uboot/drivers/net/armada100_fec.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright 2011
   4 * eInfochips Ltd. <www.einfochips.com>
   5 * Written-by: Ajay Bhargav <contact@8051projects.net>
   6 *
   7 * (C) Copyright 2010
   8 * Marvell Semiconductor <www.marvell.com>
   9 * Contributor: Mahavir Jain <mjain@marvell.com>
  10 */
  11
  12#include <common.h>
  13#include <net.h>
  14#include <malloc.h>
  15#include <miiphy.h>
  16#include <netdev.h>
  17#include <asm/types.h>
  18#include <asm/byteorder.h>
  19#include <linux/err.h>
  20#include <linux/mii.h>
  21#include <asm/io.h>
  22#include <asm/arch/armada100.h>
  23#include "armada100_fec.h"
  24
  25#define  PHY_ADR_REQ     0xFF   /* Magic number to read/write PHY address */
  26
  27#ifdef DEBUG
  28static int eth_dump_regs(struct eth_device *dev)
  29{
  30        struct armdfec_device *darmdfec = to_darmdfec(dev);
  31        struct armdfec_reg *regs = darmdfec->regs;
  32        unsigned int i = 0;
  33
  34        printf("\noffset: phy_adr, value: 0x%x\n", readl(&regs->phyadr));
  35        printf("offset: smi, value: 0x%x\n", readl(&regs->smi));
  36        for (i = 0x400; i <= 0x4e4; i += 4)
  37                printf("offset: 0x%x, value: 0x%x\n",
  38                        i, readl(ARMD1_FEC_BASE + i));
  39        return 0;
  40}
  41#endif
  42
  43static int armdfec_phy_timeout(u32 *reg, u32 flag, int cond)
  44{
  45        u32 timeout = PHY_WAIT_ITERATIONS;
  46        u32 reg_val;
  47
  48        while (--timeout) {
  49                reg_val = readl(reg);
  50                if (cond && (reg_val & flag))
  51                        break;
  52                else if (!cond && !(reg_val & flag))
  53                        break;
  54                udelay(PHY_WAIT_MICRO_SECONDS);
  55        }
  56        return !timeout;
  57}
  58
  59static int smi_reg_read(struct mii_dev *bus, int phy_addr, int devad,
  60                        int phy_reg)
  61{
  62        u16 value = 0;
  63        struct eth_device *dev = eth_get_dev_by_name(bus->name);
  64        struct armdfec_device *darmdfec = to_darmdfec(dev);
  65        struct armdfec_reg *regs = darmdfec->regs;
  66        u32 val;
  67
  68        if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) {
  69                val = readl(&regs->phyadr);
  70                value = val & 0x1f;
  71                return value;
  72        }
  73
  74        /* check parameters */
  75        if (phy_addr > PHY_MASK) {
  76                printf("ARMD100 FEC: (%s) Invalid phy address: 0x%X\n",
  77                                __func__, phy_addr);
  78                return -EINVAL;
  79        }
  80        if (phy_reg > PHY_MASK) {
  81                printf("ARMD100 FEC: (%s) Invalid register offset: 0x%X\n",
  82                                __func__, phy_reg);
  83                return -EINVAL;
  84        }
  85
  86        /* wait for the SMI register to become available */
  87        if (armdfec_phy_timeout(&regs->smi, SMI_BUSY, false)) {
  88                printf("ARMD100 FEC: (%s) PHY busy timeout\n",  __func__);
  89                return -1;
  90        }
  91
  92        writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_R, &regs->smi);
  93
  94        /* now wait for the data to be valid */
  95        if (armdfec_phy_timeout(&regs->smi, SMI_R_VALID, true)) {
  96                val = readl(&regs->smi);
  97                printf("ARMD100 FEC: (%s) PHY Read timeout, val=0x%x\n",
  98                                __func__, val);
  99                return -1;
 100        }
 101        val = readl(&regs->smi);
 102        value = val & 0xffff;
 103
 104        return value;
 105}
 106
 107static int smi_reg_write(struct mii_dev *bus, int phy_addr, int devad,
 108                         int phy_reg, u16 value)
 109{
 110        struct eth_device *dev = eth_get_dev_by_name(bus->name);
 111        struct armdfec_device *darmdfec = to_darmdfec(dev);
 112        struct armdfec_reg *regs = darmdfec->regs;
 113
 114        if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) {
 115                clrsetbits_le32(&regs->phyadr, 0x1f, value & 0x1f);
 116                return 0;
 117        }
 118
 119        /* check parameters */
 120        if (phy_addr > PHY_MASK) {
 121                printf("ARMD100 FEC: (%s) Invalid phy address\n", __func__);
 122                return -EINVAL;
 123        }
 124        if (phy_reg > PHY_MASK) {
 125                printf("ARMD100 FEC: (%s) Invalid register offset\n", __func__);
 126                return -EINVAL;
 127        }
 128
 129        /* wait for the SMI register to become available */
 130        if (armdfec_phy_timeout(&regs->smi, SMI_BUSY, false)) {
 131                printf("ARMD100 FEC: (%s) PHY busy timeout\n",  __func__);
 132                return -1;
 133        }
 134
 135        writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_W | (value & 0xffff),
 136                        &regs->smi);
 137        return 0;
 138}
 139
 140/*
 141 * Abort any transmit and receive operations and put DMA
 142 * in idle state. AT and AR bits are cleared upon entering
 143 * in IDLE state. So poll those bits to verify operation.
 144 */
 145static void abortdma(struct eth_device *dev)
 146{
 147        struct armdfec_device *darmdfec = to_darmdfec(dev);
 148        struct armdfec_reg *regs = darmdfec->regs;
 149        int delay;
 150        int maxretries = 40;
 151        u32 tmp;
 152
 153        while (--maxretries) {
 154                writel(SDMA_CMD_AR | SDMA_CMD_AT, &regs->sdma_cmd);
 155                udelay(100);
 156
 157                delay = 10;
 158                while (--delay) {
 159                        tmp = readl(&regs->sdma_cmd);
 160                        if (!(tmp & (SDMA_CMD_AR | SDMA_CMD_AT)))
 161                                break;
 162                        udelay(10);
 163                }
 164                if (delay)
 165                        break;
 166        }
 167
 168        if (!maxretries)
 169                printf("ARMD100 FEC: (%s) DMA Stuck\n", __func__);
 170}
 171
 172static inline u32 nibble_swapping_32_bit(u32 x)
 173{
 174        return ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4);
 175}
 176
 177static inline u32 nibble_swapping_16_bit(u32 x)
 178{
 179        return ((x & 0x0000f0f0) >> 4) | ((x & 0x00000f0f) << 4);
 180}
 181
 182static inline u32 flip_4_bits(u32 x)
 183{
 184        return ((x & 0x01) << 3) | ((x & 0x002) << 1)
 185                | ((x & 0x04) >> 1) | ((x & 0x008) >> 3);
 186}
 187
 188/*
 189 * This function will calculate the hash function of the address.
 190 * depends on the hash mode and hash size.
 191 * Inputs
 192 * mach             - the 2 most significant bytes of the MAC address.
 193 * macl             - the 4 least significant bytes of the MAC address.
 194 * Outputs
 195 * return the calculated entry.
 196 */
 197static u32 hash_function(u32 mach, u32 macl)
 198{
 199        u32 hashresult;
 200        u32 addrh;
 201        u32 addrl;
 202        u32 addr0;
 203        u32 addr1;
 204        u32 addr2;
 205        u32 addr3;
 206        u32 addrhswapped;
 207        u32 addrlswapped;
 208
 209        addrh = nibble_swapping_16_bit(mach);
 210        addrl = nibble_swapping_32_bit(macl);
 211
 212        addrhswapped = flip_4_bits(addrh & 0xf)
 213                + ((flip_4_bits((addrh >> 4) & 0xf)) << 4)
 214                + ((flip_4_bits((addrh >> 8) & 0xf)) << 8)
 215                + ((flip_4_bits((addrh >> 12) & 0xf)) << 12);
 216
 217        addrlswapped = flip_4_bits(addrl & 0xf)
 218                + ((flip_4_bits((addrl >> 4) & 0xf)) << 4)
 219                + ((flip_4_bits((addrl >> 8) & 0xf)) << 8)
 220                + ((flip_4_bits((addrl >> 12) & 0xf)) << 12)
 221                + ((flip_4_bits((addrl >> 16) & 0xf)) << 16)
 222                + ((flip_4_bits((addrl >> 20) & 0xf)) << 20)
 223                + ((flip_4_bits((addrl >> 24) & 0xf)) << 24)
 224                + ((flip_4_bits((addrl >> 28) & 0xf)) << 28);
 225
 226        addrh = addrhswapped;
 227        addrl = addrlswapped;
 228
 229        addr0 = (addrl >> 2) & 0x03f;
 230        addr1 = (addrl & 0x003) | (((addrl >> 8) & 0x7f) << 2);
 231        addr2 = (addrl >> 15) & 0x1ff;
 232        addr3 = ((addrl >> 24) & 0x0ff) | ((addrh & 1) << 8);
 233
 234        hashresult = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
 235        hashresult = hashresult & 0x07ff;
 236        return hashresult;
 237}
 238
 239/*
 240 * This function will add an entry to the address table.
 241 * depends on the hash mode and hash size that was initialized.
 242 * Inputs
 243 * mach - the 2 most significant bytes of the MAC address.
 244 * macl - the 4 least significant bytes of the MAC address.
 245 * skip - if 1, skip this address.
 246 * rd   - the RD field in the address table.
 247 * Outputs
 248 * address table entry is added.
 249 * 0 if success.
 250 * -ENOSPC if table full
 251 */
 252static int add_del_hash_entry(struct armdfec_device *darmdfec, u32 mach,
 253                              u32 macl, u32 rd, u32 skip, int del)
 254{
 255        struct addr_table_entry_t *entry, *start;
 256        u32 newhi;
 257        u32 newlo;
 258        u32 i;
 259
 260        newlo = (((mach >> 4) & 0xf) << 15)
 261                | (((mach >> 0) & 0xf) << 11)
 262                | (((mach >> 12) & 0xf) << 7)
 263                | (((mach >> 8) & 0xf) << 3)
 264                | (((macl >> 20) & 0x1) << 31)
 265                | (((macl >> 16) & 0xf) << 27)
 266                | (((macl >> 28) & 0xf) << 23)
 267                | (((macl >> 24) & 0xf) << 19)
 268                | (skip << HTESKIP) | (rd << HTERDBIT)
 269                | HTEVALID;
 270
 271        newhi = (((macl >> 4) & 0xf) << 15)
 272                | (((macl >> 0) & 0xf) << 11)
 273                | (((macl >> 12) & 0xf) << 7)
 274                | (((macl >> 8) & 0xf) << 3)
 275                | (((macl >> 21) & 0x7) << 0);
 276
 277        /*
 278         * Pick the appropriate table, start scanning for free/reusable
 279         * entries at the index obtained by hashing the specified MAC address
 280         */
 281        start = (struct addr_table_entry_t *)(darmdfec->htpr);
 282        entry = start + hash_function(mach, macl);
 283        for (i = 0; i < HOP_NUMBER; i++) {
 284                if (!(entry->lo & HTEVALID)) {
 285                        break;
 286                } else {
 287                        /* if same address put in same position */
 288                        if (((entry->lo & 0xfffffff8) == (newlo & 0xfffffff8))
 289                                        && (entry->hi == newhi))
 290                                break;
 291                }
 292                if (entry == start + 0x7ff)
 293                        entry = start;
 294                else
 295                        entry++;
 296        }
 297
 298        if (((entry->lo & 0xfffffff8) != (newlo & 0xfffffff8)) &&
 299                (entry->hi != newhi) && del)
 300                return 0;
 301
 302        if (i == HOP_NUMBER) {
 303                if (!del) {
 304                        printf("ARMD100 FEC: (%s) table section is full\n",
 305                                        __func__);
 306                        return -ENOSPC;
 307                } else {
 308                        return 0;
 309                }
 310        }
 311
 312        /*
 313         * Update the selected entry
 314         */
 315        if (del) {
 316                entry->hi = 0;
 317                entry->lo = 0;
 318        } else {
 319                entry->hi = newhi;
 320                entry->lo = newlo;
 321        }
 322
 323        return 0;
 324}
 325
 326/*
 327 *  Create an addressTable entry from MAC address info
 328 *  found in the specifed net_device struct
 329 *
 330 *  Input : pointer to ethernet interface network device structure
 331 *  Output : N/A
 332 */
 333static void update_hash_table_mac_address(struct armdfec_device *darmdfec,
 334                                          u8 *oaddr, u8 *addr)
 335{
 336        u32 mach;
 337        u32 macl;
 338
 339        /* Delete old entry */
 340        if (oaddr) {
 341                mach = (oaddr[0] << 8) | oaddr[1];
 342                macl = (oaddr[2] << 24) | (oaddr[3] << 16) |
 343                        (oaddr[4] << 8) | oaddr[5];
 344                add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_DELETE);
 345        }
 346
 347        /* Add new entry */
 348        mach = (addr[0] << 8) | addr[1];
 349        macl = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
 350        add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_ADD);
 351}
 352
 353/* Address Table Initialization */
 354static void init_hashtable(struct eth_device *dev)
 355{
 356        struct armdfec_device *darmdfec = to_darmdfec(dev);
 357        struct armdfec_reg *regs = darmdfec->regs;
 358        memset(darmdfec->htpr, 0, HASH_ADDR_TABLE_SIZE);
 359        writel((u32)darmdfec->htpr, &regs->htpr);
 360}
 361
 362/*
 363 * This detects PHY chip from address 0-31 by reading PHY status
 364 * registers. PHY chip can be connected at any of this address.
 365 */
 366static int ethernet_phy_detect(struct eth_device *dev)
 367{
 368        u32 val;
 369        u16 tmp, mii_status;
 370        u8 addr;
 371
 372        for (addr = 0; addr < 32; addr++) {
 373                if (miiphy_read(dev->name, addr, MII_BMSR, &mii_status) != 0)
 374                        /* try next phy */
 375                        continue;
 376
 377                /* invalid MII status. More validation required here... */
 378                if (mii_status == 0 || mii_status == 0xffff)
 379                        /* try next phy */
 380                        continue;
 381
 382                if (miiphy_read(dev->name, addr, MII_PHYSID1, &tmp) != 0)
 383                        /* try next phy */
 384                        continue;
 385
 386                val = tmp << 16;
 387                if (miiphy_read(dev->name, addr, MII_PHYSID2, &tmp) != 0)
 388                        /* try next phy */
 389                        continue;
 390
 391                val |= tmp;
 392
 393                if ((val & 0xfffffff0) != 0)
 394                        return addr;
 395        }
 396        return -1;
 397}
 398
 399static void armdfec_init_rx_desc_ring(struct armdfec_device *darmdfec)
 400{
 401        struct rx_desc *p_rx_desc;
 402        int i;
 403
 404        /* initialize the Rx descriptors ring */
 405        p_rx_desc = darmdfec->p_rxdesc;
 406        for (i = 0; i < RINGSZ; i++) {
 407                p_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
 408                p_rx_desc->buf_size = PKTSIZE_ALIGN;
 409                p_rx_desc->byte_cnt = 0;
 410                p_rx_desc->buf_ptr = darmdfec->p_rxbuf + i * PKTSIZE_ALIGN;
 411                if (i == (RINGSZ - 1)) {
 412                        p_rx_desc->nxtdesc_p = darmdfec->p_rxdesc;
 413                } else {
 414                        p_rx_desc->nxtdesc_p = (struct rx_desc *)
 415                            ((u32)p_rx_desc + ARMDFEC_RXQ_DESC_ALIGNED_SIZE);
 416                        p_rx_desc = p_rx_desc->nxtdesc_p;
 417                }
 418        }
 419        darmdfec->p_rxdesc_curr = darmdfec->p_rxdesc;
 420}
 421
 422static int armdfec_init(struct eth_device *dev, bd_t *bd)
 423{
 424        struct armdfec_device *darmdfec = to_darmdfec(dev);
 425        struct armdfec_reg *regs = darmdfec->regs;
 426        int phy_adr;
 427        u32 temp;
 428
 429        armdfec_init_rx_desc_ring(darmdfec);
 430
 431        /* Disable interrupts */
 432        writel(0, &regs->im);
 433        writel(0, &regs->ic);
 434        /* Write to ICR to clear interrupts. */
 435        writel(0, &regs->iwc);
 436
 437        /*
 438         * Abort any transmit and receive operations and put DMA
 439         * in idle state.
 440         */
 441        abortdma(dev);
 442
 443        /* Initialize address hash table */
 444        init_hashtable(dev);
 445
 446        /* SDMA configuration */
 447        writel(SDCR_BSZ8 |      /* Burst size = 32 bytes */
 448                SDCR_RIFB |     /* Rx interrupt on frame */
 449                SDCR_BLMT |     /* Little endian transmit */
 450                SDCR_BLMR |     /* Little endian receive */
 451                SDCR_RC_MAX_RETRANS,    /* Max retransmit count */
 452                &regs->sdma_conf);
 453        /* Port Configuration */
 454        writel(PCR_HS, &regs->pconf);   /* Hash size is 1/2kb */
 455
 456        /* Set extended port configuration */
 457        writel(PCXR_2BSM |              /* Two byte suffix aligns IP hdr */
 458                PCXR_DSCP_EN |          /* Enable DSCP in IP */
 459                PCXR_MFL_1536 |         /* Set MTU = 1536 */
 460                PCXR_FLP |              /* do not force link pass */
 461                PCXR_TX_HIGH_PRI,       /* Transmit - high priority queue */
 462                &regs->pconf_ext);
 463
 464        update_hash_table_mac_address(darmdfec, NULL, dev->enetaddr);
 465
 466        /* Update TX and RX queue descriptor register */
 467        temp = (u32)&regs->txcdp[TXQ];
 468        writel((u32)darmdfec->p_txdesc, temp);
 469        temp = (u32)&regs->rxfdp[RXQ];
 470        writel((u32)darmdfec->p_rxdesc, temp);
 471        temp = (u32)&regs->rxcdp[RXQ];
 472        writel((u32)darmdfec->p_rxdesc_curr, temp);
 473
 474        /* Enable Interrupts */
 475        writel(ALL_INTS, &regs->im);
 476
 477        /* Enable Ethernet Port */
 478        setbits_le32(&regs->pconf, PCR_EN);
 479
 480        /* Enable RX DMA engine */
 481        setbits_le32(&regs->sdma_cmd, SDMA_CMD_ERD);
 482
 483#ifdef DEBUG
 484        eth_dump_regs(dev);
 485#endif
 486
 487#if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII))
 488
 489#if defined(CONFIG_PHY_BASE_ADR)
 490        miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, CONFIG_PHY_BASE_ADR);
 491#else
 492        /* Search phy address from range 0-31 */
 493        phy_adr = ethernet_phy_detect(dev);
 494        if (phy_adr < 0) {
 495                printf("ARMD100 FEC: PHY not detected at address range 0-31\n");
 496                return -1;
 497        } else {
 498                debug("ARMD100 FEC: PHY detected at addr %d\n", phy_adr);
 499                miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, phy_adr);
 500        }
 501#endif
 502
 503#if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)
 504        /* Wait up to 5s for the link status */
 505        for (i = 0; i < 5; i++) {
 506                u16 phy_adr;
 507
 508                miiphy_read(dev->name, 0xFF, 0xFF, &phy_adr);
 509                /* Return if we get link up */
 510                if (miiphy_link(dev->name, phy_adr))
 511                        return 0;
 512                udelay(1000000);
 513        }
 514
 515        printf("ARMD100 FEC: No link on %s\n", dev->name);
 516        return -1;
 517#endif
 518#endif
 519        return 0;
 520}
 521
 522static void armdfec_halt(struct eth_device *dev)
 523{
 524        struct armdfec_device *darmdfec = to_darmdfec(dev);
 525        struct armdfec_reg *regs = darmdfec->regs;
 526
 527        /* Stop RX DMA */
 528        clrbits_le32(&regs->sdma_cmd, SDMA_CMD_ERD);
 529
 530        /*
 531         * Abort any transmit and receive operations and put DMA
 532         * in idle state.
 533         */
 534        abortdma(dev);
 535
 536        /* Disable interrupts */
 537        writel(0, &regs->im);
 538        writel(0, &regs->ic);
 539        writel(0, &regs->iwc);
 540
 541        /* Disable Port */
 542        clrbits_le32(&regs->pconf, PCR_EN);
 543}
 544
 545static int armdfec_send(struct eth_device *dev, void *dataptr, int datasize)
 546{
 547        struct armdfec_device *darmdfec = to_darmdfec(dev);
 548        struct armdfec_reg *regs = darmdfec->regs;
 549        struct tx_desc *p_txdesc = darmdfec->p_txdesc;
 550        void *p = (void *)dataptr;
 551        int retry = PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS;
 552        u32 cmd_sts, temp;
 553
 554        /* Copy buffer if it's misaligned */
 555        if ((u32)dataptr & 0x07) {
 556                if (datasize > PKTSIZE_ALIGN) {
 557                        printf("ARMD100 FEC: Non-aligned data too large (%d)\n",
 558                                        datasize);
 559                        return -1;
 560                }
 561                memcpy(darmdfec->p_aligned_txbuf, p, datasize);
 562                p = darmdfec->p_aligned_txbuf;
 563        }
 564
 565        p_txdesc->cmd_sts = TX_ZERO_PADDING | TX_GEN_CRC;
 566        p_txdesc->cmd_sts |= TX_FIRST_DESC | TX_LAST_DESC;
 567        p_txdesc->cmd_sts |= BUF_OWNED_BY_DMA;
 568        p_txdesc->cmd_sts |= TX_EN_INT;
 569        p_txdesc->buf_ptr = p;
 570        p_txdesc->byte_cnt = datasize;
 571
 572        /* Apply send command using high priority TX queue */
 573        temp = (u32)&regs->txcdp[TXQ];
 574        writel((u32)p_txdesc, temp);
 575        writel(SDMA_CMD_TXDL | SDMA_CMD_TXDH | SDMA_CMD_ERD, &regs->sdma_cmd);
 576
 577        /*
 578         * wait for packet xmit completion
 579         */
 580        cmd_sts = readl(&p_txdesc->cmd_sts);
 581        while (cmd_sts & BUF_OWNED_BY_DMA) {
 582                /* return fail if error is detected */
 583                if ((cmd_sts & (TX_ERROR | TX_LAST_DESC)) ==
 584                        (TX_ERROR | TX_LAST_DESC)) {
 585                        printf("ARMD100 FEC: (%s) in xmit packet\n", __func__);
 586                        return -1;
 587                }
 588                cmd_sts = readl(&p_txdesc->cmd_sts);
 589                if (!(retry--)) {
 590                        printf("ARMD100 FEC: (%s) xmit packet timeout!\n",
 591                                        __func__);
 592                        return -1;
 593                }
 594        }
 595
 596        return 0;
 597}
 598
 599static int armdfec_recv(struct eth_device *dev)
 600{
 601        struct armdfec_device *darmdfec = to_darmdfec(dev);
 602        struct rx_desc *p_rxdesc_curr = darmdfec->p_rxdesc_curr;
 603        u32 cmd_sts;
 604        u32 timeout = 0;
 605        u32 temp;
 606
 607        /* wait untill rx packet available or timeout */
 608        do {
 609                if (timeout < PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS) {
 610                        timeout++;
 611                } else {
 612                        debug("ARMD100 FEC: %s time out...\n", __func__);
 613                        return -1;
 614                }
 615        } while (readl(&p_rxdesc_curr->cmd_sts) & BUF_OWNED_BY_DMA);
 616
 617        if (p_rxdesc_curr->byte_cnt != 0) {
 618                debug("ARMD100 FEC: %s: Received %d byte Packet @ 0x%x"
 619                                "(cmd_sts= %08x)\n", __func__,
 620                                (u32)p_rxdesc_curr->byte_cnt,
 621                                (u32)p_rxdesc_curr->buf_ptr,
 622                                (u32)p_rxdesc_curr->cmd_sts);
 623        }
 624
 625        /*
 626         * In case received a packet without first/last bits on
 627         * OR the error summary bit is on,
 628         * the packets needs to be dropeed.
 629         */
 630        cmd_sts = readl(&p_rxdesc_curr->cmd_sts);
 631
 632        if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
 633                        (RX_FIRST_DESC | RX_LAST_DESC)) {
 634                printf("ARMD100 FEC: (%s) Dropping packet spread on"
 635                        " multiple descriptors\n", __func__);
 636        } else if (cmd_sts & RX_ERROR) {
 637                printf("ARMD100 FEC: (%s) Dropping packet with errors\n",
 638                                __func__);
 639        } else {
 640                /* !!! call higher layer processing */
 641                debug("ARMD100 FEC: (%s) Sending Received packet to"
 642                      " upper layer (net_process_received_packet)\n", __func__);
 643
 644                /*
 645                 * let the upper layer handle the packet, subtract offset
 646                 * as two dummy bytes are added in received buffer see
 647                 * PORT_CONFIG_EXT register bit TWO_Byte_Stuff_Mode bit.
 648                 */
 649                net_process_received_packet(
 650                        p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET,
 651                        (int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET));
 652        }
 653        /*
 654         * free these descriptors and point next in the ring
 655         */
 656        p_rxdesc_curr->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
 657        p_rxdesc_curr->buf_size = PKTSIZE_ALIGN;
 658        p_rxdesc_curr->byte_cnt = 0;
 659
 660        temp = (u32)&darmdfec->p_rxdesc_curr;
 661        writel((u32)p_rxdesc_curr->nxtdesc_p, temp);
 662
 663        return 0;
 664}
 665
 666int armada100_fec_register(unsigned long base_addr)
 667{
 668        struct armdfec_device *darmdfec;
 669        struct eth_device *dev;
 670
 671        darmdfec = malloc(sizeof(struct armdfec_device));
 672        if (!darmdfec)
 673                goto error;
 674
 675        memset(darmdfec, 0, sizeof(struct armdfec_device));
 676
 677        darmdfec->htpr = memalign(8, HASH_ADDR_TABLE_SIZE);
 678        if (!darmdfec->htpr)
 679                goto error1;
 680
 681        darmdfec->p_rxdesc = memalign(PKTALIGN,
 682                        ARMDFEC_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1);
 683
 684        if (!darmdfec->p_rxdesc)
 685                goto error1;
 686
 687        darmdfec->p_rxbuf = memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1);
 688        if (!darmdfec->p_rxbuf)
 689                goto error1;
 690
 691        darmdfec->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN);
 692        if (!darmdfec->p_aligned_txbuf)
 693                goto error1;
 694
 695        darmdfec->p_txdesc = memalign(PKTALIGN, sizeof(struct tx_desc) + 1);
 696        if (!darmdfec->p_txdesc)
 697                goto error1;
 698
 699        dev = &darmdfec->dev;
 700        /* Assign ARMADA100 Fast Ethernet Controller Base Address */
 701        darmdfec->regs = (void *)base_addr;
 702
 703        /* must be less than sizeof(dev->name) */
 704        strcpy(dev->name, "armd-fec0");
 705
 706        dev->init = armdfec_init;
 707        dev->halt = armdfec_halt;
 708        dev->send = armdfec_send;
 709        dev->recv = armdfec_recv;
 710
 711        eth_register(dev);
 712
 713#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
 714        int retval;
 715        struct mii_dev *mdiodev = mdio_alloc();
 716        if (!mdiodev)
 717                return -ENOMEM;
 718        strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
 719        mdiodev->read = smi_reg_read;
 720        mdiodev->write = smi_reg_write;
 721
 722        retval = mdio_register(mdiodev);
 723        if (retval < 0)
 724                return retval;
 725#endif
 726        return 0;
 727
 728error1:
 729        free(darmdfec->p_aligned_txbuf);
 730        free(darmdfec->p_rxbuf);
 731        free(darmdfec->p_rxdesc);
 732        free(darmdfec->htpr);
 733error:
 734        free(darmdfec);
 735        printf("AMD100 FEC: (%s) Failed to allocate memory\n", __func__);
 736        return -1;
 737}
 738