uboot/fs/ubifs/tnc_misc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file contains miscelanious TNC-related functions shared betweend
  13 * different files. This file does not form any logically separate TNC
  14 * sub-system. The file was created because there is a lot of TNC code and
  15 * putting it all in one file would make that file too big and unreadable.
  16 */
  17
  18#ifdef __UBOOT__
  19#include <linux/err.h>
  20#endif
  21#include "ubifs.h"
  22
  23/**
  24 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
  25 * @zr: root of the subtree to traverse
  26 * @znode: previous znode
  27 *
  28 * This function implements levelorder TNC traversal. The LNC is ignored.
  29 * Returns the next element or %NULL if @znode is already the last one.
  30 */
  31struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
  32                                              struct ubifs_znode *znode)
  33{
  34        int level, iip, level_search = 0;
  35        struct ubifs_znode *zn;
  36
  37        ubifs_assert(zr);
  38
  39        if (unlikely(!znode))
  40                return zr;
  41
  42        if (unlikely(znode == zr)) {
  43                if (znode->level == 0)
  44                        return NULL;
  45                return ubifs_tnc_find_child(zr, 0);
  46        }
  47
  48        level = znode->level;
  49
  50        iip = znode->iip;
  51        while (1) {
  52                ubifs_assert(znode->level <= zr->level);
  53
  54                /*
  55                 * First walk up until there is a znode with next branch to
  56                 * look at.
  57                 */
  58                while (znode->parent != zr && iip >= znode->parent->child_cnt) {
  59                        znode = znode->parent;
  60                        iip = znode->iip;
  61                }
  62
  63                if (unlikely(znode->parent == zr &&
  64                             iip >= znode->parent->child_cnt)) {
  65                        /* This level is done, switch to the lower one */
  66                        level -= 1;
  67                        if (level_search || level < 0)
  68                                /*
  69                                 * We were already looking for znode at lower
  70                                 * level ('level_search'). As we are here
  71                                 * again, it just does not exist. Or all levels
  72                                 * were finished ('level < 0').
  73                                 */
  74                                return NULL;
  75
  76                        level_search = 1;
  77                        iip = -1;
  78                        znode = ubifs_tnc_find_child(zr, 0);
  79                        ubifs_assert(znode);
  80                }
  81
  82                /* Switch to the next index */
  83                zn = ubifs_tnc_find_child(znode->parent, iip + 1);
  84                if (!zn) {
  85                        /* No more children to look at, we have walk up */
  86                        iip = znode->parent->child_cnt;
  87                        continue;
  88                }
  89
  90                /* Walk back down to the level we came from ('level') */
  91                while (zn->level != level) {
  92                        znode = zn;
  93                        zn = ubifs_tnc_find_child(zn, 0);
  94                        if (!zn) {
  95                                /*
  96                                 * This path is not too deep so it does not
  97                                 * reach 'level'. Try next path.
  98                                 */
  99                                iip = znode->iip;
 100                                break;
 101                        }
 102                }
 103
 104                if (zn) {
 105                        ubifs_assert(zn->level >= 0);
 106                        return zn;
 107                }
 108        }
 109}
 110
 111/**
 112 * ubifs_search_zbranch - search znode branch.
 113 * @c: UBIFS file-system description object
 114 * @znode: znode to search in
 115 * @key: key to search for
 116 * @n: znode branch slot number is returned here
 117 *
 118 * This is a helper function which search branch with key @key in @znode using
 119 * binary search. The result of the search may be:
 120 *   o exact match, then %1 is returned, and the slot number of the branch is
 121 *     stored in @n;
 122 *   o no exact match, then %0 is returned and the slot number of the left
 123 *     closest branch is returned in @n; the slot if all keys in this znode are
 124 *     greater than @key, then %-1 is returned in @n.
 125 */
 126int ubifs_search_zbranch(const struct ubifs_info *c,
 127                         const struct ubifs_znode *znode,
 128                         const union ubifs_key *key, int *n)
 129{
 130        int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
 131        int uninitialized_var(cmp);
 132        const struct ubifs_zbranch *zbr = &znode->zbranch[0];
 133
 134        ubifs_assert(end > beg);
 135
 136        while (end > beg) {
 137                mid = (beg + end) >> 1;
 138                cmp = keys_cmp(c, key, &zbr[mid].key);
 139                if (cmp > 0)
 140                        beg = mid + 1;
 141                else if (cmp < 0)
 142                        end = mid;
 143                else {
 144                        *n = mid;
 145                        return 1;
 146                }
 147        }
 148
 149        *n = end - 1;
 150
 151        /* The insert point is after *n */
 152        ubifs_assert(*n >= -1 && *n < znode->child_cnt);
 153        if (*n == -1)
 154                ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0);
 155        else
 156                ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0);
 157        if (*n + 1 < znode->child_cnt)
 158                ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0);
 159
 160        return 0;
 161}
 162
 163/**
 164 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
 165 * @znode: znode to start at (root of the sub-tree to traverse)
 166 *
 167 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
 168 * ignored.
 169 */
 170struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
 171{
 172        if (unlikely(!znode))
 173                return NULL;
 174
 175        while (znode->level > 0) {
 176                struct ubifs_znode *child;
 177
 178                child = ubifs_tnc_find_child(znode, 0);
 179                if (!child)
 180                        return znode;
 181                znode = child;
 182        }
 183
 184        return znode;
 185}
 186
 187/**
 188 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
 189 * @znode: previous znode
 190 *
 191 * This function implements postorder TNC traversal. The LNC is ignored.
 192 * Returns the next element or %NULL if @znode is already the last one.
 193 */
 194struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode)
 195{
 196        struct ubifs_znode *zn;
 197
 198        ubifs_assert(znode);
 199        if (unlikely(!znode->parent))
 200                return NULL;
 201
 202        /* Switch to the next index in the parent */
 203        zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
 204        if (!zn)
 205                /* This is in fact the last child, return parent */
 206                return znode->parent;
 207
 208        /* Go to the first znode in this new subtree */
 209        return ubifs_tnc_postorder_first(zn);
 210}
 211
 212/**
 213 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
 214 * @znode: znode defining subtree to destroy
 215 *
 216 * This function destroys subtree of the TNC tree. Returns number of clean
 217 * znodes in the subtree.
 218 */
 219long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode)
 220{
 221        struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
 222        long clean_freed = 0;
 223        int n;
 224
 225        ubifs_assert(zn);
 226        while (1) {
 227                for (n = 0; n < zn->child_cnt; n++) {
 228                        if (!zn->zbranch[n].znode)
 229                                continue;
 230
 231                        if (zn->level > 0 &&
 232                            !ubifs_zn_dirty(zn->zbranch[n].znode))
 233                                clean_freed += 1;
 234
 235                        cond_resched();
 236                        kfree(zn->zbranch[n].znode);
 237                }
 238
 239                if (zn == znode) {
 240                        if (!ubifs_zn_dirty(zn))
 241                                clean_freed += 1;
 242                        kfree(zn);
 243                        return clean_freed;
 244                }
 245
 246                zn = ubifs_tnc_postorder_next(zn);
 247        }
 248}
 249
 250/**
 251 * read_znode - read an indexing node from flash and fill znode.
 252 * @c: UBIFS file-system description object
 253 * @lnum: LEB of the indexing node to read
 254 * @offs: node offset
 255 * @len: node length
 256 * @znode: znode to read to
 257 *
 258 * This function reads an indexing node from the flash media and fills znode
 259 * with the read data. Returns zero in case of success and a negative error
 260 * code in case of failure. The read indexing node is validated and if anything
 261 * is wrong with it, this function prints complaint messages and returns
 262 * %-EINVAL.
 263 */
 264static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
 265                      struct ubifs_znode *znode)
 266{
 267        int i, err, type, cmp;
 268        struct ubifs_idx_node *idx;
 269
 270        idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
 271        if (!idx)
 272                return -ENOMEM;
 273
 274        err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
 275        if (err < 0) {
 276                kfree(idx);
 277                return err;
 278        }
 279
 280        znode->child_cnt = le16_to_cpu(idx->child_cnt);
 281        znode->level = le16_to_cpu(idx->level);
 282
 283        dbg_tnc("LEB %d:%d, level %d, %d branch",
 284                lnum, offs, znode->level, znode->child_cnt);
 285
 286        if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
 287                ubifs_err(c, "current fanout %d, branch count %d",
 288                          c->fanout, znode->child_cnt);
 289                ubifs_err(c, "max levels %d, znode level %d",
 290                          UBIFS_MAX_LEVELS, znode->level);
 291                err = 1;
 292                goto out_dump;
 293        }
 294
 295        for (i = 0; i < znode->child_cnt; i++) {
 296                const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
 297                struct ubifs_zbranch *zbr = &znode->zbranch[i];
 298
 299                key_read(c, &br->key, &zbr->key);
 300                zbr->lnum = le32_to_cpu(br->lnum);
 301                zbr->offs = le32_to_cpu(br->offs);
 302                zbr->len  = le32_to_cpu(br->len);
 303                zbr->znode = NULL;
 304
 305                /* Validate branch */
 306
 307                if (zbr->lnum < c->main_first ||
 308                    zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
 309                    zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
 310                        ubifs_err(c, "bad branch %d", i);
 311                        err = 2;
 312                        goto out_dump;
 313                }
 314
 315                switch (key_type(c, &zbr->key)) {
 316                case UBIFS_INO_KEY:
 317                case UBIFS_DATA_KEY:
 318                case UBIFS_DENT_KEY:
 319                case UBIFS_XENT_KEY:
 320                        break;
 321                default:
 322                        ubifs_err(c, "bad key type at slot %d: %d",
 323                                  i, key_type(c, &zbr->key));
 324                        err = 3;
 325                        goto out_dump;
 326                }
 327
 328                if (znode->level)
 329                        continue;
 330
 331                type = key_type(c, &zbr->key);
 332                if (c->ranges[type].max_len == 0) {
 333                        if (zbr->len != c->ranges[type].len) {
 334                                ubifs_err(c, "bad target node (type %d) length (%d)",
 335                                          type, zbr->len);
 336                                ubifs_err(c, "have to be %d", c->ranges[type].len);
 337                                err = 4;
 338                                goto out_dump;
 339                        }
 340                } else if (zbr->len < c->ranges[type].min_len ||
 341                           zbr->len > c->ranges[type].max_len) {
 342                        ubifs_err(c, "bad target node (type %d) length (%d)",
 343                                  type, zbr->len);
 344                        ubifs_err(c, "have to be in range of %d-%d",
 345                                  c->ranges[type].min_len,
 346                                  c->ranges[type].max_len);
 347                        err = 5;
 348                        goto out_dump;
 349                }
 350        }
 351
 352        /*
 353         * Ensure that the next key is greater or equivalent to the
 354         * previous one.
 355         */
 356        for (i = 0; i < znode->child_cnt - 1; i++) {
 357                const union ubifs_key *key1, *key2;
 358
 359                key1 = &znode->zbranch[i].key;
 360                key2 = &znode->zbranch[i + 1].key;
 361
 362                cmp = keys_cmp(c, key1, key2);
 363                if (cmp > 0) {
 364                        ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1);
 365                        err = 6;
 366                        goto out_dump;
 367                } else if (cmp == 0 && !is_hash_key(c, key1)) {
 368                        /* These can only be keys with colliding hash */
 369                        ubifs_err(c, "keys %d and %d are not hashed but equivalent",
 370                                  i, i + 1);
 371                        err = 7;
 372                        goto out_dump;
 373                }
 374        }
 375
 376        kfree(idx);
 377        return 0;
 378
 379out_dump:
 380        ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
 381        ubifs_dump_node(c, idx);
 382        kfree(idx);
 383        return -EINVAL;
 384}
 385
 386/**
 387 * ubifs_load_znode - load znode to TNC cache.
 388 * @c: UBIFS file-system description object
 389 * @zbr: znode branch
 390 * @parent: znode's parent
 391 * @iip: index in parent
 392 *
 393 * This function loads znode pointed to by @zbr into the TNC cache and
 394 * returns pointer to it in case of success and a negative error code in case
 395 * of failure.
 396 */
 397struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
 398                                     struct ubifs_zbranch *zbr,
 399                                     struct ubifs_znode *parent, int iip)
 400{
 401        int err;
 402        struct ubifs_znode *znode;
 403
 404        ubifs_assert(!zbr->znode);
 405        /*
 406         * A slab cache is not presently used for znodes because the znode size
 407         * depends on the fanout which is stored in the superblock.
 408         */
 409        znode = kzalloc(c->max_znode_sz, GFP_NOFS);
 410        if (!znode)
 411                return ERR_PTR(-ENOMEM);
 412
 413        err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode);
 414        if (err)
 415                goto out;
 416
 417        atomic_long_inc(&c->clean_zn_cnt);
 418
 419        /*
 420         * Increment the global clean znode counter as well. It is OK that
 421         * global and per-FS clean znode counters may be inconsistent for some
 422         * short time (because we might be preempted at this point), the global
 423         * one is only used in shrinker.
 424         */
 425        atomic_long_inc(&ubifs_clean_zn_cnt);
 426
 427        zbr->znode = znode;
 428        znode->parent = parent;
 429        znode->time = get_seconds();
 430        znode->iip = iip;
 431
 432        return znode;
 433
 434out:
 435        kfree(znode);
 436        return ERR_PTR(err);
 437}
 438
 439/**
 440 * ubifs_tnc_read_node - read a leaf node from the flash media.
 441 * @c: UBIFS file-system description object
 442 * @zbr: key and position of the node
 443 * @node: node is returned here
 444 *
 445 * This function reads a node defined by @zbr from the flash media. Returns
 446 * zero in case of success or a negative negative error code in case of
 447 * failure.
 448 */
 449int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 450                        void *node)
 451{
 452        union ubifs_key key1, *key = &zbr->key;
 453        int err, type = key_type(c, key);
 454        struct ubifs_wbuf *wbuf;
 455
 456        /*
 457         * 'zbr' has to point to on-flash node. The node may sit in a bud and
 458         * may even be in a write buffer, so we have to take care about this.
 459         */
 460        wbuf = ubifs_get_wbuf(c, zbr->lnum);
 461        if (wbuf)
 462                err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
 463                                           zbr->lnum, zbr->offs);
 464        else
 465                err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
 466                                      zbr->offs);
 467
 468        if (err) {
 469                dbg_tnck(key, "key ");
 470                return err;
 471        }
 472
 473        /* Make sure the key of the read node is correct */
 474        key_read(c, node + UBIFS_KEY_OFFSET, &key1);
 475        if (!keys_eq(c, key, &key1)) {
 476                ubifs_err(c, "bad key in node at LEB %d:%d",
 477                          zbr->lnum, zbr->offs);
 478                dbg_tnck(key, "looked for key ");
 479                dbg_tnck(&key1, "but found node's key ");
 480                ubifs_dump_node(c, node);
 481                return -EINVAL;
 482        }
 483
 484        return 0;
 485}
 486