uboot/drivers/net/dc2114x.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2
   3#include <common.h>
   4#include <env.h>
   5#include <malloc.h>
   6#include <net.h>
   7#include <netdev.h>
   8#include <pci.h>
   9
  10#undef DEBUG_SROM
  11#undef DEBUG_SROM2
  12
  13#undef UPDATE_SROM
  14
  15/* PCI Registers.
  16 */
  17#define PCI_CFDA_PSM            0x43
  18
  19#define CFRV_RN         0x000000f0      /* Revision Number */
  20
  21#define WAKEUP          0x00            /* Power Saving Wakeup */
  22#define SLEEP           0x80            /* Power Saving Sleep Mode */
  23
  24#define DC2114x_BRK     0x0020          /* CFRV break between DC21142 & DC21143 */
  25
  26/* Ethernet chip registers.
  27 */
  28#define DE4X5_BMR       0x000           /* Bus Mode Register */
  29#define DE4X5_TPD       0x008           /* Transmit Poll Demand Reg */
  30#define DE4X5_RRBA      0x018           /* RX Ring Base Address Reg */
  31#define DE4X5_TRBA      0x020           /* TX Ring Base Address Reg */
  32#define DE4X5_STS       0x028           /* Status Register */
  33#define DE4X5_OMR       0x030           /* Operation Mode Register */
  34#define DE4X5_SICR      0x068           /* SIA Connectivity Register */
  35#define DE4X5_APROM     0x048           /* Ethernet Address PROM */
  36
  37/* Register bits.
  38 */
  39#define BMR_SWR         0x00000001      /* Software Reset */
  40#define STS_TS          0x00700000      /* Transmit Process State */
  41#define STS_RS          0x000e0000      /* Receive Process State */
  42#define OMR_ST          0x00002000      /* Start/Stop Transmission Command */
  43#define OMR_SR          0x00000002      /* Start/Stop Receive */
  44#define OMR_PS          0x00040000      /* Port Select */
  45#define OMR_SDP         0x02000000      /* SD Polarity - MUST BE ASSERTED */
  46#define OMR_PM          0x00000080      /* Pass All Multicast */
  47
  48/* Descriptor bits.
  49 */
  50#define R_OWN           0x80000000      /* Own Bit */
  51#define RD_RER          0x02000000      /* Receive End Of Ring */
  52#define RD_LS           0x00000100      /* Last Descriptor */
  53#define RD_ES           0x00008000      /* Error Summary */
  54#define TD_TER          0x02000000      /* Transmit End Of Ring */
  55#define T_OWN           0x80000000      /* Own Bit */
  56#define TD_LS           0x40000000      /* Last Segment */
  57#define TD_FS           0x20000000      /* First Segment */
  58#define TD_ES           0x00008000      /* Error Summary */
  59#define TD_SET          0x08000000      /* Setup Packet */
  60
  61/* The EEPROM commands include the alway-set leading bit. */
  62#define SROM_WRITE_CMD  5
  63#define SROM_READ_CMD   6
  64#define SROM_ERASE_CMD  7
  65
  66#define SROM_HWADD          0x0014      /* Hardware Address offset in SROM */
  67#define SROM_RD         0x00004000      /* Read from Boot ROM */
  68#define EE_DATA_WRITE         0x04      /* EEPROM chip data in. */
  69#define EE_WRITE_0          0x4801
  70#define EE_WRITE_1          0x4805
  71#define EE_DATA_READ          0x08      /* EEPROM chip data out. */
  72#define SROM_SR         0x00000800      /* Select Serial ROM when set */
  73
  74#define DT_IN           0x00000004      /* Serial Data In */
  75#define DT_CLK          0x00000002      /* Serial ROM Clock */
  76#define DT_CS           0x00000001      /* Serial ROM Chip Select */
  77
  78#define POLL_DEMAND     1
  79
  80#ifdef CONFIG_TULIP_FIX_DAVICOM
  81#define RESET_DM9102(dev) {\
  82    unsigned long i;\
  83    i=INL(dev, 0x0);\
  84    udelay(1000);\
  85    OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  86    udelay(1000);\
  87}
  88#else
  89#define RESET_DE4X5(dev) {\
  90    int i;\
  91    i=INL(dev, DE4X5_BMR);\
  92    udelay(1000);\
  93    OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  94    udelay(1000);\
  95    OUTL(dev, i, DE4X5_BMR);\
  96    udelay(1000);\
  97    for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
  98    udelay(1000);\
  99}
 100#endif
 101
 102#define START_DE4X5(dev) {\
 103    s32 omr; \
 104    omr = INL(dev, DE4X5_OMR);\
 105    omr |= OMR_ST | OMR_SR;\
 106    OUTL(dev, omr, DE4X5_OMR);          /* Enable the TX and/or RX */\
 107}
 108
 109#define STOP_DE4X5(dev) {\
 110    s32 omr; \
 111    omr = INL(dev, DE4X5_OMR);\
 112    omr &= ~(OMR_ST|OMR_SR);\
 113    OUTL(dev, omr, DE4X5_OMR);          /* Disable the TX and/or RX */ \
 114}
 115
 116#define NUM_RX_DESC PKTBUFSRX
 117#ifndef CONFIG_TULIP_FIX_DAVICOM
 118        #define NUM_TX_DESC 1                   /* Number of TX descriptors   */
 119#else
 120        #define NUM_TX_DESC 4
 121#endif
 122#define RX_BUFF_SZ  PKTSIZE_ALIGN
 123
 124#define TOUT_LOOP   1000000
 125
 126#define SETUP_FRAME_LEN 192
 127
 128struct de4x5_desc {
 129        volatile s32 status;
 130        u32 des1;
 131        u32 buf;
 132        u32 next;
 133};
 134
 135static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring         */
 136static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring         */
 137static int rx_new;                             /* RX descriptor ring pointer */
 138static int tx_new;                             /* TX descriptor ring pointer */
 139
 140static char rxRingSize;
 141static char txRingSize;
 142
 143#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
 144static void  sendto_srom(struct eth_device* dev, u_int command, u_long addr);
 145static int   getfrom_srom(struct eth_device* dev, u_long addr);
 146static int   do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
 147static int   do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
 148#endif  /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
 149#ifdef UPDATE_SROM
 150static int   write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
 151static void  update_srom(struct eth_device *dev, bd_t *bis);
 152#endif
 153#ifndef CONFIG_TULIP_FIX_DAVICOM
 154static int   read_srom(struct eth_device *dev, u_long ioaddr, int index);
 155static void  read_hw_addr(struct eth_device* dev, bd_t * bis);
 156#endif  /* CONFIG_TULIP_FIX_DAVICOM */
 157static void  send_setup_frame(struct eth_device* dev, bd_t * bis);
 158
 159static int   dc21x4x_init(struct eth_device* dev, bd_t* bis);
 160static int   dc21x4x_send(struct eth_device *dev, void *packet, int length);
 161static int   dc21x4x_recv(struct eth_device* dev);
 162static void  dc21x4x_halt(struct eth_device* dev);
 163#ifdef CONFIG_TULIP_SELECT_MEDIA
 164extern void  dc21x4x_select_media(struct eth_device* dev);
 165#endif
 166
 167#if defined(CONFIG_E500)
 168#define phys_to_bus(a) (a)
 169#else
 170#define phys_to_bus(a)  pci_phys_to_mem((pci_dev_t)dev->priv, a)
 171#endif
 172
 173static int INL(struct eth_device* dev, u_long addr)
 174{
 175        return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
 176}
 177
 178static void OUTL(struct eth_device* dev, int command, u_long addr)
 179{
 180        *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
 181}
 182
 183static struct pci_device_id supported[] = {
 184        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
 185        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
 186#ifdef CONFIG_TULIP_FIX_DAVICOM
 187        { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
 188#endif
 189        { }
 190};
 191
 192int dc21x4x_initialize(bd_t *bis)
 193{
 194        int                     idx=0;
 195        int                     card_number = 0;
 196        unsigned int            cfrv;
 197        unsigned char           timer;
 198        pci_dev_t               devbusfn;
 199        unsigned int            iobase;
 200        unsigned short          status;
 201        struct eth_device*      dev;
 202
 203        while(1) {
 204                devbusfn =  pci_find_devices(supported, idx++);
 205                if (devbusfn == -1) {
 206                        break;
 207                }
 208
 209                /* Get the chip configuration revision register. */
 210                pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
 211
 212#ifndef CONFIG_TULIP_FIX_DAVICOM
 213                if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
 214                        printf("Error: The chip is not DC21143.\n");
 215                        continue;
 216                }
 217#endif
 218
 219                pci_read_config_word(devbusfn, PCI_COMMAND, &status);
 220                status |=
 221#ifdef CONFIG_TULIP_USE_IO
 222                  PCI_COMMAND_IO |
 223#else
 224                  PCI_COMMAND_MEMORY |
 225#endif
 226                  PCI_COMMAND_MASTER;
 227                pci_write_config_word(devbusfn, PCI_COMMAND, status);
 228
 229                pci_read_config_word(devbusfn, PCI_COMMAND, &status);
 230#ifdef CONFIG_TULIP_USE_IO
 231                if (!(status & PCI_COMMAND_IO)) {
 232                        printf("Error: Can not enable I/O access.\n");
 233                        continue;
 234                }
 235#else
 236                if (!(status & PCI_COMMAND_MEMORY)) {
 237                        printf("Error: Can not enable MEMORY access.\n");
 238                        continue;
 239                }
 240#endif
 241
 242                if (!(status & PCI_COMMAND_MASTER)) {
 243                        printf("Error: Can not enable Bus Mastering.\n");
 244                        continue;
 245                }
 246
 247                /* Check the latency timer for values >= 0x60. */
 248                pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
 249
 250                if (timer < 0x60) {
 251                        pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
 252                }
 253
 254#ifdef CONFIG_TULIP_USE_IO
 255                /* read BAR for memory space access */
 256                pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
 257                iobase &= PCI_BASE_ADDRESS_IO_MASK;
 258#else
 259                /* read BAR for memory space access */
 260                pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
 261                iobase &= PCI_BASE_ADDRESS_MEM_MASK;
 262#endif
 263                debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
 264
 265                dev = (struct eth_device*) malloc(sizeof *dev);
 266
 267                if (!dev) {
 268                        printf("Can not allocalte memory of dc21x4x\n");
 269                        break;
 270                }
 271                memset(dev, 0, sizeof(*dev));
 272
 273#ifdef CONFIG_TULIP_FIX_DAVICOM
 274                sprintf(dev->name, "Davicom#%d", card_number);
 275#else
 276                sprintf(dev->name, "dc21x4x#%d", card_number);
 277#endif
 278
 279#ifdef CONFIG_TULIP_USE_IO
 280                dev->iobase = pci_io_to_phys(devbusfn, iobase);
 281#else
 282                dev->iobase = pci_mem_to_phys(devbusfn, iobase);
 283#endif
 284                dev->priv   = (void*) devbusfn;
 285                dev->init   = dc21x4x_init;
 286                dev->halt   = dc21x4x_halt;
 287                dev->send   = dc21x4x_send;
 288                dev->recv   = dc21x4x_recv;
 289
 290                /* Ensure we're not sleeping. */
 291                pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
 292
 293                udelay(10 * 1000);
 294
 295#ifndef CONFIG_TULIP_FIX_DAVICOM
 296                read_hw_addr(dev, bis);
 297#endif
 298                eth_register(dev);
 299
 300                card_number++;
 301        }
 302
 303        return card_number;
 304}
 305
 306static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
 307{
 308        int             i;
 309        int             devbusfn = (int) dev->priv;
 310
 311        /* Ensure we're not sleeping. */
 312        pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
 313
 314#ifdef CONFIG_TULIP_FIX_DAVICOM
 315        RESET_DM9102(dev);
 316#else
 317        RESET_DE4X5(dev);
 318#endif
 319
 320        if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
 321                printf("Error: Cannot reset ethernet controller.\n");
 322                return -1;
 323        }
 324
 325#ifdef CONFIG_TULIP_SELECT_MEDIA
 326        dc21x4x_select_media(dev);
 327#else
 328        OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
 329#endif
 330
 331        for (i = 0; i < NUM_RX_DESC; i++) {
 332                rx_ring[i].status = cpu_to_le32(R_OWN);
 333                rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
 334                rx_ring[i].buf = cpu_to_le32(
 335                        phys_to_bus((u32)net_rx_packets[i]));
 336#ifdef CONFIG_TULIP_FIX_DAVICOM
 337                rx_ring[i].next = cpu_to_le32(
 338                        phys_to_bus((u32)&rx_ring[(i + 1) % NUM_RX_DESC]));
 339#else
 340                rx_ring[i].next = 0;
 341#endif
 342        }
 343
 344        for (i=0; i < NUM_TX_DESC; i++) {
 345                tx_ring[i].status = 0;
 346                tx_ring[i].des1 = 0;
 347                tx_ring[i].buf = 0;
 348
 349#ifdef CONFIG_TULIP_FIX_DAVICOM
 350        tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
 351#else
 352                tx_ring[i].next = 0;
 353#endif
 354        }
 355
 356        rxRingSize = NUM_RX_DESC;
 357        txRingSize = NUM_TX_DESC;
 358
 359        /* Write the end of list marker to the descriptor lists. */
 360        rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
 361        tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
 362
 363        /* Tell the adapter where the TX/RX rings are located. */
 364        OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
 365        OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
 366
 367        START_DE4X5(dev);
 368
 369        tx_new = 0;
 370        rx_new = 0;
 371
 372        send_setup_frame(dev, bis);
 373
 374        return 0;
 375}
 376
 377static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
 378{
 379        int             status = -1;
 380        int             i;
 381
 382        if (length <= 0) {
 383                printf("%s: bad packet size: %d\n", dev->name, length);
 384                goto Done;
 385        }
 386
 387        for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
 388                if (i >= TOUT_LOOP) {
 389                        printf("%s: tx error buffer not ready\n", dev->name);
 390                        goto Done;
 391                }
 392        }
 393
 394        tx_ring[tx_new].buf    = cpu_to_le32(phys_to_bus((u32) packet));
 395        tx_ring[tx_new].des1   = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
 396        tx_ring[tx_new].status = cpu_to_le32(T_OWN);
 397
 398        OUTL(dev, POLL_DEMAND, DE4X5_TPD);
 399
 400        for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
 401                if (i >= TOUT_LOOP) {
 402                        printf(".%s: tx buffer not ready\n", dev->name);
 403                        goto Done;
 404                }
 405        }
 406
 407        if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
 408#if 0 /* test-only */
 409                printf("TX error status = 0x%08X\n",
 410                        le32_to_cpu(tx_ring[tx_new].status));
 411#endif
 412                tx_ring[tx_new].status = 0x0;
 413                goto Done;
 414        }
 415
 416        status = length;
 417
 418 Done:
 419    tx_new = (tx_new+1) % NUM_TX_DESC;
 420        return status;
 421}
 422
 423static int dc21x4x_recv(struct eth_device* dev)
 424{
 425        s32             status;
 426        int             length    = 0;
 427
 428        for ( ; ; ) {
 429                status = (s32)le32_to_cpu(rx_ring[rx_new].status);
 430
 431                if (status & R_OWN) {
 432                        break;
 433                }
 434
 435                if (status & RD_LS) {
 436                        /* Valid frame status.
 437                         */
 438                        if (status & RD_ES) {
 439
 440                                /* There was an error.
 441                                 */
 442                                printf("RX error status = 0x%08X\n", status);
 443                        } else {
 444                                /* A valid frame received.
 445                                 */
 446                                length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
 447
 448                                /* Pass the packet up to the protocol
 449                                 * layers.
 450                                 */
 451                                net_process_received_packet(
 452                                        net_rx_packets[rx_new], length - 4);
 453                        }
 454
 455                        /* Change buffer ownership for this frame, back
 456                         * to the adapter.
 457                         */
 458                        rx_ring[rx_new].status = cpu_to_le32(R_OWN);
 459                }
 460
 461                /* Update entry information.
 462                 */
 463                rx_new = (rx_new + 1) % rxRingSize;
 464        }
 465
 466        return length;
 467}
 468
 469static void dc21x4x_halt(struct eth_device* dev)
 470{
 471        int             devbusfn = (int) dev->priv;
 472
 473        STOP_DE4X5(dev);
 474        OUTL(dev, 0, DE4X5_SICR);
 475
 476        pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
 477}
 478
 479static void send_setup_frame(struct eth_device* dev, bd_t *bis)
 480{
 481        int             i;
 482        char    setup_frame[SETUP_FRAME_LEN];
 483        char    *pa = &setup_frame[0];
 484
 485        memset(pa, 0xff, SETUP_FRAME_LEN);
 486
 487        for (i = 0; i < ETH_ALEN; i++) {
 488                *(pa + (i & 1)) = dev->enetaddr[i];
 489                if (i & 0x01) {
 490                        pa += 4;
 491                }
 492        }
 493
 494        for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
 495                if (i >= TOUT_LOOP) {
 496                        printf("%s: tx error buffer not ready\n", dev->name);
 497                        goto Done;
 498                }
 499        }
 500
 501        tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
 502        tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
 503        tx_ring[tx_new].status = cpu_to_le32(T_OWN);
 504
 505        OUTL(dev, POLL_DEMAND, DE4X5_TPD);
 506
 507        for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
 508                if (i >= TOUT_LOOP) {
 509                        printf("%s: tx buffer not ready\n", dev->name);
 510                        goto Done;
 511                }
 512        }
 513
 514        if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
 515                printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
 516        }
 517        tx_new = (tx_new+1) % NUM_TX_DESC;
 518
 519Done:
 520        return;
 521}
 522
 523#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
 524/* SROM Read and write routines.
 525 */
 526static void
 527sendto_srom(struct eth_device* dev, u_int command, u_long addr)
 528{
 529        OUTL(dev, command, addr);
 530        udelay(1);
 531}
 532
 533static int
 534getfrom_srom(struct eth_device* dev, u_long addr)
 535{
 536        s32 tmp;
 537
 538        tmp = INL(dev, addr);
 539        udelay(1);
 540
 541        return tmp;
 542}
 543
 544/* Note: this routine returns extra data bits for size detection. */
 545static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
 546{
 547        int i;
 548        unsigned retval = 0;
 549        int read_cmd = location | (SROM_READ_CMD << addr_len);
 550
 551        sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
 552        sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
 553
 554#ifdef DEBUG_SROM
 555        printf(" EEPROM read at %d ", location);
 556#endif
 557
 558        /* Shift the read command bits out. */
 559        for (i = 4 + addr_len; i >= 0; i--) {
 560                short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
 561                sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
 562                udelay(10);
 563                sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
 564                udelay(10);
 565#ifdef DEBUG_SROM2
 566                printf("%X", getfrom_srom(dev, ioaddr) & 15);
 567#endif
 568                retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
 569        }
 570
 571        sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
 572
 573#ifdef DEBUG_SROM2
 574        printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
 575#endif
 576
 577        for (i = 16; i > 0; i--) {
 578                sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
 579                udelay(10);
 580#ifdef DEBUG_SROM2
 581                printf("%X", getfrom_srom(dev, ioaddr) & 15);
 582#endif
 583                retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
 584                sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
 585                udelay(10);
 586        }
 587
 588        /* Terminate the EEPROM access. */
 589        sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
 590
 591#ifdef DEBUG_SROM2
 592        printf(" EEPROM value at %d is %5.5x.\n", location, retval);
 593#endif
 594
 595        return retval;
 596}
 597#endif  /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
 598
 599/* This executes a generic EEPROM command, typically a write or write
 600 * enable. It returns the data output from the EEPROM, and thus may
 601 * also be used for reads.
 602 */
 603#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
 604static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
 605{
 606        unsigned retval = 0;
 607
 608#ifdef DEBUG_SROM
 609        printf(" EEPROM op 0x%x: ", cmd);
 610#endif
 611
 612        sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
 613
 614        /* Shift the command bits out. */
 615        do {
 616                short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
 617                sendto_srom(dev,dataval, ioaddr);
 618                udelay(10);
 619
 620#ifdef DEBUG_SROM2
 621                printf("%X", getfrom_srom(dev,ioaddr) & 15);
 622#endif
 623
 624                sendto_srom(dev,dataval | DT_CLK, ioaddr);
 625                udelay(10);
 626                retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
 627        } while (--cmd_len >= 0);
 628        sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
 629
 630        /* Terminate the EEPROM access. */
 631        sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
 632
 633#ifdef DEBUG_SROM
 634        printf(" EEPROM result is 0x%5.5x.\n", retval);
 635#endif
 636
 637        return retval;
 638}
 639#endif  /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
 640
 641#ifndef CONFIG_TULIP_FIX_DAVICOM
 642static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
 643{
 644        int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
 645
 646        return do_eeprom_cmd(dev, ioaddr,
 647                             (((SROM_READ_CMD << ee_addr_size) | index) << 16)
 648                             | 0xffff, 3 + ee_addr_size + 16);
 649}
 650#endif  /* CONFIG_TULIP_FIX_DAVICOM */
 651
 652#ifdef UPDATE_SROM
 653static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
 654{
 655        int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
 656        int i;
 657        unsigned short newval;
 658
 659        udelay(10*1000); /* test-only */
 660
 661#ifdef DEBUG_SROM
 662        printf("ee_addr_size=%d.\n", ee_addr_size);
 663        printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
 664#endif
 665
 666        /* Enable programming modes. */
 667        do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
 668
 669        /* Do the actual write. */
 670        do_eeprom_cmd(dev, ioaddr,
 671                      (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
 672                      3 + ee_addr_size + 16);
 673
 674        /* Poll for write finished. */
 675        sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
 676        for (i = 0; i < 10000; i++)                     /* Typical 2000 ticks */
 677                if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
 678                        break;
 679
 680#ifdef DEBUG_SROM
 681        printf(" Write finished after %d ticks.\n", i);
 682#endif
 683
 684        /* Disable programming. */
 685        do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
 686
 687        /* And read the result. */
 688        newval = do_eeprom_cmd(dev, ioaddr,
 689                               (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
 690                               | 0xffff, 3 + ee_addr_size + 16);
 691#ifdef DEBUG_SROM
 692        printf("  New value at offset %d is %4.4x.\n", index, newval);
 693#endif
 694        return 1;
 695}
 696#endif
 697
 698#ifndef CONFIG_TULIP_FIX_DAVICOM
 699static void read_hw_addr(struct eth_device *dev, bd_t *bis)
 700{
 701        u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
 702        int i, j = 0;
 703
 704        for (i = 0; i < (ETH_ALEN >> 1); i++) {
 705                tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
 706                *p = le16_to_cpu(tmp);
 707                j += *p++;
 708        }
 709
 710        if ((j == 0) || (j == 0x2fffd)) {
 711                memset (dev->enetaddr, 0, ETH_ALEN);
 712                debug ("Warning: can't read HW address from SROM.\n");
 713                goto Done;
 714        }
 715
 716        return;
 717
 718Done:
 719#ifdef UPDATE_SROM
 720        update_srom(dev, bis);
 721#endif
 722        return;
 723}
 724#endif  /* CONFIG_TULIP_FIX_DAVICOM */
 725
 726#ifdef UPDATE_SROM
 727static void update_srom(struct eth_device *dev, bd_t *bis)
 728{
 729        int i;
 730        static unsigned short eeprom[0x40] = {
 731                0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
 732                0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
 733                0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
 734                0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
 735                0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
 736                0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
 737                0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
 738                0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
 739                0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
 740                0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
 741                0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
 742                0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
 743                0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
 744                0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
 745                0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
 746                0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
 747        };
 748        uchar enetaddr[6];
 749
 750        /* Ethernet Addr... */
 751        if (!eth_env_get_enetaddr("ethaddr", enetaddr))
 752                return;
 753        eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
 754        eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
 755        eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
 756
 757        for (i=0; i<0x40; i++) {
 758                write_srom(dev, DE4X5_APROM, i, eeprom[i]);
 759        }
 760}
 761#endif  /* UPDATE_SROM */
 762