uboot/drivers/timer/tsc_timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (c) 2012 The Chromium OS Authors.
   4 *
   5 * TSC calibration codes are adapted from Linux kernel
   6 * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
   7 */
   8
   9#include <common.h>
  10#include <dm.h>
  11#include <malloc.h>
  12#include <timer.h>
  13#include <asm/cpu.h>
  14#include <asm/io.h>
  15#include <asm/i8254.h>
  16#include <asm/ibmpc.h>
  17#include <asm/msr.h>
  18#include <asm/u-boot-x86.h>
  19
  20#define MAX_NUM_FREQS   9
  21
  22#define INTEL_FAM6_SKYLAKE_MOBILE       0x4E
  23#define INTEL_FAM6_ATOM_GOLDMONT        0x5C /* Apollo Lake */
  24#define INTEL_FAM6_SKYLAKE_DESKTOP      0x5E
  25#define INTEL_FAM6_ATOM_GOLDMONT_X      0x5F /* Denverton */
  26#define INTEL_FAM6_KABYLAKE_MOBILE      0x8E
  27#define INTEL_FAM6_KABYLAKE_DESKTOP     0x9E
  28
  29DECLARE_GLOBAL_DATA_PTR;
  30
  31/*
  32 * native_calibrate_tsc
  33 * Determine TSC frequency via CPUID, else return 0.
  34 */
  35static unsigned long native_calibrate_tsc(void)
  36{
  37        struct cpuid_result tsc_info;
  38        unsigned int crystal_freq;
  39
  40        if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
  41                return 0;
  42
  43        if (cpuid_eax(0) < 0x15)
  44                return 0;
  45
  46        tsc_info = cpuid(0x15);
  47
  48        if (tsc_info.ebx == 0 || tsc_info.eax == 0)
  49                return 0;
  50
  51        crystal_freq = tsc_info.ecx / 1000;
  52
  53        if (!crystal_freq) {
  54                switch (gd->arch.x86_model) {
  55                case INTEL_FAM6_SKYLAKE_MOBILE:
  56                case INTEL_FAM6_SKYLAKE_DESKTOP:
  57                case INTEL_FAM6_KABYLAKE_MOBILE:
  58                case INTEL_FAM6_KABYLAKE_DESKTOP:
  59                        crystal_freq = 24000;   /* 24.0 MHz */
  60                        break;
  61                case INTEL_FAM6_ATOM_GOLDMONT_X:
  62                        crystal_freq = 25000;   /* 25.0 MHz */
  63                        break;
  64                case INTEL_FAM6_ATOM_GOLDMONT:
  65                        crystal_freq = 19200;   /* 19.2 MHz */
  66                        break;
  67                default:
  68                        return 0;
  69                }
  70        }
  71
  72        return (crystal_freq * tsc_info.ebx / tsc_info.eax) / 1000;
  73}
  74
  75static unsigned long cpu_mhz_from_cpuid(void)
  76{
  77        if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
  78                return 0;
  79
  80        if (cpuid_eax(0) < 0x16)
  81                return 0;
  82
  83        return cpuid_eax(0x16);
  84}
  85
  86/*
  87 * According to Intel 64 and IA-32 System Programming Guide,
  88 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
  89 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
  90 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
  91 * so we need manually differentiate SoC families. This is what the
  92 * field msr_plat does.
  93 */
  94struct freq_desc {
  95        u8 x86_family;  /* CPU family */
  96        u8 x86_model;   /* model */
  97        /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
  98        u8 msr_plat;
  99        u32 freqs[MAX_NUM_FREQS];
 100};
 101
 102static struct freq_desc freq_desc_tables[] = {
 103        /* PNW */
 104        { 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
 105        /* CLV+ */
 106        { 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
 107        /* TNG - Intel Atom processor Z3400 series */
 108        { 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
 109        /* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
 110        { 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
 111        /* ANN - Intel Atom processor Z3500 series */
 112        { 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
 113        /* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
 114        { 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
 115                        80000, 93300, 90000, 88900, 87500 } },
 116        /* Ivybridge */
 117        { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
 118};
 119
 120static int match_cpu(u8 family, u8 model)
 121{
 122        int i;
 123
 124        for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
 125                if ((family == freq_desc_tables[i].x86_family) &&
 126                    (model == freq_desc_tables[i].x86_model))
 127                        return i;
 128        }
 129
 130        return -1;
 131}
 132
 133/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
 134#define id_to_freq(cpu_index, freq_id) \
 135        (freq_desc_tables[cpu_index].freqs[freq_id])
 136
 137/*
 138 * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
 139 * reliable and the frequency is known (provided by HW).
 140 *
 141 * On these platforms PIT/HPET is generally not available so calibration won't
 142 * work at all and there is no other clocksource to act as a watchdog for the
 143 * TSC, so we have no other choice than to trust it.
 144 *
 145 * Returns the TSC frequency in MHz or 0 if HW does not provide it.
 146 */
 147static unsigned long __maybe_unused cpu_mhz_from_msr(void)
 148{
 149        u32 lo, hi, ratio, freq_id, freq;
 150        unsigned long res;
 151        int cpu_index;
 152
 153        if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
 154                return 0;
 155
 156        cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
 157        if (cpu_index < 0)
 158                return 0;
 159
 160        if (freq_desc_tables[cpu_index].msr_plat) {
 161                rdmsr(MSR_PLATFORM_INFO, lo, hi);
 162                ratio = (lo >> 8) & 0xff;
 163        } else {
 164                rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 165                ratio = (hi >> 8) & 0x1f;
 166        }
 167        debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
 168
 169        if (freq_desc_tables[cpu_index].msr_plat == 2) {
 170                /* TODO: Figure out how best to deal with this */
 171                freq = 100000;
 172                debug("Using frequency: %u KHz\n", freq);
 173        } else {
 174                /* Get FSB FREQ ID */
 175                rdmsr(MSR_FSB_FREQ, lo, hi);
 176                freq_id = lo & 0x7;
 177                freq = id_to_freq(cpu_index, freq_id);
 178                debug("Resolved frequency ID: %u, frequency: %u KHz\n",
 179                      freq_id, freq);
 180        }
 181
 182        /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
 183        res = freq * ratio / 1000;
 184        debug("TSC runs at %lu MHz\n", res);
 185
 186        return res;
 187}
 188
 189/*
 190 * This reads the current MSB of the PIT counter, and
 191 * checks if we are running on sufficiently fast and
 192 * non-virtualized hardware.
 193 *
 194 * Our expectations are:
 195 *
 196 *  - the PIT is running at roughly 1.19MHz
 197 *
 198 *  - each IO is going to take about 1us on real hardware,
 199 *    but we allow it to be much faster (by a factor of 10) or
 200 *    _slightly_ slower (ie we allow up to a 2us read+counter
 201 *    update - anything else implies a unacceptably slow CPU
 202 *    or PIT for the fast calibration to work.
 203 *
 204 *  - with 256 PIT ticks to read the value, we have 214us to
 205 *    see the same MSB (and overhead like doing a single TSC
 206 *    read per MSB value etc).
 207 *
 208 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 209 *    them each to take about a microsecond on real hardware.
 210 *    So we expect a count value of around 100. But we'll be
 211 *    generous, and accept anything over 50.
 212 *
 213 *  - if the PIT is stuck, and we see *many* more reads, we
 214 *    return early (and the next caller of pit_expect_msb()
 215 *    then consider it a failure when they don't see the
 216 *    next expected value).
 217 *
 218 * These expectations mean that we know that we have seen the
 219 * transition from one expected value to another with a fairly
 220 * high accuracy, and we didn't miss any events. We can thus
 221 * use the TSC value at the transitions to calculate a pretty
 222 * good value for the TSC frequencty.
 223 */
 224static inline int pit_verify_msb(unsigned char val)
 225{
 226        /* Ignore LSB */
 227        inb(0x42);
 228        return inb(0x42) == val;
 229}
 230
 231static inline int pit_expect_msb(unsigned char val, u64 *tscp,
 232                                 unsigned long *deltap)
 233{
 234        int count;
 235        u64 tsc = 0, prev_tsc = 0;
 236
 237        for (count = 0; count < 50000; count++) {
 238                if (!pit_verify_msb(val))
 239                        break;
 240                prev_tsc = tsc;
 241                tsc = rdtsc();
 242        }
 243        *deltap = rdtsc() - prev_tsc;
 244        *tscp = tsc;
 245
 246        /*
 247         * We require _some_ success, but the quality control
 248         * will be based on the error terms on the TSC values.
 249         */
 250        return count > 5;
 251}
 252
 253/*
 254 * How many MSB values do we want to see? We aim for
 255 * a maximum error rate of 500ppm (in practice the
 256 * real error is much smaller), but refuse to spend
 257 * more than 50ms on it.
 258 */
 259#define MAX_QUICK_PIT_MS 50
 260#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 261
 262static unsigned long __maybe_unused quick_pit_calibrate(void)
 263{
 264        int i;
 265        u64 tsc, delta;
 266        unsigned long d1, d2;
 267
 268        /* Set the Gate high, disable speaker */
 269        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 270
 271        /*
 272         * Counter 2, mode 0 (one-shot), binary count
 273         *
 274         * NOTE! Mode 2 decrements by two (and then the
 275         * output is flipped each time, giving the same
 276         * final output frequency as a decrement-by-one),
 277         * so mode 0 is much better when looking at the
 278         * individual counts.
 279         */
 280        outb(0xb0, 0x43);
 281
 282        /* Start at 0xffff */
 283        outb(0xff, 0x42);
 284        outb(0xff, 0x42);
 285
 286        /*
 287         * The PIT starts counting at the next edge, so we
 288         * need to delay for a microsecond. The easiest way
 289         * to do that is to just read back the 16-bit counter
 290         * once from the PIT.
 291         */
 292        pit_verify_msb(0);
 293
 294        if (pit_expect_msb(0xff, &tsc, &d1)) {
 295                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 296                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 297                                break;
 298
 299                        /*
 300                         * Iterate until the error is less than 500 ppm
 301                         */
 302                        delta -= tsc;
 303                        if (d1+d2 >= delta >> 11)
 304                                continue;
 305
 306                        /*
 307                         * Check the PIT one more time to verify that
 308                         * all TSC reads were stable wrt the PIT.
 309                         *
 310                         * This also guarantees serialization of the
 311                         * last cycle read ('d2') in pit_expect_msb.
 312                         */
 313                        if (!pit_verify_msb(0xfe - i))
 314                                break;
 315                        goto success;
 316                }
 317        }
 318        debug("Fast TSC calibration failed\n");
 319        return 0;
 320
 321success:
 322        /*
 323         * Ok, if we get here, then we've seen the
 324         * MSB of the PIT decrement 'i' times, and the
 325         * error has shrunk to less than 500 ppm.
 326         *
 327         * As a result, we can depend on there not being
 328         * any odd delays anywhere, and the TSC reads are
 329         * reliable (within the error).
 330         *
 331         * kHz = ticks / time-in-seconds / 1000;
 332         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 333         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 334         */
 335        delta *= PIT_TICK_RATE;
 336        delta /= (i*256*1000);
 337        debug("Fast TSC calibration using PIT\n");
 338        return delta / 1000;
 339}
 340
 341/* Get the speed of the TSC timer in MHz */
 342unsigned notrace long get_tbclk_mhz(void)
 343{
 344        return get_tbclk() / 1000000;
 345}
 346
 347static ulong get_ms_timer(void)
 348{
 349        return (get_ticks() * 1000) / get_tbclk();
 350}
 351
 352ulong get_timer(ulong base)
 353{
 354        return get_ms_timer() - base;
 355}
 356
 357ulong notrace timer_get_us(void)
 358{
 359        return get_ticks() / get_tbclk_mhz();
 360}
 361
 362ulong timer_get_boot_us(void)
 363{
 364        return timer_get_us();
 365}
 366
 367void __udelay(unsigned long usec)
 368{
 369        u64 now = get_ticks();
 370        u64 stop;
 371
 372        stop = now + usec * get_tbclk_mhz();
 373
 374        while ((int64_t)(stop - get_ticks()) > 0)
 375#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
 376                /*
 377                 * Add a 'pause' instruction on qemu target,
 378                 * to give other VCPUs a chance to run.
 379                 */
 380                asm volatile("pause");
 381#else
 382                ;
 383#endif
 384}
 385
 386static int tsc_timer_get_count(struct udevice *dev, u64 *count)
 387{
 388        u64 now_tick = rdtsc();
 389
 390        *count = now_tick - gd->arch.tsc_base;
 391
 392        return 0;
 393}
 394
 395static void tsc_timer_ensure_setup(bool early)
 396{
 397        if (gd->arch.tsc_base)
 398                return;
 399        gd->arch.tsc_base = rdtsc();
 400
 401        if (!gd->arch.clock_rate) {
 402                unsigned long fast_calibrate;
 403
 404                fast_calibrate = native_calibrate_tsc();
 405                if (fast_calibrate)
 406                        goto done;
 407
 408                fast_calibrate = cpu_mhz_from_cpuid();
 409                if (fast_calibrate)
 410                        goto done;
 411
 412                fast_calibrate = cpu_mhz_from_msr();
 413                if (fast_calibrate)
 414                        goto done;
 415
 416                fast_calibrate = quick_pit_calibrate();
 417                if (fast_calibrate)
 418                        goto done;
 419
 420                if (early)
 421                        fast_calibrate = CONFIG_X86_TSC_TIMER_EARLY_FREQ;
 422                else
 423                        return;
 424
 425done:
 426                gd->arch.clock_rate = fast_calibrate * 1000000;
 427        }
 428}
 429
 430static int tsc_timer_probe(struct udevice *dev)
 431{
 432        struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
 433
 434        /* Try hardware calibration first */
 435        tsc_timer_ensure_setup(false);
 436        if (!gd->arch.clock_rate) {
 437                /*
 438                 * Use the clock frequency specified in the
 439                 * device tree as last resort
 440                 */
 441                if (!uc_priv->clock_rate)
 442                        panic("TSC frequency is ZERO");
 443        } else {
 444                uc_priv->clock_rate = gd->arch.clock_rate;
 445        }
 446
 447        return 0;
 448}
 449
 450unsigned long notrace timer_early_get_rate(void)
 451{
 452        /*
 453         * When TSC timer is used as the early timer, be warned that the timer
 454         * clock rate can only be calibrated via some hardware ways. Specifying
 455         * it in the device tree won't work for the early timer.
 456         */
 457        tsc_timer_ensure_setup(true);
 458
 459        return gd->arch.clock_rate;
 460}
 461
 462u64 notrace timer_early_get_count(void)
 463{
 464        return rdtsc() - gd->arch.tsc_base;
 465}
 466
 467static const struct timer_ops tsc_timer_ops = {
 468        .get_count = tsc_timer_get_count,
 469};
 470
 471static const struct udevice_id tsc_timer_ids[] = {
 472        { .compatible = "x86,tsc-timer", },
 473        { }
 474};
 475
 476U_BOOT_DRIVER(tsc_timer) = {
 477        .name   = "tsc_timer",
 478        .id     = UCLASS_TIMER,
 479        .of_match = tsc_timer_ids,
 480        .probe = tsc_timer_probe,
 481        .ops    = &tsc_timer_ops,
 482};
 483