uboot/include/linux/mtd/nand.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  Copyright 2017 - Free Electrons
   4 *
   5 *  Authors:
   6 *      Boris Brezillon <boris.brezillon@free-electrons.com>
   7 *      Peter Pan <peterpandong@micron.com>
   8 */
   9
  10#ifndef __LINUX_MTD_NAND_H
  11#define __LINUX_MTD_NAND_H
  12
  13#include <linux/mtd/mtd.h>
  14
  15/**
  16 * struct nand_memory_organization - Memory organization structure
  17 * @bits_per_cell: number of bits per NAND cell
  18 * @pagesize: page size
  19 * @oobsize: OOB area size
  20 * @pages_per_eraseblock: number of pages per eraseblock
  21 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
  22 * @planes_per_lun: number of planes per LUN
  23 * @luns_per_target: number of LUN per target (target is a synonym for die)
  24 * @ntargets: total number of targets exposed by the NAND device
  25 */
  26struct nand_memory_organization {
  27        unsigned int bits_per_cell;
  28        unsigned int pagesize;
  29        unsigned int oobsize;
  30        unsigned int pages_per_eraseblock;
  31        unsigned int eraseblocks_per_lun;
  32        unsigned int planes_per_lun;
  33        unsigned int luns_per_target;
  34        unsigned int ntargets;
  35};
  36
  37#define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt)        \
  38        {                                                       \
  39                .bits_per_cell = (bpc),                         \
  40                .pagesize = (ps),                               \
  41                .oobsize = (os),                                \
  42                .pages_per_eraseblock = (ppe),                  \
  43                .eraseblocks_per_lun = (epl),                   \
  44                .planes_per_lun = (ppl),                        \
  45                .luns_per_target = (lpt),                       \
  46                .ntargets = (nt),                               \
  47        }
  48
  49/**
  50 * struct nand_row_converter - Information needed to convert an absolute offset
  51 *                             into a row address
  52 * @lun_addr_shift: position of the LUN identifier in the row address
  53 * @eraseblock_addr_shift: position of the eraseblock identifier in the row
  54 *                         address
  55 */
  56struct nand_row_converter {
  57        unsigned int lun_addr_shift;
  58        unsigned int eraseblock_addr_shift;
  59};
  60
  61/**
  62 * struct nand_pos - NAND position object
  63 * @target: the NAND target/die
  64 * @lun: the LUN identifier
  65 * @plane: the plane within the LUN
  66 * @eraseblock: the eraseblock within the LUN
  67 * @page: the page within the LUN
  68 *
  69 * These information are usually used by specific sub-layers to select the
  70 * appropriate target/die and generate a row address to pass to the device.
  71 */
  72struct nand_pos {
  73        unsigned int target;
  74        unsigned int lun;
  75        unsigned int plane;
  76        unsigned int eraseblock;
  77        unsigned int page;
  78};
  79
  80/**
  81 * struct nand_page_io_req - NAND I/O request object
  82 * @pos: the position this I/O request is targeting
  83 * @dataoffs: the offset within the page
  84 * @datalen: number of data bytes to read from/write to this page
  85 * @databuf: buffer to store data in or get data from
  86 * @ooboffs: the OOB offset within the page
  87 * @ooblen: the number of OOB bytes to read from/write to this page
  88 * @oobbuf: buffer to store OOB data in or get OOB data from
  89 * @mode: one of the %MTD_OPS_XXX mode
  90 *
  91 * This object is used to pass per-page I/O requests to NAND sub-layers. This
  92 * way all useful information are already formatted in a useful way and
  93 * specific NAND layers can focus on translating these information into
  94 * specific commands/operations.
  95 */
  96struct nand_page_io_req {
  97        struct nand_pos pos;
  98        unsigned int dataoffs;
  99        unsigned int datalen;
 100        union {
 101                const void *out;
 102                void *in;
 103        } databuf;
 104        unsigned int ooboffs;
 105        unsigned int ooblen;
 106        union {
 107                const void *out;
 108                void *in;
 109        } oobbuf;
 110        int mode;
 111};
 112
 113/**
 114 * struct nand_ecc_req - NAND ECC requirements
 115 * @strength: ECC strength
 116 * @step_size: ECC step/block size
 117 */
 118struct nand_ecc_req {
 119        unsigned int strength;
 120        unsigned int step_size;
 121};
 122
 123#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
 124
 125/**
 126 * struct nand_bbt - bad block table object
 127 * @cache: in memory BBT cache
 128 */
 129struct nand_bbt {
 130        unsigned long *cache;
 131};
 132
 133struct nand_device;
 134
 135/**
 136 * struct nand_ops - NAND operations
 137 * @erase: erase a specific block. No need to check if the block is bad before
 138 *         erasing, this has been taken care of by the generic NAND layer
 139 * @markbad: mark a specific block bad. No need to check if the block is
 140 *           already marked bad, this has been taken care of by the generic
 141 *           NAND layer. This method should just write the BBM (Bad Block
 142 *           Marker) so that future call to struct_nand_ops->isbad() return
 143 *           true
 144 * @isbad: check whether a block is bad or not. This method should just read
 145 *         the BBM and return whether the block is bad or not based on what it
 146 *         reads
 147 *
 148 * These are all low level operations that should be implemented by specialized
 149 * NAND layers (SPI NAND, raw NAND, ...).
 150 */
 151struct nand_ops {
 152        int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
 153        int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
 154        bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
 155};
 156
 157/**
 158 * struct nand_device - NAND device
 159 * @mtd: MTD instance attached to the NAND device
 160 * @memorg: memory layout
 161 * @eccreq: ECC requirements
 162 * @rowconv: position to row address converter
 163 * @bbt: bad block table info
 164 * @ops: NAND operations attached to the NAND device
 165 *
 166 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
 167 * should declare their own NAND object embedding a nand_device struct (that's
 168 * how inheritance is done).
 169 * struct_nand_device->memorg and struct_nand_device->eccreq should be filled
 170 * at device detection time to reflect the NAND device
 171 * capabilities/requirements. Once this is done nanddev_init() can be called.
 172 * It will take care of converting NAND information into MTD ones, which means
 173 * the specialized NAND layers should never manually tweak
 174 * struct_nand_device->mtd except for the ->_read/write() hooks.
 175 */
 176struct nand_device {
 177        struct mtd_info *mtd;
 178        struct nand_memory_organization memorg;
 179        struct nand_ecc_req eccreq;
 180        struct nand_row_converter rowconv;
 181        struct nand_bbt bbt;
 182        const struct nand_ops *ops;
 183};
 184
 185/**
 186 * struct nand_io_iter - NAND I/O iterator
 187 * @req: current I/O request
 188 * @oobbytes_per_page: maximum number of OOB bytes per page
 189 * @dataleft: remaining number of data bytes to read/write
 190 * @oobleft: remaining number of OOB bytes to read/write
 191 *
 192 * Can be used by specialized NAND layers to iterate over all pages covered
 193 * by an MTD I/O request, which should greatly simplifies the boiler-plate
 194 * code needed to read/write data from/to a NAND device.
 195 */
 196struct nand_io_iter {
 197        struct nand_page_io_req req;
 198        unsigned int oobbytes_per_page;
 199        unsigned int dataleft;
 200        unsigned int oobleft;
 201};
 202
 203/**
 204 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
 205 * @mtd: MTD instance
 206 *
 207 * Return: the NAND device embedding @mtd.
 208 */
 209static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
 210{
 211        return mtd->priv;
 212}
 213
 214/**
 215 * nanddev_to_mtd() - Get the MTD device attached to a NAND device
 216 * @nand: NAND device
 217 *
 218 * Return: the MTD device embedded in @nand.
 219 */
 220static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
 221{
 222        return nand->mtd;
 223}
 224
 225/*
 226 * nanddev_bits_per_cell() - Get the number of bits per cell
 227 * @nand: NAND device
 228 *
 229 * Return: the number of bits per cell.
 230 */
 231static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
 232{
 233        return nand->memorg.bits_per_cell;
 234}
 235
 236/**
 237 * nanddev_page_size() - Get NAND page size
 238 * @nand: NAND device
 239 *
 240 * Return: the page size.
 241 */
 242static inline size_t nanddev_page_size(const struct nand_device *nand)
 243{
 244        return nand->memorg.pagesize;
 245}
 246
 247/**
 248 * nanddev_per_page_oobsize() - Get NAND OOB size
 249 * @nand: NAND device
 250 *
 251 * Return: the OOB size.
 252 */
 253static inline unsigned int
 254nanddev_per_page_oobsize(const struct nand_device *nand)
 255{
 256        return nand->memorg.oobsize;
 257}
 258
 259/**
 260 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
 261 * @nand: NAND device
 262 *
 263 * Return: the number of pages per eraseblock.
 264 */
 265static inline unsigned int
 266nanddev_pages_per_eraseblock(const struct nand_device *nand)
 267{
 268        return nand->memorg.pages_per_eraseblock;
 269}
 270
 271/**
 272 * nanddev_per_page_oobsize() - Get NAND erase block size
 273 * @nand: NAND device
 274 *
 275 * Return: the eraseblock size.
 276 */
 277static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
 278{
 279        return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
 280}
 281
 282/**
 283 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
 284 * @nand: NAND device
 285 *
 286 * Return: the number of eraseblocks per LUN.
 287 */
 288static inline unsigned int
 289nanddev_eraseblocks_per_lun(const struct nand_device *nand)
 290{
 291        return nand->memorg.eraseblocks_per_lun;
 292}
 293
 294/**
 295 * nanddev_target_size() - Get the total size provided by a single target/die
 296 * @nand: NAND device
 297 *
 298 * Return: the total size exposed by a single target/die in bytes.
 299 */
 300static inline u64 nanddev_target_size(const struct nand_device *nand)
 301{
 302        return (u64)nand->memorg.luns_per_target *
 303               nand->memorg.eraseblocks_per_lun *
 304               nand->memorg.pages_per_eraseblock *
 305               nand->memorg.pagesize;
 306}
 307
 308/**
 309 * nanddev_ntarget() - Get the total of targets
 310 * @nand: NAND device
 311 *
 312 * Return: the number of targets/dies exposed by @nand.
 313 */
 314static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
 315{
 316        return nand->memorg.ntargets;
 317}
 318
 319/**
 320 * nanddev_neraseblocks() - Get the total number of erasablocks
 321 * @nand: NAND device
 322 *
 323 * Return: the total number of eraseblocks exposed by @nand.
 324 */
 325static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
 326{
 327        return (u64)nand->memorg.luns_per_target *
 328               nand->memorg.eraseblocks_per_lun *
 329               nand->memorg.pages_per_eraseblock;
 330}
 331
 332/**
 333 * nanddev_size() - Get NAND size
 334 * @nand: NAND device
 335 *
 336 * Return: the total size (in bytes) exposed by @nand.
 337 */
 338static inline u64 nanddev_size(const struct nand_device *nand)
 339{
 340        return nanddev_target_size(nand) * nanddev_ntargets(nand);
 341}
 342
 343/**
 344 * nanddev_get_memorg() - Extract memory organization info from a NAND device
 345 * @nand: NAND device
 346 *
 347 * This can be used by the upper layer to fill the memorg info before calling
 348 * nanddev_init().
 349 *
 350 * Return: the memorg object embedded in the NAND device.
 351 */
 352static inline struct nand_memory_organization *
 353nanddev_get_memorg(struct nand_device *nand)
 354{
 355        return &nand->memorg;
 356}
 357
 358int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
 359                 struct module *owner);
 360void nanddev_cleanup(struct nand_device *nand);
 361
 362/**
 363 * nanddev_register() - Register a NAND device
 364 * @nand: NAND device
 365 *
 366 * Register a NAND device.
 367 * This function is just a wrapper around mtd_device_register()
 368 * registering the MTD device embedded in @nand.
 369 *
 370 * Return: 0 in case of success, a negative error code otherwise.
 371 */
 372static inline int nanddev_register(struct nand_device *nand)
 373{
 374        return mtd_device_register(nand->mtd, NULL, 0);
 375}
 376
 377/**
 378 * nanddev_unregister() - Unregister a NAND device
 379 * @nand: NAND device
 380 *
 381 * Unregister a NAND device.
 382 * This function is just a wrapper around mtd_device_unregister()
 383 * unregistering the MTD device embedded in @nand.
 384 *
 385 * Return: 0 in case of success, a negative error code otherwise.
 386 */
 387static inline int nanddev_unregister(struct nand_device *nand)
 388{
 389        return mtd_device_unregister(nand->mtd);
 390}
 391
 392/**
 393 * nanddev_set_of_node() - Attach a DT node to a NAND device
 394 * @nand: NAND device
 395 * @np: DT node
 396 *
 397 * Attach a DT node to a NAND device.
 398 */
 399static inline void nanddev_set_of_node(struct nand_device *nand,
 400                                       const struct device_node *np)
 401{
 402        mtd_set_of_node(nand->mtd, np);
 403}
 404
 405/**
 406 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
 407 * @nand: NAND device
 408 *
 409 * Return: the DT node attached to @nand.
 410 */
 411static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand)
 412{
 413        return mtd_get_of_node(nand->mtd);
 414}
 415
 416/**
 417 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
 418 * @nand: NAND device
 419 * @offs: absolute NAND offset (usually passed by the MTD layer)
 420 * @pos: a NAND position object to fill in
 421 *
 422 * Converts @offs into a nand_pos representation.
 423 *
 424 * Return: the offset within the NAND page pointed by @pos.
 425 */
 426static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
 427                                               loff_t offs,
 428                                               struct nand_pos *pos)
 429{
 430        unsigned int pageoffs;
 431        u64 tmp = offs;
 432
 433        pageoffs = do_div(tmp, nand->memorg.pagesize);
 434        pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
 435        pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
 436        pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
 437        pos->lun = do_div(tmp, nand->memorg.luns_per_target);
 438        pos->target = tmp;
 439
 440        return pageoffs;
 441}
 442
 443/**
 444 * nanddev_pos_cmp() - Compare two NAND positions
 445 * @a: First NAND position
 446 * @b: Second NAND position
 447 *
 448 * Compares two NAND positions.
 449 *
 450 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
 451 */
 452static inline int nanddev_pos_cmp(const struct nand_pos *a,
 453                                  const struct nand_pos *b)
 454{
 455        if (a->target != b->target)
 456                return a->target < b->target ? -1 : 1;
 457
 458        if (a->lun != b->lun)
 459                return a->lun < b->lun ? -1 : 1;
 460
 461        if (a->eraseblock != b->eraseblock)
 462                return a->eraseblock < b->eraseblock ? -1 : 1;
 463
 464        if (a->page != b->page)
 465                return a->page < b->page ? -1 : 1;
 466
 467        return 0;
 468}
 469
 470/**
 471 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
 472 * @nand: NAND device
 473 * @pos: the NAND position to convert
 474 *
 475 * Converts @pos NAND position into an absolute offset.
 476 *
 477 * Return: the absolute offset. Note that @pos points to the beginning of a
 478 *         page, if one wants to point to a specific offset within this page
 479 *         the returned offset has to be adjusted manually.
 480 */
 481static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
 482                                         const struct nand_pos *pos)
 483{
 484        unsigned int npages;
 485
 486        npages = pos->page +
 487                 ((pos->eraseblock +
 488                   (pos->lun +
 489                    (pos->target * nand->memorg.luns_per_target)) *
 490                   nand->memorg.eraseblocks_per_lun) *
 491                  nand->memorg.pages_per_eraseblock);
 492
 493        return (loff_t)npages * nand->memorg.pagesize;
 494}
 495
 496/**
 497 * nanddev_pos_to_row() - Extract a row address from a NAND position
 498 * @nand: NAND device
 499 * @pos: the position to convert
 500 *
 501 * Converts a NAND position into a row address that can then be passed to the
 502 * device.
 503 *
 504 * Return: the row address extracted from @pos.
 505 */
 506static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
 507                                              const struct nand_pos *pos)
 508{
 509        return (pos->lun << nand->rowconv.lun_addr_shift) |
 510               (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
 511               pos->page;
 512}
 513
 514/**
 515 * nanddev_pos_next_target() - Move a position to the next target/die
 516 * @nand: NAND device
 517 * @pos: the position to update
 518 *
 519 * Updates @pos to point to the start of the next target/die. Useful when you
 520 * want to iterate over all targets/dies of a NAND device.
 521 */
 522static inline void nanddev_pos_next_target(struct nand_device *nand,
 523                                           struct nand_pos *pos)
 524{
 525        pos->page = 0;
 526        pos->plane = 0;
 527        pos->eraseblock = 0;
 528        pos->lun = 0;
 529        pos->target++;
 530}
 531
 532/**
 533 * nanddev_pos_next_lun() - Move a position to the next LUN
 534 * @nand: NAND device
 535 * @pos: the position to update
 536 *
 537 * Updates @pos to point to the start of the next LUN. Useful when you want to
 538 * iterate over all LUNs of a NAND device.
 539 */
 540static inline void nanddev_pos_next_lun(struct nand_device *nand,
 541                                        struct nand_pos *pos)
 542{
 543        if (pos->lun >= nand->memorg.luns_per_target - 1)
 544                return nanddev_pos_next_target(nand, pos);
 545
 546        pos->lun++;
 547        pos->page = 0;
 548        pos->plane = 0;
 549        pos->eraseblock = 0;
 550}
 551
 552/**
 553 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
 554 * @nand: NAND device
 555 * @pos: the position to update
 556 *
 557 * Updates @pos to point to the start of the next eraseblock. Useful when you
 558 * want to iterate over all eraseblocks of a NAND device.
 559 */
 560static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
 561                                               struct nand_pos *pos)
 562{
 563        if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
 564                return nanddev_pos_next_lun(nand, pos);
 565
 566        pos->eraseblock++;
 567        pos->page = 0;
 568        pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
 569}
 570
 571/**
 572 * nanddev_pos_next_eraseblock() - Move a position to the next page
 573 * @nand: NAND device
 574 * @pos: the position to update
 575 *
 576 * Updates @pos to point to the start of the next page. Useful when you want to
 577 * iterate over all pages of a NAND device.
 578 */
 579static inline void nanddev_pos_next_page(struct nand_device *nand,
 580                                         struct nand_pos *pos)
 581{
 582        if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
 583                return nanddev_pos_next_eraseblock(nand, pos);
 584
 585        pos->page++;
 586}
 587
 588/**
 589 * nand_io_iter_init - Initialize a NAND I/O iterator
 590 * @nand: NAND device
 591 * @offs: absolute offset
 592 * @req: MTD request
 593 * @iter: NAND I/O iterator
 594 *
 595 * Initializes a NAND iterator based on the information passed by the MTD
 596 * layer.
 597 */
 598static inline void nanddev_io_iter_init(struct nand_device *nand,
 599                                        loff_t offs, struct mtd_oob_ops *req,
 600                                        struct nand_io_iter *iter)
 601{
 602        struct mtd_info *mtd = nanddev_to_mtd(nand);
 603
 604        iter->req.mode = req->mode;
 605        iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
 606        iter->req.ooboffs = req->ooboffs;
 607        iter->oobbytes_per_page = mtd_oobavail(mtd, req);
 608        iter->dataleft = req->len;
 609        iter->oobleft = req->ooblen;
 610        iter->req.databuf.in = req->datbuf;
 611        iter->req.datalen = min_t(unsigned int,
 612                                  nand->memorg.pagesize - iter->req.dataoffs,
 613                                  iter->dataleft);
 614        iter->req.oobbuf.in = req->oobbuf;
 615        iter->req.ooblen = min_t(unsigned int,
 616                                 iter->oobbytes_per_page - iter->req.ooboffs,
 617                                 iter->oobleft);
 618}
 619
 620/**
 621 * nand_io_iter_next_page - Move to the next page
 622 * @nand: NAND device
 623 * @iter: NAND I/O iterator
 624 *
 625 * Updates the @iter to point to the next page.
 626 */
 627static inline void nanddev_io_iter_next_page(struct nand_device *nand,
 628                                             struct nand_io_iter *iter)
 629{
 630        nanddev_pos_next_page(nand, &iter->req.pos);
 631        iter->dataleft -= iter->req.datalen;
 632        iter->req.databuf.in += iter->req.datalen;
 633        iter->oobleft -= iter->req.ooblen;
 634        iter->req.oobbuf.in += iter->req.ooblen;
 635        iter->req.dataoffs = 0;
 636        iter->req.ooboffs = 0;
 637        iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
 638                                  iter->dataleft);
 639        iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
 640                                 iter->oobleft);
 641}
 642
 643/**
 644 * nand_io_iter_end - Should end iteration or not
 645 * @nand: NAND device
 646 * @iter: NAND I/O iterator
 647 *
 648 * Check whether @iter has reached the end of the NAND portion it was asked to
 649 * iterate on or not.
 650 *
 651 * Return: true if @iter has reached the end of the iteration request, false
 652 *         otherwise.
 653 */
 654static inline bool nanddev_io_iter_end(struct nand_device *nand,
 655                                       const struct nand_io_iter *iter)
 656{
 657        if (iter->dataleft || iter->oobleft)
 658                return false;
 659
 660        return true;
 661}
 662
 663/**
 664 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
 665 *                         request
 666 * @nand: NAND device
 667 * @start: start address to read/write from
 668 * @req: MTD I/O request
 669 * @iter: NAND I/O iterator
 670 *
 671 * Should be used for iterate over pages that are contained in an MTD request.
 672 */
 673#define nanddev_io_for_each_page(nand, start, req, iter)                \
 674        for (nanddev_io_iter_init(nand, start, req, iter);              \
 675             !nanddev_io_iter_end(nand, iter);                          \
 676             nanddev_io_iter_next_page(nand, iter))
 677
 678bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
 679bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
 680int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
 681int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
 682
 683/* BBT related functions */
 684enum nand_bbt_block_status {
 685        NAND_BBT_BLOCK_STATUS_UNKNOWN,
 686        NAND_BBT_BLOCK_GOOD,
 687        NAND_BBT_BLOCK_WORN,
 688        NAND_BBT_BLOCK_RESERVED,
 689        NAND_BBT_BLOCK_FACTORY_BAD,
 690        NAND_BBT_BLOCK_NUM_STATUS,
 691};
 692
 693int nanddev_bbt_init(struct nand_device *nand);
 694void nanddev_bbt_cleanup(struct nand_device *nand);
 695int nanddev_bbt_update(struct nand_device *nand);
 696int nanddev_bbt_get_block_status(const struct nand_device *nand,
 697                                 unsigned int entry);
 698int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
 699                                 enum nand_bbt_block_status status);
 700int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
 701
 702/**
 703 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
 704 * @nand: NAND device
 705 * @pos: the NAND position we want to get BBT entry for
 706 *
 707 * Return the BBT entry used to store information about the eraseblock pointed
 708 * by @pos.
 709 *
 710 * Return: the BBT entry storing information about eraseblock pointed by @pos.
 711 */
 712static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
 713                                                    const struct nand_pos *pos)
 714{
 715        return pos->eraseblock +
 716               ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
 717                nand->memorg.eraseblocks_per_lun);
 718}
 719
 720/**
 721 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
 722 * @nand: NAND device
 723 *
 724 * Return: true if the BBT has been initialized, false otherwise.
 725 */
 726static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
 727{
 728        return !!nand->bbt.cache;
 729}
 730
 731/* MTD -> NAND helper functions. */
 732int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
 733
 734#endif /* __LINUX_MTD_NAND_H */
 735