uboot/fs/btrfs/btrfs_tree.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * From linux/include/uapi/linux/btrfs_tree.h
   4 */
   5
   6#ifndef __BTRFS_BTRFS_TREE_H__
   7#define __BTRFS_BTRFS_TREE_H__
   8
   9#include <common.h>
  10
  11#define BTRFS_VOL_NAME_MAX 255
  12#define BTRFS_NAME_MAX 255
  13#define BTRFS_LABEL_SIZE 256
  14#define BTRFS_FSID_SIZE 16
  15#define BTRFS_UUID_SIZE 16
  16
  17/*
  18 * This header contains the structure definitions and constants used
  19 * by file system objects that can be retrieved using
  20 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
  21 * is needed to describe a leaf node's key or item contents.
  22 */
  23
  24/* holds pointers to all of the tree roots */
  25#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  26
  27/* stores information about which extents are in use, and reference counts */
  28#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  29
  30/*
  31 * chunk tree stores translations from logical -> physical block numbering
  32 * the super block points to the chunk tree
  33 */
  34#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  35
  36/*
  37 * stores information about which areas of a given device are in use.
  38 * one per device.  The tree of tree roots points to the device tree
  39 */
  40#define BTRFS_DEV_TREE_OBJECTID 4ULL
  41
  42/* one per subvolume, storing files and directories */
  43#define BTRFS_FS_TREE_OBJECTID 5ULL
  44
  45/* directory objectid inside the root tree */
  46#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  47
  48/* holds checksums of all the data extents */
  49#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  50
  51/* holds quota configuration and tracking */
  52#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
  53
  54/* for storing items that use the BTRFS_UUID_KEY* types */
  55#define BTRFS_UUID_TREE_OBJECTID 9ULL
  56
  57/* tracks free space in block groups. */
  58#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
  59
  60/* device stats in the device tree */
  61#define BTRFS_DEV_STATS_OBJECTID 0ULL
  62
  63/* for storing balance parameters in the root tree */
  64#define BTRFS_BALANCE_OBJECTID -4ULL
  65
  66/* orhpan objectid for tracking unlinked/truncated files */
  67#define BTRFS_ORPHAN_OBJECTID -5ULL
  68
  69/* does write ahead logging to speed up fsyncs */
  70#define BTRFS_TREE_LOG_OBJECTID -6ULL
  71#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
  72
  73/* for space balancing */
  74#define BTRFS_TREE_RELOC_OBJECTID -8ULL
  75#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
  76
  77/*
  78 * extent checksums all have this objectid
  79 * this allows them to share the logging tree
  80 * for fsyncs
  81 */
  82#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
  83
  84/* For storing free space cache */
  85#define BTRFS_FREE_SPACE_OBJECTID -11ULL
  86
  87/*
  88 * The inode number assigned to the special inode for storing
  89 * free ino cache
  90 */
  91#define BTRFS_FREE_INO_OBJECTID -12ULL
  92
  93/* dummy objectid represents multiple objectids */
  94#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
  95
  96/*
  97 * All files have objectids in this range.
  98 */
  99#define BTRFS_FIRST_FREE_OBJECTID 256ULL
 100#define BTRFS_LAST_FREE_OBJECTID -256ULL
 101#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
 102
 103
 104/*
 105 * the device items go into the chunk tree.  The key is in the form
 106 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
 107 */
 108#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 109
 110#define BTRFS_BTREE_INODE_OBJECTID 1
 111
 112#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 113
 114#define BTRFS_DEV_REPLACE_DEVID 0ULL
 115
 116/*
 117 * inode items have the data typically returned from stat and store other
 118 * info about object characteristics.  There is one for every file and dir in
 119 * the FS
 120 */
 121#define BTRFS_INODE_ITEM_KEY            1
 122#define BTRFS_INODE_REF_KEY             12
 123#define BTRFS_INODE_EXTREF_KEY          13
 124#define BTRFS_XATTR_ITEM_KEY            24
 125#define BTRFS_ORPHAN_ITEM_KEY           48
 126/* reserve 2-15 close to the inode for later flexibility */
 127
 128/*
 129 * dir items are the name -> inode pointers in a directory.  There is one
 130 * for every name in a directory.
 131 */
 132#define BTRFS_DIR_LOG_ITEM_KEY  60
 133#define BTRFS_DIR_LOG_INDEX_KEY 72
 134#define BTRFS_DIR_ITEM_KEY      84
 135#define BTRFS_DIR_INDEX_KEY     96
 136/*
 137 * extent data is for file data
 138 */
 139#define BTRFS_EXTENT_DATA_KEY   108
 140
 141/*
 142 * extent csums are stored in a separate tree and hold csums for
 143 * an entire extent on disk.
 144 */
 145#define BTRFS_EXTENT_CSUM_KEY   128
 146
 147/*
 148 * root items point to tree roots.  They are typically in the root
 149 * tree used by the super block to find all the other trees
 150 */
 151#define BTRFS_ROOT_ITEM_KEY     132
 152
 153/*
 154 * root backrefs tie subvols and snapshots to the directory entries that
 155 * reference them
 156 */
 157#define BTRFS_ROOT_BACKREF_KEY  144
 158
 159/*
 160 * root refs make a fast index for listing all of the snapshots and
 161 * subvolumes referenced by a given root.  They point directly to the
 162 * directory item in the root that references the subvol
 163 */
 164#define BTRFS_ROOT_REF_KEY      156
 165
 166/*
 167 * extent items are in the extent map tree.  These record which blocks
 168 * are used, and how many references there are to each block
 169 */
 170#define BTRFS_EXTENT_ITEM_KEY   168
 171
 172/*
 173 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
 174 * the length, so we save the level in key->offset instead of the length.
 175 */
 176#define BTRFS_METADATA_ITEM_KEY 169
 177
 178#define BTRFS_TREE_BLOCK_REF_KEY        176
 179
 180#define BTRFS_EXTENT_DATA_REF_KEY       178
 181
 182#define BTRFS_EXTENT_REF_V0_KEY         180
 183
 184#define BTRFS_SHARED_BLOCK_REF_KEY      182
 185
 186#define BTRFS_SHARED_DATA_REF_KEY       184
 187
 188/*
 189 * block groups give us hints into the extent allocation trees.  Which
 190 * blocks are free etc etc
 191 */
 192#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
 193
 194/*
 195 * Every block group is represented in the free space tree by a free space info
 196 * item, which stores some accounting information. It is keyed on
 197 * (block_group_start, FREE_SPACE_INFO, block_group_length).
 198 */
 199#define BTRFS_FREE_SPACE_INFO_KEY 198
 200
 201/*
 202 * A free space extent tracks an extent of space that is free in a block group.
 203 * It is keyed on (start, FREE_SPACE_EXTENT, length).
 204 */
 205#define BTRFS_FREE_SPACE_EXTENT_KEY 199
 206
 207/*
 208 * When a block group becomes very fragmented, we convert it to use bitmaps
 209 * instead of extents. A free space bitmap is keyed on
 210 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
 211 * (length / sectorsize) bits.
 212 */
 213#define BTRFS_FREE_SPACE_BITMAP_KEY 200
 214
 215#define BTRFS_DEV_EXTENT_KEY    204
 216#define BTRFS_DEV_ITEM_KEY      216
 217#define BTRFS_CHUNK_ITEM_KEY    228
 218
 219/*
 220 * Records the overall state of the qgroups.
 221 * There's only one instance of this key present,
 222 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
 223 */
 224#define BTRFS_QGROUP_STATUS_KEY         240
 225/*
 226 * Records the currently used space of the qgroup.
 227 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
 228 */
 229#define BTRFS_QGROUP_INFO_KEY           242
 230/*
 231 * Contains the user configured limits for the qgroup.
 232 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
 233 */
 234#define BTRFS_QGROUP_LIMIT_KEY          244
 235/*
 236 * Records the child-parent relationship of qgroups. For
 237 * each relation, 2 keys are present:
 238 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
 239 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
 240 */
 241#define BTRFS_QGROUP_RELATION_KEY       246
 242
 243/*
 244 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
 245 */
 246#define BTRFS_BALANCE_ITEM_KEY  248
 247
 248/*
 249 * The key type for tree items that are stored persistently, but do not need to
 250 * exist for extended period of time. The items can exist in any tree.
 251 *
 252 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
 253 *
 254 * Existing items:
 255 *
 256 * - balance status item
 257 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
 258 */
 259#define BTRFS_TEMPORARY_ITEM_KEY        248
 260
 261/*
 262 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
 263 */
 264#define BTRFS_DEV_STATS_KEY             249
 265
 266/*
 267 * The key type for tree items that are stored persistently and usually exist
 268 * for a long period, eg. filesystem lifetime. The item kinds can be status
 269 * information, stats or preference values. The item can exist in any tree.
 270 *
 271 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
 272 *
 273 * Existing items:
 274 *
 275 * - device statistics, store IO stats in the device tree, one key for all
 276 *   stats
 277 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
 278 */
 279#define BTRFS_PERSISTENT_ITEM_KEY       249
 280
 281/*
 282 * Persistantly stores the device replace state in the device tree.
 283 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
 284 */
 285#define BTRFS_DEV_REPLACE_KEY   250
 286
 287/*
 288 * Stores items that allow to quickly map UUIDs to something else.
 289 * These items are part of the filesystem UUID tree.
 290 * The key is built like this:
 291 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
 292 */
 293#if BTRFS_UUID_SIZE != 16
 294#error "UUID items require BTRFS_UUID_SIZE == 16!"
 295#endif
 296#define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
 297#define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
 298                                                 * received subvols */
 299
 300/*
 301 * string items are for debugging.  They just store a short string of
 302 * data in the FS
 303 */
 304#define BTRFS_STRING_ITEM_KEY   253
 305
 306
 307
 308/* 32 bytes in various csum fields */
 309#define BTRFS_CSUM_SIZE 32
 310
 311/* csum types */
 312#define BTRFS_CSUM_TYPE_CRC32   0
 313
 314/*
 315 * flags definitions for directory entry item type
 316 *
 317 * Used by:
 318 * struct btrfs_dir_item.type
 319 */
 320#define BTRFS_FT_UNKNOWN        0
 321#define BTRFS_FT_REG_FILE       1
 322#define BTRFS_FT_DIR            2
 323#define BTRFS_FT_CHRDEV         3
 324#define BTRFS_FT_BLKDEV         4
 325#define BTRFS_FT_FIFO           5
 326#define BTRFS_FT_SOCK           6
 327#define BTRFS_FT_SYMLINK        7
 328#define BTRFS_FT_XATTR          8
 329#define BTRFS_FT_MAX            9
 330
 331/*
 332 * The key defines the order in the tree, and so it also defines (optimal)
 333 * block layout.
 334 *
 335 * objectid corresponds to the inode number.
 336 *
 337 * type tells us things about the object, and is a kind of stream selector.
 338 * so for a given inode, keys with type of 1 might refer to the inode data,
 339 * type of 2 may point to file data in the btree and type == 3 may point to
 340 * extents.
 341 *
 342 * offset is the starting byte offset for this key in the stream.
 343 */
 344
 345struct btrfs_key {
 346        __u64 objectid;
 347        __u8 type;
 348        __u64 offset;
 349} __attribute__ ((__packed__));
 350
 351struct btrfs_dev_item {
 352        /* the internal btrfs device id */
 353        __u64 devid;
 354
 355        /* size of the device */
 356        __u64 total_bytes;
 357
 358        /* bytes used */
 359        __u64 bytes_used;
 360
 361        /* optimal io alignment for this device */
 362        __u32 io_align;
 363
 364        /* optimal io width for this device */
 365        __u32 io_width;
 366
 367        /* minimal io size for this device */
 368        __u32 sector_size;
 369
 370        /* type and info about this device */
 371        __u64 type;
 372
 373        /* expected generation for this device */
 374        __u64 generation;
 375
 376        /*
 377         * starting byte of this partition on the device,
 378         * to allow for stripe alignment in the future
 379         */
 380        __u64 start_offset;
 381
 382        /* grouping information for allocation decisions */
 383        __u32 dev_group;
 384
 385        /* seek speed 0-100 where 100 is fastest */
 386        __u8 seek_speed;
 387
 388        /* bandwidth 0-100 where 100 is fastest */
 389        __u8 bandwidth;
 390
 391        /* btrfs generated uuid for this device */
 392        __u8 uuid[BTRFS_UUID_SIZE];
 393
 394        /* uuid of FS who owns this device */
 395        __u8 fsid[BTRFS_UUID_SIZE];
 396} __attribute__ ((__packed__));
 397
 398struct btrfs_stripe {
 399        __u64 devid;
 400        __u64 offset;
 401        __u8 dev_uuid[BTRFS_UUID_SIZE];
 402} __attribute__ ((__packed__));
 403
 404struct btrfs_chunk {
 405        /* size of this chunk in bytes */
 406        __u64 length;
 407
 408        /* objectid of the root referencing this chunk */
 409        __u64 owner;
 410
 411        __u64 stripe_len;
 412        __u64 type;
 413
 414        /* optimal io alignment for this chunk */
 415        __u32 io_align;
 416
 417        /* optimal io width for this chunk */
 418        __u32 io_width;
 419
 420        /* minimal io size for this chunk */
 421        __u32 sector_size;
 422
 423        /* 2^16 stripes is quite a lot, a second limit is the size of a single
 424         * item in the btree
 425         */
 426        __u16 num_stripes;
 427
 428        /* sub stripes only matter for raid10 */
 429        __u16 sub_stripes;
 430        struct btrfs_stripe stripe;
 431        /* additional stripes go here */
 432} __attribute__ ((__packed__));
 433
 434#define BTRFS_FREE_SPACE_EXTENT 1
 435#define BTRFS_FREE_SPACE_BITMAP 2
 436
 437struct btrfs_free_space_entry {
 438        __u64 offset;
 439        __u64 bytes;
 440        __u8 type;
 441} __attribute__ ((__packed__));
 442
 443struct btrfs_free_space_header {
 444        struct btrfs_key location;
 445        __u64 generation;
 446        __u64 num_entries;
 447        __u64 num_bitmaps;
 448} __attribute__ ((__packed__));
 449
 450#define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
 451#define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
 452
 453/* Super block flags */
 454/* Errors detected */
 455#define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
 456
 457#define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
 458#define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
 459
 460
 461/*
 462 * items in the extent btree are used to record the objectid of the
 463 * owner of the block and the number of references
 464 */
 465
 466struct btrfs_extent_item {
 467        __u64 refs;
 468        __u64 generation;
 469        __u64 flags;
 470} __attribute__ ((__packed__));
 471
 472
 473#define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
 474#define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
 475
 476/* following flags only apply to tree blocks */
 477
 478/* use full backrefs for extent pointers in the block */
 479#define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
 480
 481/*
 482 * this flag is only used internally by scrub and may be changed at any time
 483 * it is only declared here to avoid collisions
 484 */
 485#define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
 486
 487struct btrfs_tree_block_info {
 488        struct btrfs_key key;
 489        __u8 level;
 490} __attribute__ ((__packed__));
 491
 492struct btrfs_extent_data_ref {
 493        __u64 root;
 494        __u64 objectid;
 495        __u64 offset;
 496        __u32 count;
 497} __attribute__ ((__packed__));
 498
 499struct btrfs_shared_data_ref {
 500        __u32 count;
 501} __attribute__ ((__packed__));
 502
 503struct btrfs_extent_inline_ref {
 504        __u8 type;
 505        __u64 offset;
 506} __attribute__ ((__packed__));
 507
 508/* dev extents record free space on individual devices.  The owner
 509 * field points back to the chunk allocation mapping tree that allocated
 510 * the extent.  The chunk tree uuid field is a way to double check the owner
 511 */
 512struct btrfs_dev_extent {
 513        __u64 chunk_tree;
 514        __u64 chunk_objectid;
 515        __u64 chunk_offset;
 516        __u64 length;
 517        __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 518} __attribute__ ((__packed__));
 519
 520struct btrfs_inode_ref {
 521        __u64 index;
 522        __u16 name_len;
 523        /* name goes here */
 524} __attribute__ ((__packed__));
 525
 526struct btrfs_inode_extref {
 527        __u64 parent_objectid;
 528        __u64 index;
 529        __u16 name_len;
 530        __u8   name[0];
 531        /* name goes here */
 532} __attribute__ ((__packed__));
 533
 534struct btrfs_timespec {
 535        __u64 sec;
 536        __u32 nsec;
 537} __attribute__ ((__packed__));
 538
 539struct btrfs_inode_item {
 540        /* nfs style generation number */
 541        __u64 generation;
 542        /* transid that last touched this inode */
 543        __u64 transid;
 544        __u64 size;
 545        __u64 nbytes;
 546        __u64 block_group;
 547        __u32 nlink;
 548        __u32 uid;
 549        __u32 gid;
 550        __u32 mode;
 551        __u64 rdev;
 552        __u64 flags;
 553
 554        /* modification sequence number for NFS */
 555        __u64 sequence;
 556
 557        /*
 558         * a little future expansion, for more than this we can
 559         * just grow the inode item and version it
 560         */
 561        __u64 reserved[4];
 562        struct btrfs_timespec atime;
 563        struct btrfs_timespec ctime;
 564        struct btrfs_timespec mtime;
 565        struct btrfs_timespec otime;
 566} __attribute__ ((__packed__));
 567
 568struct btrfs_dir_log_item {
 569        __u64 end;
 570} __attribute__ ((__packed__));
 571
 572struct btrfs_dir_item {
 573        struct btrfs_key location;
 574        __u64 transid;
 575        __u16 data_len;
 576        __u16 name_len;
 577        __u8 type;
 578} __attribute__ ((__packed__));
 579
 580#define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
 581
 582/*
 583 * Internal in-memory flag that a subvolume has been marked for deletion but
 584 * still visible as a directory
 585 */
 586#define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
 587
 588struct btrfs_root_item {
 589        struct btrfs_inode_item inode;
 590        __u64 generation;
 591        __u64 root_dirid;
 592        __u64 bytenr;
 593        __u64 byte_limit;
 594        __u64 bytes_used;
 595        __u64 last_snapshot;
 596        __u64 flags;
 597        __u32 refs;
 598        struct btrfs_key drop_progress;
 599        __u8 drop_level;
 600        __u8 level;
 601
 602        /*
 603         * The following fields appear after subvol_uuids+subvol_times
 604         * were introduced.
 605         */
 606
 607        /*
 608         * This generation number is used to test if the new fields are valid
 609         * and up to date while reading the root item. Every time the root item
 610         * is written out, the "generation" field is copied into this field. If
 611         * anyone ever mounted the fs with an older kernel, we will have
 612         * mismatching generation values here and thus must invalidate the
 613         * new fields. See btrfs_update_root and btrfs_find_last_root for
 614         * details.
 615         * the offset of generation_v2 is also used as the start for the memset
 616         * when invalidating the fields.
 617         */
 618        __u64 generation_v2;
 619        __u8 uuid[BTRFS_UUID_SIZE];
 620        __u8 parent_uuid[BTRFS_UUID_SIZE];
 621        __u8 received_uuid[BTRFS_UUID_SIZE];
 622        __u64 ctransid; /* updated when an inode changes */
 623        __u64 otransid; /* trans when created */
 624        __u64 stransid; /* trans when sent. non-zero for received subvol */
 625        __u64 rtransid; /* trans when received. non-zero for received subvol */
 626        struct btrfs_timespec ctime;
 627        struct btrfs_timespec otime;
 628        struct btrfs_timespec stime;
 629        struct btrfs_timespec rtime;
 630        __u64 reserved[8]; /* for future */
 631} __attribute__ ((__packed__));
 632
 633/*
 634 * this is used for both forward and backward root refs
 635 */
 636struct btrfs_root_ref {
 637        __u64 dirid;
 638        __u64 sequence;
 639        __u16 name_len;
 640} __attribute__ ((__packed__));
 641
 642#define BTRFS_FILE_EXTENT_INLINE 0
 643#define BTRFS_FILE_EXTENT_REG 1
 644#define BTRFS_FILE_EXTENT_PREALLOC 2
 645
 646enum btrfs_compression_type {
 647        BTRFS_COMPRESS_NONE  = 0,
 648        BTRFS_COMPRESS_ZLIB  = 1,
 649        BTRFS_COMPRESS_LZO   = 2,
 650        BTRFS_COMPRESS_ZSTD  = 3,
 651        BTRFS_COMPRESS_TYPES = 3,
 652        BTRFS_COMPRESS_LAST  = 4,
 653};
 654
 655struct btrfs_file_extent_item {
 656        /*
 657         * transaction id that created this extent
 658         */
 659        __u64 generation;
 660        /*
 661         * max number of bytes to hold this extent in ram
 662         * when we split a compressed extent we can't know how big
 663         * each of the resulting pieces will be.  So, this is
 664         * an upper limit on the size of the extent in ram instead of
 665         * an exact limit.
 666         */
 667        __u64 ram_bytes;
 668
 669        /*
 670         * 32 bits for the various ways we might encode the data,
 671         * including compression and encryption.  If any of these
 672         * are set to something a given disk format doesn't understand
 673         * it is treated like an incompat flag for reading and writing,
 674         * but not for stat.
 675         */
 676        __u8 compression;
 677        __u8 encryption;
 678        __u16 other_encoding; /* spare for later use */
 679
 680        /* are we inline data or a real extent? */
 681        __u8 type;
 682
 683        /*
 684         * disk space consumed by the extent, checksum blocks are included
 685         * in these numbers
 686         *
 687         * At this offset in the structure, the inline extent data start.
 688         */
 689        __u64 disk_bytenr;
 690        __u64 disk_num_bytes;
 691        /*
 692         * the logical offset in file blocks (no csums)
 693         * this extent record is for.  This allows a file extent to point
 694         * into the middle of an existing extent on disk, sharing it
 695         * between two snapshots (useful if some bytes in the middle of the
 696         * extent have changed
 697         */
 698        __u64 offset;
 699        /*
 700         * the logical number of file blocks (no csums included).  This
 701         * always reflects the size uncompressed and without encoding.
 702         */
 703        __u64 num_bytes;
 704
 705} __attribute__ ((__packed__));
 706
 707struct btrfs_csum_item {
 708        __u8 csum;
 709} __attribute__ ((__packed__));
 710
 711/* different types of block groups (and chunks) */
 712#define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
 713#define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
 714#define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
 715#define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
 716#define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
 717#define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
 718#define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
 719#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
 720#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
 721#define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
 722                                         BTRFS_SPACE_INFO_GLOBAL_RSV)
 723
 724enum btrfs_raid_types {
 725        BTRFS_RAID_RAID10,
 726        BTRFS_RAID_RAID1,
 727        BTRFS_RAID_DUP,
 728        BTRFS_RAID_RAID0,
 729        BTRFS_RAID_SINGLE,
 730        BTRFS_RAID_RAID5,
 731        BTRFS_RAID_RAID6,
 732        BTRFS_NR_RAID_TYPES
 733};
 734
 735#define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
 736                                         BTRFS_BLOCK_GROUP_SYSTEM |  \
 737                                         BTRFS_BLOCK_GROUP_METADATA)
 738
 739#define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
 740                                         BTRFS_BLOCK_GROUP_RAID1 |   \
 741                                         BTRFS_BLOCK_GROUP_RAID5 |   \
 742                                         BTRFS_BLOCK_GROUP_RAID6 |   \
 743                                         BTRFS_BLOCK_GROUP_DUP |     \
 744                                         BTRFS_BLOCK_GROUP_RAID10)
 745#define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
 746                                         BTRFS_BLOCK_GROUP_RAID6)
 747
 748/*
 749 * We need a bit for restriper to be able to tell when chunks of type
 750 * SINGLE are available.  This "extended" profile format is used in
 751 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 752 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 753 * to avoid remappings between two formats in future.
 754 */
 755#define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
 756
 757/*
 758 * A fake block group type that is used to communicate global block reserve
 759 * size to userspace via the SPACE_INFO ioctl.
 760 */
 761#define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
 762
 763#define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
 764                                         BTRFS_AVAIL_ALLOC_BIT_SINGLE)
 765
 766#endif /* __BTRFS_BTRFS_TREE_H__ */
 767