
2334        return err;
2335}
2336
2337/**
2338 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2339 * @c: UBIFS file-system description object
2340 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2341 *
2342 * This function returns zero if the list of data nodes is sorted correctly,
2343 * and %-EINVAL if not.
2344 */
2345int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2346{
2347        struct list_head *cur;
2348        struct ubifs_scan_node *sa, *sb;
2349
2350        if (!dbg_is_chk_gen(c))
2351                return 0;
2352
2353        for (cur = head->next; cur->next != head; cur = cur->next) {
2354                ino_t inuma, inumb;
2355                uint32_t blka, blkb;
2356
2357                cond_resched();
2358                sa = container_of(cur, struct ubifs_scan_node, list);
2359                sb = container_of(cur->next, struct ubifs_scan_node, list);
2360
2361                if (sa->type != UBIFS_DATA_NODE) {
2362                        ubifs_err(c, "bad node type %d", sa->type);
2363                        ubifs_dump_node(c, sa->node);
2364                        return -EINVAL;
2365                }
2366                if (sb->type != UBIFS_DATA_NODE) {
2367                        ubifs_err(c, "bad node type %d", sb->type);
2368                        ubifs_dump_node(c, sb->node);
2369                        return -EINVAL;
2370                }
2371
2372                inuma = key_inum(c, &sa->key);
2373                inumb = key_inum(c, &sb->key);
2374
2375                if (inuma < inumb)
2376                        continue;
2377                if (inuma > inumb) {
2378                        ubifs_err(c, "larger inum %lu goes before inum %lu",
2379                                  (unsigned long)inuma, (unsigned long)inumb);
2380                        goto error_dump;
2381                }
2382
2383                blka = key_block(c, &sa->key);
2384                blkb = key_block(c, &sb->key);
2385
2386                if (blka > blkb) {
2387                        ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2388                        goto error_dump;
2389                }
2390                if (blka == blkb) {
2391                        ubifs_err(c, "two data nodes for the same block");
2392                        goto error_dump;
2393                }
2394        }
2395
2396        return 0;
2397
2398error_dump:
2399        ubifs_dump_node(c, sa->node);
2400        ubifs_dump_node(c, sb->node);
2401        return -EINVAL;
2402}
2403
2404/**
2405 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2406 * @c: UBIFS file-system description object
2407 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2408 *
2409 * This function returns zero if the list of non-data nodes is sorted correctly,
2410 * and %-EINVAL if not.
2411 */
2412int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2413{
2414        struct list_head *cur;
2415        struct ubifs_scan_node *sa, *sb;
2416
2417        if (!dbg_is_chk_gen(c))
2418                return 0;
2419
2420        for (cur = head->next; cur->next != head; cur = cur->next) {
2421                ino_t inuma, inumb;
2422                uint32_t hasha, hashb;
2423
2424                cond_resched();
2425                sa = container_of(cur, struct ubifs_scan_node, list);
2426                sb = container_of(cur->next, struct ubifs_scan_node, list);
2427
2428                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2429                    sa->type != UBIFS_XENT_NODE) {
2430                        ubifs_err(c, "bad node type %d", sa->type);
2431                        ubifs_dump_node(c, sa->node);
2432                        return -EINVAL;
2433                }
2434                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2435                    sa->type != UBIFS_XENT_NODE) {
2436                        ubifs_err(c, "bad node type %d", sb->type);
2437                        ubifs_dump_node(c, sb->node);
2438                        return -EINVAL;
2439                }
2440
2441                if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2442                        ubifs_err(c, "non-inode node goes before inode node");
2443                        goto error_dump;
2444                }
2445
2446                if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2447                        continue;
2448
2449                if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2450                        /* Inode nodes are sorted in descending size order */
2451                        if (sa->len < sb->len) {
2452                                ubifs_err(c, "smaller inode node goes first");
2453                                goto error_dump;
2454                        }
2455                        continue;
2456                }
2457
2458                /*
2459                 * This is either a dentry or xentry, which should be sorted in
2460                 * ascending (parent ino, hash) order.
2461                 */
2462                inuma = key_inum(c, &sa->key);
2463                inumb = key_inum(c, &sb->key);
2464
2465                if (inuma < inumb)
2466                        continue;
2467                if (inuma > inumb) {
2468                        ubifs_err(c, "larger inum %lu goes before inum %lu",
2469                                  (unsigned long)inuma, (unsigned long)inumb);
2470                        goto error_dump;
2471                }
2472
2473                hasha = key_block(c, &sa->key);
2474                hashb = key_block(c, &sb->key);
2475
2476                if (hasha > hashb) {
2477                        ubifs_err(c, "larger hash %u goes before %u",
2478                                  hasha, hashb);
2479                        goto error_dump;
2480                }
2481        }
2482
2483        return 0;
2484
2485error_dump:
2486        ubifs_msg(c, "dumping first node");
2487        ubifs_dump_node(c, sa->node);
2488        ubifs_msg(c, "dumping second node");
2489        ubifs_dump_node(c, sb->node);
2490        return -EINVAL;
2491        return 0;
2492}
2493
2494static inline int chance(unsigned int n, unsigned int out_of)
2495{
2496        return !!((prandom_u32() % out_of) + 1 <= n);
2497
2498}
2499
2500static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2501{
2502        struct ubifs_debug_info *d = c->dbg;
2503
2504        ubifs_assert(dbg_is_tst_rcvry(c));
2505
2506        if (!d->pc_cnt) {
2507                /* First call - decide delay to the power cut */
2508                if (chance(1, 2)) {
2509                        unsigned long delay;
2510
2511                        if (chance(1, 2)) {
2512                                d->pc_delay = 1;
2513                                /* Fail within 1 minute */
2514                                delay = prandom_u32() % 60000;
2515                                d->pc_timeout = jiffies;
2516                                d->pc_timeout += msecs_to_jiffies(delay);
2517                                ubifs_warn(c, "failing after %lums", delay);
2518                        } else {
2519                                d->pc_delay = 2;
2520                                delay = prandom_u32() % 10000;
2521                                /* Fail within 10000 operations */
2522                                d->pc_cnt_max = delay;
2523                                ubifs_warn(c, "failing after %lu calls", delay);
2524                        }
2525                }
2526
2527                d->pc_cnt += 1;
2528        }
2529
2530        /* Determine if failure delay has expired */
2531        if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2532                        return 0;
2533        if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2534                        return 0;
2535
2536        if (lnum == UBIFS_SB_LNUM) {
2537                if (write && chance(1, 2))
2538                        return 0;
2539                if (chance(19, 20))
2540                        return 0;
2541                ubifs_warn(c, "failing in super block LEB %d", lnum);
2542        } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2543                if (chance(19, 20))
2544                        return 0;
2545                ubifs_warn(c, "failing in master LEB %d", lnum);
2546        } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2547                if (write && chance(99, 100))
2548                        return 0;
2549                if (chance(399, 400))
2550                        return 0;
2551                ubifs_warn(c, "failing in log LEB %d", lnum);
2552        } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2553                if (write && chance(7, 8))
2554                        return 0;
2555                if (chance(19, 20))
2556                        return 0;
2557                ubifs_warn(c, "failing in LPT LEB %d", lnum);
2558        } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2559                if (write && chance(1, 2))
2560                        return 0;
2561                if (chance(9, 10))
2562                        return 0;
2563                ubifs_warn(c, "failing in orphan LEB %d", lnum);
2564        } else if (lnum == c->ihead_lnum) {
2565                if (chance(99, 100))
2566                        return 0;
2567                ubifs_warn(c, "failing in index head LEB %d", lnum);
2568        } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2569                if (chance(9, 10))
2570                        return 0;
2571                ubifs_warn(c, "failing in GC head LEB %d", lnum);
2572        } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2573                   !ubifs_search_bud(c, lnum)) {
2574                if (chance(19, 20))
2575                        return 0;
2576                ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2577        } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2578                   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2579                if (chance(999, 1000))
2580                        return 0;
2581                ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2582        } else {
2583                if (chance(9999, 10000))
2584                        return 0;
2585                ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2586        }
2587
2588        d->pc_happened = 1;
2589        ubifs_warn(c, "========== Power cut emulated ==========");
2590        dump_stack();
2591        return 1;
2592}
2593
2594static int corrupt_data(const struct ubifs_info *c, const void *buf,
2595                        unsigned int len)
2596{
2597        unsigned int from, to, ffs = chance(1, 2);
2598        unsigned char *p = (void *)buf;
2599
2600        from = prandom_u32() % len;
2601        /* Corruption span max to end of write unit */
2602        to = min(len, ALIGN(from + 1, c->max_write_size));
2603
2604        ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2605                   ffs ? "0xFFs" : "random data");
2606
2607        if (ffs)
2608                memset(p + from, 0xFF, to - from);
2609        else
2610                prandom_bytes(p + from, to - from);
2611
2612        return to;
2613}
2614
2615int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2616                  int offs, int len)
2617{
2618        int err, failing;
2619
2620        if (c->dbg->pc_happened)
2621                return -EROFS;
2622
2623        failing = power_cut_emulated(c, lnum, 1);
2624        if (failing) {
2625                len = corrupt_data(c, buf, len);
2626                ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2627                           len, lnum, offs);
2628        }
2629        err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2630        if (err)
2631                return err;
2632        if (failing)
2633                return -EROFS;
2634        return 0;
2635}
2636
2637int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2638                   int len)
2639{
2640        int err;
2641
2642        if (c->dbg->pc_happened)
2643                return -EROFS;
2644        if (power_cut_emulated(c, lnum, 1))
2645                return -EROFS;
2646        err = ubi_leb_change(c->ubi, lnum, buf, len);
2647        if (err)
2648                return err;
2649        if (power_cut_emulated(c, lnum, 1))
2650                return -EROFS;
2651        return 0;
2652}
2653
2654int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2655{
2656        int err;
2657
2658        if (c->dbg->pc_happened)
2659                return -EROFS;
2660        if (power_cut_emulated(c, lnum, 0))
2661                return -EROFS;
2662        err = ubi_leb_unmap(c->ubi, lnum);
2663        if (err)
2664                return err;
2665        if (power_cut_emulated(c, lnum, 0))
2666                return -EROFS;
2667        return 0;
2668}
2669
2670int dbg_leb_map(struct ubifs_info *c, int lnum)
2671{
2672        int err;
2673
2674        if (c->dbg->pc_happened)
2675                return -EROFS;
2676        if (power_cut_emulated(c, lnum, 0))
2677                return -EROFS;
2678        err = ubi_leb_map(c->ubi, lnum);
2679        if (err)
2680                return err;
2681        if (power_cut_emulated(c, lnum, 0))
2682                return -EROFS;
2683        return 0;
2684}
2685
2686/*
2687 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2688 * contain the stuff specific to particular file-system mounts.
2689 */
2690static struct dentry *dfs_rootdir;
2691
2692static int dfs_file_open(struct inode *inode, struct file *file)
2693{
2694        file->private_data = inode->i_private;
2695        return nonseekable_open(inode, file);
2696}
2697
2698/**
2699 * provide_user_output - provide output to the user reading a debugfs file.
2700 * @val: boolean value for the answer
2701 * @u: the buffer to store the answer at
2702 * @count: size of the buffer
2703 * @ppos: position in the @u output buffer
2704 *
2705 * This is a simple helper function which stores @val boolean value in the user
2706 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2707 * bytes written to @u in case of success and a negative error code in case of
2708 * failure.
2709 */
2710static int provide_user_output(int val, char __user *u, size_t count,
2711                               loff_t *ppos)
2712{
2713        char buf[3];
2714
2715        if (val)
2716                buf[0] = '1';
2717        else
2718                buf[0] = '0';
2719        buf[1] = '\n';
2720        buf[2] = 0x00;
2721
2722        return simple_read_from_buffer(u, count, ppos, buf, 2);
2723}
2724
2725static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2726                             loff_t *ppos)
2727{
2728        struct dentry *dent = file->f_path.dentry;
2729        struct ubifs_info *c = file->private_data;
2730        struct ubifs_debug_info *d = c->dbg;
2731        int val;
2732
2733        if (dent == d->dfs_chk_gen)
2734                val = d->chk_gen;
2735        else if (dent == d->dfs_chk_index)
2736                val = d->chk_index;
2737        else if (dent == d->dfs_chk_orph)
2738                val = d->chk_orph;
2739        else if (dent == d->dfs_chk_lprops)
2740                val = d->chk_lprops;
2741        else if (dent == d->dfs_chk_fs)
2742                val = d->chk_fs;
2743        else if (dent == d->dfs_tst_rcvry)
2744                val = d->tst_rcvry;
2745        else if (dent == d->dfs_ro_error)
2746                val = c->ro_error;
2747        else
2748                return -EINVAL;
2749
2750        return provide_user_output(val, u, count, ppos);
2751}
2752
2753/**
2754 * interpret_user_input - interpret user debugfs file input.
2755 * @u: user-provided buffer with the input
2756 * @count: buffer size
2757 *
2758 * This is a helper function which interpret user input to a boolean UBIFS
2759 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2760 * in case of failure.
2761 */
2762static int interpret_user_input(const char __user *u, size_t count)
2763{
2764        size_t buf_size;
2765        char buf[8];
2766
2767        buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2768        if (copy_from_user(buf, u, buf_size))
2769                return -EFAULT;
2770
2771        if (buf[0] == '1')
2772                return 1;
2773        else if (buf[0] == '0')
2774                return 0;
2775
2776        return -EINVAL;
2777}
2778
2779static ssize_t dfs_file_write(struct file *file, const char __user *u,
2780                              size_t count, loff_t *ppos)
2781{
2782        struct ubifs_info *c = file->private_data;
2783        struct ubifs_debug_info *d = c->dbg;
2784        struct dentry *dent = file->f_path.dentry;
2785        int val;
2786
2787        /*
2788         * TODO: this is racy - the file-system might have already been
2789         * unmounted and we'd oops in this case. The plan is to fix it with
2790         * help of 'iterate_supers_type()' which we should have in v3.0: when
2791         * a debugfs opened, we rember FS's UUID in file->private_data. Then
2792         * whenever we access the FS via a debugfs file, we iterate all UBIFS
2793         * superblocks and fine the one with the same UUID, and take the
2794         * locking right.
2795         *
2796         * The other way to go suggested by Al Viro is to create a separate
2797         * 'ubifs-debug' file-system instead.
2798         */
2799        if (file->f_path.dentry == d->dfs_dump_lprops) {
2800                ubifs_dump_lprops(c);
2801                return count;
2802        }
2803        if (file->f_path.dentry == d->dfs_dump_budg) {
2804                ubifs_dump_budg(c, &c->bi);
2805                return count;
2806        }
2807        if (file->f_path.dentry == d->dfs_dump_tnc) {
2808                mutex_lock(&c->tnc_mutex);
2809                ubifs_dump_tnc(c);
2810                mutex_unlock(&c->tnc_mutex);
2811                return count;
2812        }
2813
2814        val = interpret_user_input(u, count);
2815        if (val < 0)
2816                return val;
2817
2818        if (dent == d->dfs_chk_gen)
2819                d->chk_gen = val;
2820        else if (dent == d->dfs_chk_index)
2821                d->chk_index = val;
2822        else if (dent == d->dfs_chk_orph)
2823                d->chk_orph = val;
2824        else if (dent == d->dfs_chk_lprops)
2825                d->chk_lprops = val;
2826        else if (dent == d->dfs_chk_fs)
2827                d->chk_fs = val;
2828        else if (dent == d->dfs_tst_rcvry)
2829                d->tst_rcvry = val;
2830        else if (dent == d->dfs_ro_error)
2831                c->ro_error = !!val;
2832        else
2833                return -EINVAL;
2834
2835        return count;
2836}
2837
2838static const struct file_operations dfs_fops = {
2839        .open = dfs_file_open,
2840        .read = dfs_file_read,
2841        .write = dfs_file_write,
2842        .owner = THIS_MODULE,
2843        .llseek = no_llseek,
2844};
2845
2846/**
2847 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2848 * @c: UBIFS file-system description object
2849 *
2850 * This function creates all debugfs files for this instance of UBIFS. Returns
2851 * zero in case of success and a negative error code in case of failure.
2852 *
2853 * Note, the only reason we have not merged this function with the
2854 * 'ubifs_debugging_init()' function is because it is better to initialize
2855 * debugfs interfaces at the very end of the mount process, and remove them at
2856 * the very beginning of the mount process.
2857 */
2858int dbg_debugfs_init_fs(struct ubifs_info *c)
2859{
2860        int err, n;
2861        const char *fname;
2862        struct dentry *dent;
2863        struct ubifs_debug_info *d = c->dbg;
2864
2865        if (!IS_ENABLED(CONFIG_DEBUG_FS))
2866                return 0;
2867
2868        n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2869                     c->vi.ubi_num, c->vi.vol_id);
2870        if (n == UBIFS_DFS_DIR_LEN) {
2871                /* The array size is too small */
2872                fname = UBIFS_DFS_DIR_NAME;
2873                dent = ERR_PTR(-EINVAL);
2874                goto out;
2875        }
2876
2877        fname = d->dfs_dir_name;
2878        dent = debugfs_create_dir(fname, dfs_rootdir);
2879        if (IS_ERR_OR_NULL(dent))
2880                goto out;
2881        d->dfs_dir = dent;
2882
2883        fname = "dump_lprops";
2884        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2885        if (IS_ERR_OR_NULL(dent))
2886                goto out_remove;
2887        d->dfs_dump_lprops = dent;
2888
2889        fname = "dump_budg";
2890        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2891        if (IS_ERR_OR_NULL(dent))
2892                goto out_remove;
2893        d->dfs_dump_budg = dent;
2894
2895        fname = "dump_tnc";
2896        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2897        if (IS_ERR_OR_NULL(dent))
2898                goto out_remove;
2899        d->dfs_dump_tnc = dent;
2900
2901        fname = "chk_general";
2902        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2903                                   &dfs_fops);
2904        if (IS_ERR_OR_NULL(dent))
2905                goto out_remove;
2906        d->dfs_chk_gen = dent;
2907
2908        fname = "chk_index";
2909        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2910                                   &dfs_fops);
2911        if (IS_ERR_OR_NULL(dent))
2912                goto out_remove;
2913        d->dfs_chk_index = dent;
2914
2915        fname = "chk_orphans";
2916        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2917                                   &dfs_fops);
2918        if (IS_ERR_OR_NULL(dent))
2919                goto out_remove;
2920        d->dfs_chk_orph = dent;
2921
2922        fname = "chk_lprops";
2923        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2924                                   &dfs_fops);
2925        if (IS_ERR_OR_NULL(dent))
2926                goto out_remove;
2927        d->dfs_chk_lprops = dent;
2928
2929        fname = "chk_fs";
2930        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2931                                   &dfs_fops);
2932        if (IS_ERR_OR_NULL(dent))
2933                goto out_remove;
2934        d->dfs_chk_fs = dent;
2935
2936        fname = "tst_recovery";
2937        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2938                                   &dfs_fops);
2939        if (IS_ERR_OR_NULL(dent))
2940                goto out_remove;
2941        d->dfs_tst_rcvry = dent;
2942
2943        fname = "ro_error";
2944        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2945                                   &dfs_fops);
2946        if (IS_ERR_OR_NULL(dent))
2947                goto out_remove;
2948        d->dfs_ro_error = dent;
2949
2950        return 0;
2951
2952out_remove:
2953        debugfs_remove_recursive(d->dfs_dir);
2954out:
2955        err = dent ? PTR_ERR(dent) : -ENODEV;
2956        ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2957                  fname, err);
2958        return err;
2959}
2960
2961/**
2962 * dbg_debugfs_exit_fs - remove all debugfs files.
2963 * @c: UBIFS file-system description object
2964 */
2965void dbg_debugfs_exit_fs(struct ubifs_info *c)
2966{
2967        if (IS_ENABLED(CONFIG_DEBUG_FS))
2968                debugfs_remove_recursive(c->dbg->dfs_dir);
2969}
2970
2971struct ubifs_global_debug_info ubifs_dbg;
2972
2973static struct dentry *dfs_chk_gen;
2974static struct dentry *dfs_chk_index;
2975static struct dentry *dfs_chk_orph;
2976static struct dentry *dfs_chk_lprops;
2977static struct dentry *dfs_chk_fs;
2978static struct dentry *dfs_tst_rcvry;
2979
2980static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2981                                    size_t count, loff_t *ppos)
2982{
2983        struct dentry *dent = file->f_path.dentry;
2984        int val;
2985
2986        if (dent == dfs_chk_gen)
2987                val = ubifs_dbg.chk_gen;
2988        else if (dent == dfs_chk_index)
2989                val = ubifs_dbg.chk_index;
2990        else if (dent == dfs_chk_orph)
2991                val = ubifs_dbg.chk_orph;
2992        else if (dent == dfs_chk_lprops)
2993                val = ubifs_dbg.chk_lprops;
2994        else if (dent == dfs_chk_fs)
2995                val = ubifs_dbg.chk_fs;
2996        else if (dent == dfs_tst_rcvry)
2997                val = ubifs_dbg.tst_rcvry;
2998        else
2999                return -EINVAL;
3000
3001        return provide_user_output(val, u, count, ppos);
3002}
3003
3004static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3005                                     size_t count, loff_t *ppos)
3006{
3007        struct dentry *dent = file->f_path.dentry;
3008        int val;
3009
3010        val = interpret_user_input(u, count);
3011        if (val < 0)
3012                return val;
3013
3014        if (dent == dfs_chk_gen)
3015                ubifs_dbg.chk_gen = val;
3016        else if (dent == dfs_chk_index)
3017                ubifs_dbg.chk_index = val;
3018        else if (dent == dfs_chk_orph)
3019                ubifs_dbg.chk_orph = val;
3020        else if (dent == dfs_chk_lprops)
3021                ubifs_dbg.chk_lprops = val;
3022        else if (dent == dfs_chk_fs)
3023                ubifs_dbg.chk_fs = val;
3024        else if (dent == dfs_tst_rcvry)
3025                ubifs_dbg.tst_rcvry = val;
3026        else
3027                return -EINVAL;
3028
3029        return count;
3030}
3031
3032static const struct file_operations dfs_global_fops = {
3033        .read = dfs_global_file_read,
3034        .write = dfs_global_file_write,
3035        .owner = THIS_MODULE,
3036        .llseek = no_llseek,
3037};
3038
3039/**
3040 * dbg_debugfs_init - initialize debugfs file-system.
3041 *
3042 * UBIFS uses debugfs file-system to expose various debugging knobs to
3043 * user-space. This function creates "ubifs" directory in the debugfs
3044 * file-system. Returns zero in case of success and a negative error code in
3045 * case of failure.
3046 */
3047int dbg_debugfs_init(void)
3048{
3049        int err;
3050        const char *fname;
3051        struct dentry *dent;
3052
3053        if (!IS_ENABLED(CONFIG_DEBUG_FS))
3054                return 0;
3055
3056        fname = "ubifs";
3057        dent = debugfs_create_dir(fname, NULL);
3058        if (IS_ERR_OR_NULL(dent))
3059                goto out;
3060        dfs_rootdir = dent;
3061
3062        fname = "chk_general";
3063        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3064                                   &dfs_global_fops);
3065        if (IS_ERR_OR_NULL(dent))
3066                goto out_remove;
3067        dfs_chk_gen = dent;
3068
3069        fname = "chk_index";
3070        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3071                                   &dfs_global_fops);
3072        if (IS_ERR_OR_NULL(dent))
3073                goto out_remove;
3074        dfs_chk_index = dent;
3075
3076        fname = "chk_orphans";
3077        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3078                                   &dfs_global_fops);
3079        if (IS_ERR_OR_NULL(dent))
3080                goto out_remove;
3081        dfs_chk_orph = dent;
3082
3083        fname = "chk_lprops";
3084        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3085                                   &dfs_global_fops);
3086        if (IS_ERR_OR_NULL(dent))
3087                goto out_remove;
3088        dfs_chk_lprops = dent;
3089
3090        fname = "chk_fs";
3091        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3092                                   &dfs_global_fops);
3093        if (IS_ERR_OR_NULL(dent))
3094                goto out_remove;
3095        dfs_chk_fs = dent;
3096
3097        fname = "tst_recovery";
3098        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3099                                   &dfs_global_fops);
3100        if (IS_ERR_OR_NULL(dent))
3101                goto out_remove;
3102        dfs_tst_rcvry = dent;
3103
3104        return 0;
3105
3106out_remove:
3107        debugfs_remove_recursive(dfs_rootdir);
3108out:
3109        err = dent ? PTR_ERR(dent) : -ENODEV;
3110        pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3111               current->pid, fname, err);
3112        return err;
3113}
3114
3115/**
3116 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3117 */
3118void dbg_debugfs_exit(void)
3119{
3120        if (IS_ENABLED(CONFIG_DEBUG_FS))
3121                debugfs_remove_recursive(dfs_rootdir);
3122}
3123
3124/**
3125 * ubifs_debugging_init - initialize UBIFS debugging.
3126 * @c: UBIFS file-system description object
3127 *
3128 * This function initializes debugging-related data for the file system.
3129 * Returns zero in case of success and a negative error code in case of
3130 * failure.
3131 */
3132int ubifs_debugging_init(struct ubifs_info *c)
3133{
3134        c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3135        if (!c->dbg)
3136                return -ENOMEM;
3137
3138        return 0;
3139}
3140
3141/**
3142 * ubifs_debugging_exit - free debugging data.
3143 * @c: UBIFS file-system description object
3144 */
3145void ubifs_debugging_exit(struct ubifs_info *c)
3146{
3147        kfree(c->dbg);
3148}
3149#endif
3150