uboot/drivers/mtd/nand/raw/fsl_ifc_spl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NAND boot for Freescale Integrated Flash Controller, NAND FCM
   4 *
   5 * Copyright 2011 Freescale Semiconductor, Inc.
   6 * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
   7 */
   8
   9#include <common.h>
  10#include <asm/io.h>
  11#include <fsl_ifc.h>
  12#include <linux/mtd/rawnand.h>
  13#ifdef CONFIG_CHAIN_OF_TRUST
  14#include <fsl_validate.h>
  15#endif
  16
  17static inline int is_blank(uchar *addr, int page_size)
  18{
  19        int i;
  20
  21        for (i = 0; i < page_size; i++) {
  22                if (__raw_readb(&addr[i]) != 0xff)
  23                        return 0;
  24        }
  25
  26        /*
  27         * For the SPL, don't worry about uncorrectable errors
  28         * where the main area is all FFs but shouldn't be.
  29         */
  30        return 1;
  31}
  32
  33/* returns nonzero if entire page is blank */
  34static inline int check_read_ecc(uchar *buf, u32 *eccstat,
  35                                 unsigned int bufnum, int page_size)
  36{
  37        u32 reg = eccstat[bufnum / 4];
  38        int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
  39
  40        if (errors == 0xf) { /* uncorrectable */
  41                /* Blank pages fail hw ECC checks */
  42                if (is_blank(buf, page_size))
  43                        return 1;
  44
  45                puts("ecc error\n");
  46                for (;;)
  47                        ;
  48        }
  49
  50        return 0;
  51}
  52
  53static inline struct fsl_ifc_runtime *runtime_regs_address(void)
  54{
  55        struct fsl_ifc regs = {(void *)CONFIG_SYS_IFC_ADDR, NULL};
  56        int ver = 0;
  57
  58        ver = ifc_in32(&regs.gregs->ifc_rev);
  59        if (ver >= FSL_IFC_V2_0_0)
  60                regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
  61        else
  62                regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
  63
  64        return regs.rregs;
  65}
  66
  67static inline void nand_wait(uchar *buf, int bufnum, int page_size)
  68{
  69        struct fsl_ifc_runtime *ifc = runtime_regs_address();
  70        u32 status;
  71        u32 eccstat[8];
  72        int bufperpage = page_size / 512;
  73        int bufnum_end, i;
  74
  75        bufnum *= bufperpage;
  76        bufnum_end = bufnum + bufperpage - 1;
  77
  78        do {
  79                status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
  80        } while (!(status & IFC_NAND_EVTER_STAT_OPC));
  81
  82        if (status & IFC_NAND_EVTER_STAT_FTOER) {
  83                puts("flash time out error\n");
  84                for (;;)
  85                        ;
  86        }
  87
  88        for (i = bufnum / 4; i <= bufnum_end / 4; i++)
  89                eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
  90
  91        for (i = bufnum; i <= bufnum_end; i++) {
  92                if (check_read_ecc(buf, eccstat, i, page_size))
  93                        break;
  94        }
  95
  96        ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
  97}
  98
  99static inline int bad_block(uchar *marker, int port_size)
 100{
 101        if (port_size == 8)
 102                return __raw_readb(marker) != 0xff;
 103        else
 104                return __raw_readw((u16 *)marker) != 0xffff;
 105}
 106
 107int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
 108{
 109        struct fsl_ifc_fcm *gregs = (void *)CONFIG_SYS_IFC_ADDR;
 110        struct fsl_ifc_runtime *ifc = NULL;
 111        uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
 112        int page_size;
 113        int port_size;
 114        int pages_per_blk;
 115        int blk_size;
 116        int bad_marker = 0;
 117        int bufnum_mask, bufnum, ver = 0;
 118
 119        int csor, cspr;
 120        int pos = 0;
 121        int j = 0;
 122
 123        int sram_addr;
 124        int pg_no;
 125        uchar *dst = vdst;
 126
 127        ifc = runtime_regs_address();
 128
 129        /* Get NAND Flash configuration */
 130        csor = CONFIG_SYS_NAND_CSOR;
 131        cspr = CONFIG_SYS_NAND_CSPR;
 132
 133        port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
 134
 135        if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
 136                page_size = 8192;
 137                bufnum_mask = 0x0;
 138        } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
 139                page_size = 4096;
 140                bufnum_mask = 0x1;
 141        } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
 142                page_size = 2048;
 143                bufnum_mask = 0x3;
 144        } else {
 145                page_size = 512;
 146                bufnum_mask = 0xf;
 147
 148                if (port_size == 8)
 149                        bad_marker = 5;
 150        }
 151
 152        ver = ifc_in32(&gregs->ifc_rev);
 153        if (ver >= FSL_IFC_V2_0_0)
 154                bufnum_mask = (bufnum_mask * 2) + 1;
 155
 156        pages_per_blk =
 157                32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
 158
 159        blk_size = pages_per_blk * page_size;
 160
 161        /* Open Full SRAM mapping for spare are access */
 162        ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
 163
 164        /* Clear Boot events */
 165        ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
 166
 167        /* Program FIR/FCR for Large/Small page */
 168        if (page_size > 512) {
 169                ifc_out32(&ifc->ifc_nand.nand_fir0,
 170                          (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 171                          (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 172                          (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 173                          (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
 174                          (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
 175                ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
 176
 177                ifc_out32(&ifc->ifc_nand.nand_fcr0,
 178                          (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
 179                          (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
 180        } else {
 181                ifc_out32(&ifc->ifc_nand.nand_fir0,
 182                          (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 183                          (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 184                          (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
 185                          (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
 186                ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
 187
 188                ifc_out32(&ifc->ifc_nand.nand_fcr0,
 189                          NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
 190        }
 191
 192        /* Program FBCR = 0 for full page read */
 193        ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
 194
 195        /* Read and copy u-boot on SDRAM from NAND device, In parallel
 196         * check for Bad block if found skip it and read continue to
 197         * next Block
 198         */
 199        while (pos < uboot_size) {
 200                int i = 0;
 201                do {
 202                        pg_no = offs / page_size;
 203                        bufnum = pg_no & bufnum_mask;
 204                        sram_addr = bufnum * page_size * 2;
 205
 206                        ifc_out32(&ifc->ifc_nand.row0, pg_no);
 207                        ifc_out32(&ifc->ifc_nand.col0, 0);
 208                        /* start read */
 209                        ifc_out32(&ifc->ifc_nand.nandseq_strt,
 210                                  IFC_NAND_SEQ_STRT_FIR_STRT);
 211
 212                        /* wait for read to complete */
 213                        nand_wait(&buf[sram_addr], bufnum, page_size);
 214
 215                        /*
 216                         * If either of the first two pages are marked bad,
 217                         * continue to the next block.
 218                         */
 219                        if (i++ < 2 &&
 220                            bad_block(&buf[sram_addr + page_size + bad_marker],
 221                                      port_size)) {
 222                                puts("skipping\n");
 223                                offs = (offs + blk_size) & ~(blk_size - 1);
 224                                pos &= ~(blk_size - 1);
 225                                break;
 226                        }
 227
 228                        for (j = 0; j < page_size; j++)
 229                                dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
 230
 231                        pos += page_size;
 232                        offs += page_size;
 233                } while ((offs & (blk_size - 1)) && (pos < uboot_size));
 234        }
 235
 236        return 0;
 237}
 238
 239/*
 240 * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
 241 * configured and available since this code loads the main U-Boot image
 242 * from NAND into SDRAM and starts from there.
 243 */
 244void nand_boot(void)
 245{
 246        __attribute__((noreturn)) void (*uboot)(void);
 247        /*
 248         * Load U-Boot image from NAND into RAM
 249         */
 250        nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
 251                            CONFIG_SYS_NAND_U_BOOT_SIZE,
 252                            (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
 253
 254#ifdef CONFIG_NAND_ENV_DST
 255        nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
 256                            (uchar *)CONFIG_NAND_ENV_DST);
 257
 258#ifdef CONFIG_ENV_OFFSET_REDUND
 259        nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
 260                            (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
 261#endif
 262#endif
 263        /*
 264         * Jump to U-Boot image
 265         */
 266#ifdef CONFIG_SPL_FLUSH_IMAGE
 267        /*
 268         * Clean d-cache and invalidate i-cache, to
 269         * make sure that no stale data is executed.
 270         */
 271        flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
 272#endif
 273
 274#ifdef CONFIG_CHAIN_OF_TRUST
 275        /*
 276         * U-Boot header is appended at end of U-boot image, so
 277         * calculate U-boot header address using U-boot header size.
 278         */
 279#define CONFIG_U_BOOT_HDR_ADDR \
 280                ((CONFIG_SYS_NAND_U_BOOT_START + \
 281                  CONFIG_SYS_NAND_U_BOOT_SIZE) - \
 282                 CONFIG_U_BOOT_HDR_SIZE)
 283        spl_validate_uboot(CONFIG_U_BOOT_HDR_ADDR,
 284                           CONFIG_SYS_NAND_U_BOOT_START);
 285        /*
 286         * In case of failure in validation, spl_validate_uboot would
 287         * not return back in case of Production environment with ITS=1.
 288         * Thus U-Boot will not start.
 289         * In Development environment (ITS=0 and SB_EN=1), the function
 290         * may return back in case of non-fatal failures.
 291         */
 292#endif
 293
 294        uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
 295        uboot();
 296}
 297
 298#ifndef CONFIG_SPL_NAND_INIT
 299void nand_init(void)
 300{
 301}
 302
 303void nand_deselect(void)
 304{
 305}
 306#endif
 307