uboot/arch/arm/mach-stm32mp/cmd_stm32prog/stm32prog.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2020, STMicroelectronics - All Rights Reserved
   4 */
   5
   6#include <command.h>
   7#include <console.h>
   8#include <dfu.h>
   9#include <malloc.h>
  10#include <misc.h>
  11#include <mmc.h>
  12#include <part.h>
  13#include <asm/arch/stm32mp1_smc.h>
  14#include <dm/uclass.h>
  15#include <jffs2/load_kernel.h>
  16#include <linux/list.h>
  17#include <linux/list_sort.h>
  18#include <linux/mtd/mtd.h>
  19#include <linux/sizes.h>
  20
  21#include "stm32prog.h"
  22
  23/* Primary GPT header size for 128 entries : 17kB = 34 LBA of 512B */
  24#define GPT_HEADER_SZ   34
  25
  26#define OPT_SELECT      BIT(0)
  27#define OPT_EMPTY       BIT(1)
  28#define OPT_DELETE      BIT(2)
  29
  30#define IS_SELECT(part) ((part)->option & OPT_SELECT)
  31#define IS_EMPTY(part)  ((part)->option & OPT_EMPTY)
  32#define IS_DELETE(part) ((part)->option & OPT_DELETE)
  33
  34#define ALT_BUF_LEN                     SZ_1K
  35
  36#define ROOTFS_MMC0_UUID \
  37        EFI_GUID(0xE91C4E10, 0x16E6, 0x4C0E, \
  38                 0xBD, 0x0E, 0x77, 0xBE, 0xCF, 0x4A, 0x35, 0x82)
  39
  40#define ROOTFS_MMC1_UUID \
  41        EFI_GUID(0x491F6117, 0x415D, 0x4F53, \
  42                 0x88, 0xC9, 0x6E, 0x0D, 0xE5, 0x4D, 0xEA, 0xC6)
  43
  44#define ROOTFS_MMC2_UUID \
  45        EFI_GUID(0xFD58F1C7, 0xBE0D, 0x4338, \
  46                 0x88, 0xE9, 0xAD, 0x8F, 0x05, 0x0A, 0xEB, 0x18)
  47
  48/* RAW parttion (binary / bootloader) used Linux - reserved UUID */
  49#define LINUX_RESERVED_UUID "8DA63339-0007-60C0-C436-083AC8230908"
  50
  51/*
  52 * unique partition guid (uuid) for partition named "rootfs"
  53 * on each MMC instance = SD Card or eMMC
  54 * allow fixed kernel bootcmd: "rootf=PARTUID=e91c4e10-..."
  55 */
  56static const efi_guid_t uuid_mmc[3] = {
  57        ROOTFS_MMC0_UUID,
  58        ROOTFS_MMC1_UUID,
  59        ROOTFS_MMC2_UUID
  60};
  61
  62DECLARE_GLOBAL_DATA_PTR;
  63
  64/* order of column in flash layout file */
  65enum stm32prog_col_t {
  66        COL_OPTION,
  67        COL_ID,
  68        COL_NAME,
  69        COL_TYPE,
  70        COL_IP,
  71        COL_OFFSET,
  72        COL_NB_STM32
  73};
  74
  75/* partition handling routines : CONFIG_CMD_MTDPARTS */
  76int mtdparts_init(void);
  77int find_dev_and_part(const char *id, struct mtd_device **dev,
  78                      u8 *part_num, struct part_info **part);
  79
  80char *stm32prog_get_error(struct stm32prog_data *data)
  81{
  82        static const char error_msg[] = "Unspecified";
  83
  84        if (strlen(data->error) == 0)
  85                strcpy(data->error, error_msg);
  86
  87        return data->error;
  88}
  89
  90u8 stm32prog_header_check(struct raw_header_s *raw_header,
  91                          struct image_header_s *header)
  92{
  93        unsigned int i;
  94
  95        header->present = 0;
  96        header->image_checksum = 0x0;
  97        header->image_length = 0x0;
  98
  99        if (!raw_header || !header) {
 100                pr_debug("%s:no header data\n", __func__);
 101                return -1;
 102        }
 103        if (raw_header->magic_number !=
 104                (('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) {
 105                pr_debug("%s:invalid magic number : 0x%x\n",
 106                         __func__, raw_header->magic_number);
 107                return -2;
 108        }
 109        /* only header v1.0 supported */
 110        if (raw_header->header_version != 0x00010000) {
 111                pr_debug("%s:invalid header version : 0x%x\n",
 112                         __func__, raw_header->header_version);
 113                return -3;
 114        }
 115        if (raw_header->reserved1 != 0x0 || raw_header->reserved2) {
 116                pr_debug("%s:invalid reserved field\n", __func__);
 117                return -4;
 118        }
 119        for (i = 0; i < (sizeof(raw_header->padding) / 4); i++) {
 120                if (raw_header->padding[i] != 0) {
 121                        pr_debug("%s:invalid padding field\n", __func__);
 122                        return -5;
 123                }
 124        }
 125        header->present = 1;
 126        header->image_checksum = le32_to_cpu(raw_header->image_checksum);
 127        header->image_length = le32_to_cpu(raw_header->image_length);
 128
 129        return 0;
 130}
 131
 132static u32 stm32prog_header_checksum(u32 addr, struct image_header_s *header)
 133{
 134        u32 i, checksum;
 135        u8 *payload;
 136
 137        /* compute checksum on payload */
 138        payload = (u8 *)addr;
 139        checksum = 0;
 140        for (i = header->image_length; i > 0; i--)
 141                checksum += *(payload++);
 142
 143        return checksum;
 144}
 145
 146/* FLASHLAYOUT PARSING *****************************************/
 147static int parse_option(struct stm32prog_data *data,
 148                        int i, char *p, struct stm32prog_part_t *part)
 149{
 150        int result = 0;
 151        char *c = p;
 152
 153        part->option = 0;
 154        if (!strcmp(p, "-"))
 155                return 0;
 156
 157        while (*c) {
 158                switch (*c) {
 159                case 'P':
 160                        part->option |= OPT_SELECT;
 161                        break;
 162                case 'E':
 163                        part->option |= OPT_EMPTY;
 164                        break;
 165                case 'D':
 166                        part->option |= OPT_DELETE;
 167                        break;
 168                default:
 169                        result = -EINVAL;
 170                        stm32prog_err("Layout line %d: invalid option '%c' in %s)",
 171                                      i, *c, p);
 172                        return -EINVAL;
 173                }
 174                c++;
 175        }
 176        if (!(part->option & OPT_SELECT)) {
 177                stm32prog_err("Layout line %d: missing 'P' in option %s", i, p);
 178                return -EINVAL;
 179        }
 180
 181        return result;
 182}
 183
 184static int parse_id(struct stm32prog_data *data,
 185                    int i, char *p, struct stm32prog_part_t *part)
 186{
 187        int result = 0;
 188        unsigned long value;
 189
 190        result = strict_strtoul(p, 0, &value);
 191        part->id = value;
 192        if (result || value > PHASE_LAST_USER) {
 193                stm32prog_err("Layout line %d: invalid phase value = %s", i, p);
 194                result = -EINVAL;
 195        }
 196
 197        return result;
 198}
 199
 200static int parse_name(struct stm32prog_data *data,
 201                      int i, char *p, struct stm32prog_part_t *part)
 202{
 203        int result = 0;
 204
 205        if (strlen(p) < sizeof(part->name)) {
 206                strcpy(part->name, p);
 207        } else {
 208                stm32prog_err("Layout line %d: partition name too long [%d]: %s",
 209                              i, strlen(p), p);
 210                result = -EINVAL;
 211        }
 212
 213        return result;
 214}
 215
 216static int parse_type(struct stm32prog_data *data,
 217                      int i, char *p, struct stm32prog_part_t *part)
 218{
 219        int result = 0;
 220        int len = 0;
 221
 222        part->bin_nb = 0;
 223        if (!strncmp(p, "Binary", 6)) {
 224                part->part_type = PART_BINARY;
 225
 226                /* search for Binary(X) case */
 227                len = strlen(p);
 228                part->bin_nb = 1;
 229                if (len > 6) {
 230                        if (len < 8 ||
 231                            (p[6] != '(') ||
 232                            (p[len - 1] != ')'))
 233                                result = -EINVAL;
 234                        else
 235                                part->bin_nb =
 236                                        simple_strtoul(&p[7], NULL, 10);
 237                }
 238        } else if (!strcmp(p, "System")) {
 239                part->part_type = PART_SYSTEM;
 240        } else if (!strcmp(p, "FileSystem")) {
 241                part->part_type = PART_FILESYSTEM;
 242        } else if (!strcmp(p, "RawImage")) {
 243                part->part_type = RAW_IMAGE;
 244        } else {
 245                result = -EINVAL;
 246        }
 247        if (result)
 248                stm32prog_err("Layout line %d: type parsing error : '%s'",
 249                              i, p);
 250
 251        return result;
 252}
 253
 254static int parse_ip(struct stm32prog_data *data,
 255                    int i, char *p, struct stm32prog_part_t *part)
 256{
 257        int result = 0;
 258        unsigned int len = 0;
 259
 260        part->dev_id = 0;
 261        if (!strcmp(p, "none")) {
 262                part->target = STM32PROG_NONE;
 263        } else if (!strncmp(p, "mmc", 3)) {
 264                part->target = STM32PROG_MMC;
 265                len = 3;
 266        } else if (!strncmp(p, "nor", 3)) {
 267                part->target = STM32PROG_NOR;
 268                len = 3;
 269        } else if (!strncmp(p, "nand", 4)) {
 270                part->target = STM32PROG_NAND;
 271                len = 4;
 272        } else if (!strncmp(p, "spi-nand", 8)) {
 273                part->target = STM32PROG_SPI_NAND;
 274                len = 8;
 275        } else if (!strncmp(p, "ram", 3)) {
 276                part->target = STM32PROG_RAM;
 277                len = 0;
 278        } else {
 279                result = -EINVAL;
 280        }
 281        if (len) {
 282                /* only one digit allowed for device id */
 283                if (strlen(p) != len + 1) {
 284                        result = -EINVAL;
 285                } else {
 286                        part->dev_id = p[len] - '0';
 287                        if (part->dev_id > 9)
 288                                result = -EINVAL;
 289                }
 290        }
 291        if (result)
 292                stm32prog_err("Layout line %d: ip parsing error: '%s'", i, p);
 293
 294        return result;
 295}
 296
 297static int parse_offset(struct stm32prog_data *data,
 298                        int i, char *p, struct stm32prog_part_t *part)
 299{
 300        int result = 0;
 301        char *tail;
 302
 303        part->part_id = 0;
 304        part->addr = 0;
 305        part->size = 0;
 306        /* eMMC boot parttion */
 307        if (!strncmp(p, "boot", 4)) {
 308                if (strlen(p) != 5) {
 309                        result = -EINVAL;
 310                } else {
 311                        if (p[4] == '1')
 312                                part->part_id = -1;
 313                        else if (p[4] == '2')
 314                                part->part_id = -2;
 315                        else
 316                                result = -EINVAL;
 317                }
 318                if (result)
 319                        stm32prog_err("Layout line %d: invalid part '%s'",
 320                                      i, p);
 321        } else {
 322                part->addr = simple_strtoull(p, &tail, 0);
 323                if (tail == p || *tail != '\0') {
 324                        stm32prog_err("Layout line %d: invalid offset '%s'",
 325                                      i, p);
 326                        result = -EINVAL;
 327                }
 328        }
 329
 330        return result;
 331}
 332
 333static
 334int (* const parse[COL_NB_STM32])(struct stm32prog_data *data, int i, char *p,
 335                                  struct stm32prog_part_t *part) = {
 336        [COL_OPTION] = parse_option,
 337        [COL_ID] = parse_id,
 338        [COL_NAME] =  parse_name,
 339        [COL_TYPE] = parse_type,
 340        [COL_IP] = parse_ip,
 341        [COL_OFFSET] = parse_offset,
 342};
 343
 344static int parse_flash_layout(struct stm32prog_data *data,
 345                              ulong addr,
 346                              ulong size)
 347{
 348        int column = 0, part_nb = 0, ret;
 349        bool end_of_line, eof;
 350        char *p, *start, *last, *col;
 351        struct stm32prog_part_t *part;
 352        int part_list_size;
 353        int i;
 354
 355        data->part_nb = 0;
 356
 357        /* check if STM32image is detected */
 358        if (!stm32prog_header_check((struct raw_header_s *)addr,
 359                                    &data->header)) {
 360                u32 checksum;
 361
 362                addr = addr + BL_HEADER_SIZE;
 363                size = data->header.image_length;
 364
 365                checksum = stm32prog_header_checksum(addr, &data->header);
 366                if (checksum != data->header.image_checksum) {
 367                        stm32prog_err("Layout: invalid checksum : 0x%x expected 0x%x",
 368                                      checksum, data->header.image_checksum);
 369                        return -EIO;
 370                }
 371        }
 372        if (!size)
 373                return -EINVAL;
 374
 375        start = (char *)addr;
 376        last = start + size;
 377
 378        *last = 0x0; /* force null terminated string */
 379        pr_debug("flash layout =\n%s\n", start);
 380
 381        /* calculate expected number of partitions */
 382        part_list_size = 1;
 383        p = start;
 384        while (*p && (p < last)) {
 385                if (*p++ == '\n') {
 386                        part_list_size++;
 387                        if (p < last && *p == '#')
 388                                part_list_size--;
 389                }
 390        }
 391        if (part_list_size > PHASE_LAST_USER) {
 392                stm32prog_err("Layout: too many partition (%d)",
 393                              part_list_size);
 394                return -1;
 395        }
 396        part = calloc(sizeof(struct stm32prog_part_t), part_list_size);
 397        if (!part) {
 398                stm32prog_err("Layout: alloc failed");
 399                return -ENOMEM;
 400        }
 401        data->part_array = part;
 402
 403        /* main parsing loop */
 404        i = 1;
 405        eof = false;
 406        p = start;
 407        col = start; /* 1st column */
 408        end_of_line = false;
 409        while (!eof) {
 410                switch (*p) {
 411                /* CR is ignored and replaced by NULL character */
 412                case '\r':
 413                        *p = '\0';
 414                        p++;
 415                        continue;
 416                case '\0':
 417                        end_of_line = true;
 418                        eof = true;
 419                        break;
 420                case '\n':
 421                        end_of_line = true;
 422                        break;
 423                case '\t':
 424                        break;
 425                case '#':
 426                        /* comment line is skipped */
 427                        if (column == 0 && p == col) {
 428                                while ((p < last) && *p)
 429                                        if (*p++ == '\n')
 430                                                break;
 431                                col = p;
 432                                i++;
 433                                if (p >= last || !*p) {
 434                                        eof = true;
 435                                        end_of_line = true;
 436                                }
 437                                continue;
 438                        }
 439                        /* fall through */
 440                /* by default continue with the next character */
 441                default:
 442                        p++;
 443                        continue;
 444                }
 445
 446                /* replace by \0: allow string parsing for each column */
 447                *p = '\0';
 448                p++;
 449                if (p >= last) {
 450                        eof = true;
 451                        end_of_line = true;
 452                }
 453
 454                /* skip empty line and multiple TAB in tsv file */
 455                if (strlen(col) == 0) {
 456                        col = p;
 457                        /* skip empty line */
 458                        if (column == 0 && end_of_line) {
 459                                end_of_line = false;
 460                                i++;
 461                        }
 462                        continue;
 463                }
 464
 465                if (column < COL_NB_STM32) {
 466                        ret = parse[column](data, i, col, part);
 467                        if (ret)
 468                                return ret;
 469                }
 470
 471                /* save the beginning of the next column */
 472                column++;
 473                col = p;
 474
 475                if (!end_of_line)
 476                        continue;
 477
 478                /* end of the line detected */
 479                end_of_line = false;
 480
 481                if (column < COL_NB_STM32) {
 482                        stm32prog_err("Layout line %d: no enought column", i);
 483                        return -EINVAL;
 484                }
 485                column = 0;
 486                part_nb++;
 487                part++;
 488                i++;
 489                if (part_nb >= part_list_size) {
 490                        part = NULL;
 491                        if (!eof) {
 492                                stm32prog_err("Layout: no enought memory for %d part",
 493                                              part_nb);
 494                                return -EINVAL;
 495                        }
 496                }
 497        }
 498        data->part_nb = part_nb;
 499        if (data->part_nb == 0) {
 500                stm32prog_err("Layout: no partition found");
 501                return -ENODEV;
 502        }
 503
 504        return 0;
 505}
 506
 507static int __init part_cmp(void *priv, struct list_head *a, struct list_head *b)
 508{
 509        struct stm32prog_part_t *parta, *partb;
 510
 511        parta = container_of(a, struct stm32prog_part_t, list);
 512        partb = container_of(b, struct stm32prog_part_t, list);
 513
 514        if (parta->part_id != partb->part_id)
 515                return parta->part_id - partb->part_id;
 516        else
 517                return parta->addr > partb->addr ? 1 : -1;
 518}
 519
 520static void get_mtd_by_target(char *string, enum stm32prog_target target,
 521                              int dev_id)
 522{
 523        const char *dev_str;
 524
 525        switch (target) {
 526        case STM32PROG_NOR:
 527                dev_str = "nor";
 528                break;
 529        case STM32PROG_NAND:
 530                dev_str = "nand";
 531                break;
 532        case STM32PROG_SPI_NAND:
 533                dev_str = "spi-nand";
 534                break;
 535        default:
 536                dev_str = "invalid";
 537                break;
 538        }
 539        sprintf(string, "%s%d", dev_str, dev_id);
 540}
 541
 542static int init_device(struct stm32prog_data *data,
 543                       struct stm32prog_dev_t *dev)
 544{
 545        struct mmc *mmc = NULL;
 546        struct blk_desc *block_dev = NULL;
 547#ifdef CONFIG_MTD
 548        struct mtd_info *mtd = NULL;
 549        char mtd_id[16];
 550#endif
 551        int part_id;
 552        int ret;
 553        u64 first_addr = 0, last_addr = 0;
 554        struct stm32prog_part_t *part, *next_part;
 555        u64 part_addr, part_size;
 556        bool part_found;
 557        const char *part_name;
 558
 559        switch (dev->target) {
 560#ifdef CONFIG_MMC
 561        case STM32PROG_MMC:
 562                mmc = find_mmc_device(dev->dev_id);
 563                if (mmc_init(mmc)) {
 564                        stm32prog_err("mmc device %d not found", dev->dev_id);
 565                        return -ENODEV;
 566                }
 567                block_dev = mmc_get_blk_desc(mmc);
 568                if (!block_dev) {
 569                        stm32prog_err("mmc device %d not probed", dev->dev_id);
 570                        return -ENODEV;
 571                }
 572                dev->erase_size = mmc->erase_grp_size * block_dev->blksz;
 573                dev->mmc = mmc;
 574
 575                /* reserve a full erase group for each GTP headers */
 576                if (mmc->erase_grp_size > GPT_HEADER_SZ) {
 577                        first_addr = dev->erase_size;
 578                        last_addr = (u64)(block_dev->lba -
 579                                          mmc->erase_grp_size) *
 580                                    block_dev->blksz;
 581                } else {
 582                        first_addr = (u64)GPT_HEADER_SZ * block_dev->blksz;
 583                        last_addr = (u64)(block_dev->lba - GPT_HEADER_SZ - 1) *
 584                                    block_dev->blksz;
 585                }
 586                pr_debug("MMC %d: lba=%ld blksz=%ld\n", dev->dev_id,
 587                         block_dev->lba, block_dev->blksz);
 588                pr_debug(" available address = 0x%llx..0x%llx\n",
 589                         first_addr, last_addr);
 590                pr_debug(" full_update = %d\n", dev->full_update);
 591                break;
 592#endif
 593#ifdef CONFIG_MTD
 594        case STM32PROG_NOR:
 595        case STM32PROG_NAND:
 596        case STM32PROG_SPI_NAND:
 597                get_mtd_by_target(mtd_id, dev->target, dev->dev_id);
 598                pr_debug("%s\n", mtd_id);
 599
 600                mtdparts_init();
 601                mtd = get_mtd_device_nm(mtd_id);
 602                if (IS_ERR(mtd)) {
 603                        stm32prog_err("MTD device %s not found", mtd_id);
 604                        return -ENODEV;
 605                }
 606                first_addr = 0;
 607                last_addr = mtd->size;
 608                dev->erase_size = mtd->erasesize;
 609                pr_debug("MTD device %s: size=%lld erasesize=%d\n",
 610                         mtd_id, mtd->size, mtd->erasesize);
 611                pr_debug(" available address = 0x%llx..0x%llx\n",
 612                         first_addr, last_addr);
 613                dev->mtd = mtd;
 614                break;
 615#endif
 616        case STM32PROG_RAM:
 617                first_addr = gd->bd->bi_dram[0].start;
 618                last_addr = first_addr + gd->bd->bi_dram[0].size;
 619                dev->erase_size = 1;
 620                break;
 621        default:
 622                stm32prog_err("unknown device type = %d", dev->target);
 623                return -ENODEV;
 624        }
 625        pr_debug(" erase size = 0x%x\n", dev->erase_size);
 626        pr_debug(" full_update = %d\n", dev->full_update);
 627
 628        /* order partition list in offset order */
 629        list_sort(NULL, &dev->part_list, &part_cmp);
 630        part_id = 1;
 631        pr_debug("id : Opt Phase     Name target.n dev.n addr     size     part_off part_size\n");
 632        list_for_each_entry(part, &dev->part_list, list) {
 633                if (part->bin_nb > 1) {
 634                        if ((dev->target != STM32PROG_NAND &&
 635                             dev->target != STM32PROG_SPI_NAND) ||
 636                            part->id >= PHASE_FIRST_USER ||
 637                            strncmp(part->name, "fsbl", 4)) {
 638                                stm32prog_err("%s (0x%x): multiple binary %d not supported",
 639                                              part->name, part->id,
 640                                              part->bin_nb);
 641                                return -EINVAL;
 642                        }
 643                }
 644                if (part->part_type == RAW_IMAGE) {
 645                        part->part_id = 0x0;
 646                        part->addr = 0x0;
 647                        if (block_dev)
 648                                part->size = block_dev->lba * block_dev->blksz;
 649                        else
 650                                part->size = last_addr;
 651                        pr_debug("-- : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx\n",
 652                                 part->option, part->id, part->name,
 653                                 part->part_type, part->bin_nb, part->target,
 654                                 part->dev_id, part->addr, part->size);
 655                        continue;
 656                }
 657                if (part->part_id < 0) { /* boot hw partition for eMMC */
 658                        if (mmc) {
 659                                part->size = mmc->capacity_boot;
 660                        } else {
 661                                stm32prog_err("%s (0x%x): hw partition not expected : %d",
 662                                              part->name, part->id,
 663                                              part->part_id);
 664                                return -ENODEV;
 665                        }
 666                } else {
 667                        part->part_id = part_id++;
 668
 669                        /* last partition : size to the end of the device */
 670                        if (part->list.next != &dev->part_list) {
 671                                next_part =
 672                                        container_of(part->list.next,
 673                                                     struct stm32prog_part_t,
 674                                                     list);
 675                                if (part->addr < next_part->addr) {
 676                                        part->size = next_part->addr -
 677                                                     part->addr;
 678                                } else {
 679                                        stm32prog_err("%s (0x%x): same address : 0x%llx == %s (0x%x): 0x%llx",
 680                                                      part->name, part->id,
 681                                                      part->addr,
 682                                                      next_part->name,
 683                                                      next_part->id,
 684                                                      next_part->addr);
 685                                        return -EINVAL;
 686                                }
 687                        } else {
 688                                if (part->addr <= last_addr) {
 689                                        part->size = last_addr - part->addr;
 690                                } else {
 691                                        stm32prog_err("%s (0x%x): invalid address 0x%llx (max=0x%llx)",
 692                                                      part->name, part->id,
 693                                                      part->addr, last_addr);
 694                                        return -EINVAL;
 695                                }
 696                        }
 697                        if (part->addr < first_addr) {
 698                                stm32prog_err("%s (0x%x): invalid address 0x%llx (min=0x%llx)",
 699                                              part->name, part->id,
 700                                              part->addr, first_addr);
 701                                return -EINVAL;
 702                        }
 703                }
 704                if ((part->addr & ((u64)part->dev->erase_size - 1)) != 0) {
 705                        stm32prog_err("%s (0x%x): not aligned address : 0x%llx on erase size 0x%x",
 706                                      part->name, part->id, part->addr,
 707                                      part->dev->erase_size);
 708                        return -EINVAL;
 709                }
 710                pr_debug("%02d : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx",
 711                         part->part_id, part->option, part->id, part->name,
 712                         part->part_type, part->bin_nb, part->target,
 713                         part->dev_id, part->addr, part->size);
 714
 715                part_addr = 0;
 716                part_size = 0;
 717                part_found = false;
 718
 719                /* check coherency with existing partition */
 720                if (block_dev) {
 721                        /*
 722                         * block devices with GPT: check user partition size
 723                         * only for partial update, the GPT partions are be
 724                         * created for full update
 725                         */
 726                        if (dev->full_update || part->part_id < 0) {
 727                                pr_debug("\n");
 728                                continue;
 729                        }
 730                        struct disk_partition partinfo;
 731
 732                        ret = part_get_info(block_dev, part->part_id,
 733                                            &partinfo);
 734
 735                        if (ret) {
 736                                stm32prog_err("%s (0x%x):Couldn't find part %d on device mmc %d",
 737                                              part->name, part->id,
 738                                              part_id, part->dev_id);
 739                                return -ENODEV;
 740                        }
 741                        part_addr = (u64)partinfo.start * partinfo.blksz;
 742                        part_size = (u64)partinfo.size * partinfo.blksz;
 743                        part_name = (char *)partinfo.name;
 744                        part_found = true;
 745                }
 746
 747#ifdef CONFIG_MTD
 748                if (mtd) {
 749                        char mtd_part_id[32];
 750                        struct part_info *mtd_part;
 751                        struct mtd_device *mtd_dev;
 752                        u8 part_num;
 753
 754                        sprintf(mtd_part_id, "%s,%d", mtd_id,
 755                                part->part_id - 1);
 756                        ret = find_dev_and_part(mtd_part_id, &mtd_dev,
 757                                                &part_num, &mtd_part);
 758                        if (ret != 0) {
 759                                stm32prog_err("%s (0x%x): Invalid MTD partition %s",
 760                                              part->name, part->id,
 761                                              mtd_part_id);
 762                                return -ENODEV;
 763                        }
 764                        part_addr = mtd_part->offset;
 765                        part_size = mtd_part->size;
 766                        part_name = mtd_part->name;
 767                        part_found = true;
 768                }
 769#endif
 770                if (!part_found) {
 771                        stm32prog_err("%s (0x%x): Invalid partition",
 772                                      part->name, part->id);
 773                        pr_debug("\n");
 774                        continue;
 775                }
 776
 777                pr_debug(" %08llx %08llx\n", part_addr, part_size);
 778
 779                if (part->addr != part_addr) {
 780                        stm32prog_err("%s (0x%x): Bad address for partition %d (%s) = 0x%llx <> 0x%llx expected",
 781                                      part->name, part->id, part->part_id,
 782                                      part_name, part->addr, part_addr);
 783                        return -ENODEV;
 784                }
 785                if (part->size != part_size) {
 786                        stm32prog_err("%s (0x%x): Bad size for partition %d (%s) at 0x%llx = 0x%llx <> 0x%llx expected",
 787                                      part->name, part->id, part->part_id,
 788                                      part_name, part->addr, part->size,
 789                                      part_size);
 790                        return -ENODEV;
 791                }
 792        }
 793        return 0;
 794}
 795
 796static int treat_partition_list(struct stm32prog_data *data)
 797{
 798        int i, j;
 799        struct stm32prog_part_t *part;
 800
 801        for (j = 0; j < STM32PROG_MAX_DEV; j++) {
 802                data->dev[j].target = STM32PROG_NONE;
 803                INIT_LIST_HEAD(&data->dev[j].part_list);
 804        }
 805
 806        data->tee_detected = false;
 807        data->fsbl_nor_detected = false;
 808        for (i = 0; i < data->part_nb; i++) {
 809                part = &data->part_array[i];
 810                part->alt_id = -1;
 811
 812                /* skip partition with IP="none" */
 813                if (part->target == STM32PROG_NONE) {
 814                        if (IS_SELECT(part)) {
 815                                stm32prog_err("Layout: selected none phase = 0x%x",
 816                                              part->id);
 817                                return -EINVAL;
 818                        }
 819                        continue;
 820                }
 821
 822                if (part->id == PHASE_FLASHLAYOUT ||
 823                    part->id > PHASE_LAST_USER) {
 824                        stm32prog_err("Layout: invalid phase = 0x%x",
 825                                      part->id);
 826                        return -EINVAL;
 827                }
 828                for (j = i + 1; j < data->part_nb; j++) {
 829                        if (part->id == data->part_array[j].id) {
 830                                stm32prog_err("Layout: duplicated phase 0x%x at line %d and %d",
 831                                              part->id, i, j);
 832                                return -EINVAL;
 833                        }
 834                }
 835                for (j = 0; j < STM32PROG_MAX_DEV; j++) {
 836                        if (data->dev[j].target == STM32PROG_NONE) {
 837                                /* new device found */
 838                                data->dev[j].target = part->target;
 839                                data->dev[j].dev_id = part->dev_id;
 840                                data->dev[j].full_update = true;
 841                                data->dev_nb++;
 842                                break;
 843                        } else if ((part->target == data->dev[j].target) &&
 844                                   (part->dev_id == data->dev[j].dev_id)) {
 845                                break;
 846                        }
 847                }
 848                if (j == STM32PROG_MAX_DEV) {
 849                        stm32prog_err("Layout: too many device");
 850                        return -EINVAL;
 851                }
 852                switch (part->target)  {
 853                case STM32PROG_NOR:
 854                        if (!data->fsbl_nor_detected &&
 855                            !strncmp(part->name, "fsbl", 4))
 856                                data->fsbl_nor_detected = true;
 857                        /* fallthrough */
 858                case STM32PROG_NAND:
 859                case STM32PROG_SPI_NAND:
 860                        if (!data->tee_detected &&
 861                            !strncmp(part->name, "tee", 3))
 862                                data->tee_detected = true;
 863                        break;
 864                default:
 865                        break;
 866                }
 867                part->dev = &data->dev[j];
 868                if (!IS_SELECT(part))
 869                        part->dev->full_update = false;
 870                list_add_tail(&part->list, &data->dev[j].part_list);
 871        }
 872
 873        return 0;
 874}
 875
 876static int create_partitions(struct stm32prog_data *data)
 877{
 878#ifdef CONFIG_MMC
 879        int offset = 0;
 880        const int buflen = SZ_8K;
 881        char *buf;
 882        char uuid[UUID_STR_LEN + 1];
 883        unsigned char *uuid_bin;
 884        unsigned int mmc_id;
 885        int i;
 886        bool rootfs_found;
 887        struct stm32prog_part_t *part;
 888
 889        buf = malloc(buflen);
 890        if (!buf)
 891                return -ENOMEM;
 892
 893        puts("partitions : ");
 894        /* initialize the selected device */
 895        for (i = 0; i < data->dev_nb; i++) {
 896                /* create gpt partition support only for full update on MMC */
 897                if (data->dev[i].target != STM32PROG_MMC ||
 898                    !data->dev[i].full_update)
 899                        continue;
 900
 901                offset = 0;
 902                rootfs_found = false;
 903                memset(buf, 0, buflen);
 904
 905                list_for_each_entry(part, &data->dev[i].part_list, list) {
 906                        /* skip eMMC boot partitions */
 907                        if (part->part_id < 0)
 908                                continue;
 909                        /* skip Raw Image */
 910                        if (part->part_type == RAW_IMAGE)
 911                                continue;
 912
 913                        if (offset + 100 > buflen) {
 914                                pr_debug("\n%s: buffer too small, %s skippped",
 915                                         __func__, part->name);
 916                                continue;
 917                        }
 918
 919                        if (!offset)
 920                                offset += sprintf(buf, "gpt write mmc %d \"",
 921                                                  data->dev[i].dev_id);
 922
 923                        offset += snprintf(buf + offset, buflen - offset,
 924                                           "name=%s,start=0x%llx,size=0x%llx",
 925                                           part->name,
 926                                           part->addr,
 927                                           part->size);
 928
 929                        if (part->part_type == PART_BINARY)
 930                                offset += snprintf(buf + offset,
 931                                                   buflen - offset,
 932                                                   ",type="
 933                                                   LINUX_RESERVED_UUID);
 934                        else
 935                                offset += snprintf(buf + offset,
 936                                                   buflen - offset,
 937                                                   ",type=linux");
 938
 939                        if (part->part_type == PART_SYSTEM)
 940                                offset += snprintf(buf + offset,
 941                                                   buflen - offset,
 942                                                   ",bootable");
 943
 944                        if (!rootfs_found && !strcmp(part->name, "rootfs")) {
 945                                mmc_id = part->dev_id;
 946                                rootfs_found = true;
 947                                if (mmc_id < ARRAY_SIZE(uuid_mmc)) {
 948                                        uuid_bin =
 949                                          (unsigned char *)uuid_mmc[mmc_id].b;
 950                                        uuid_bin_to_str(uuid_bin, uuid,
 951                                                        UUID_STR_FORMAT_GUID);
 952                                        offset += snprintf(buf + offset,
 953                                                           buflen - offset,
 954                                                           ",uuid=%s", uuid);
 955                                }
 956                        }
 957
 958                        offset += snprintf(buf + offset, buflen - offset, ";");
 959                }
 960
 961                if (offset) {
 962                        offset += snprintf(buf + offset, buflen - offset, "\"");
 963                        pr_debug("\ncmd: %s\n", buf);
 964                        if (run_command(buf, 0)) {
 965                                stm32prog_err("GPT partitionning fail: %s",
 966                                              buf);
 967                                free(buf);
 968
 969                                return -1;
 970                        }
 971                }
 972
 973                if (data->dev[i].mmc)
 974                        part_init(mmc_get_blk_desc(data->dev[i].mmc));
 975
 976#ifdef DEBUG
 977                sprintf(buf, "gpt verify mmc %d", data->dev[i].dev_id);
 978                pr_debug("\ncmd: %s", buf);
 979                if (run_command(buf, 0))
 980                        printf("fail !\n");
 981                else
 982                        printf("OK\n");
 983
 984                sprintf(buf, "part list mmc %d", data->dev[i].dev_id);
 985                run_command(buf, 0);
 986#endif
 987        }
 988        puts("done\n");
 989
 990#ifdef DEBUG
 991        run_command("mtd list", 0);
 992#endif
 993        free(buf);
 994#endif
 995
 996        return 0;
 997}
 998
 999static int stm32prog_alt_add(struct stm32prog_data *data,
1000                             struct dfu_entity *dfu,
1001                             struct stm32prog_part_t *part)
1002{
1003        int ret = 0;
1004        int offset = 0;
1005        char devstr[10];
1006        char dfustr[10];
1007        char buf[ALT_BUF_LEN];
1008        u32 size;
1009        char multiplier,  type;
1010
1011        /* max 3 digit for sector size */
1012        if (part->size > SZ_1M) {
1013                size = (u32)(part->size / SZ_1M);
1014                multiplier = 'M';
1015        } else if (part->size > SZ_1K) {
1016                size = (u32)(part->size / SZ_1K);
1017                multiplier = 'K';
1018        } else {
1019                size = (u32)part->size;
1020                multiplier = 'B';
1021        }
1022        if (IS_SELECT(part) && !IS_EMPTY(part))
1023                type = 'e'; /*Readable and Writeable*/
1024        else
1025                type = 'a';/*Readable*/
1026
1027        memset(buf, 0, sizeof(buf));
1028        offset = snprintf(buf, ALT_BUF_LEN - offset,
1029                          "@%s/0x%02x/1*%d%c%c ",
1030                          part->name, part->id,
1031                          size, multiplier, type);
1032
1033        if (part->target == STM32PROG_RAM) {
1034                offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1035                                   "ram 0x%llx 0x%llx",
1036                                   part->addr, part->size);
1037        } else if (part->part_type == RAW_IMAGE) {
1038                u64 dfu_size;
1039
1040                if (part->dev->target == STM32PROG_MMC)
1041                        dfu_size = part->size / part->dev->mmc->read_bl_len;
1042                else
1043                        dfu_size = part->size;
1044                offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1045                                   "raw 0x0 0x%llx", dfu_size);
1046        } else if (part->part_id < 0) {
1047                u64 nb_blk = part->size / part->dev->mmc->read_bl_len;
1048
1049                offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1050                                   "raw 0x%llx 0x%llx",
1051                                   part->addr, nb_blk);
1052                offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1053                                   " mmcpart %d;", -(part->part_id));
1054        } else {
1055                if (part->part_type == PART_SYSTEM &&
1056                    (part->target == STM32PROG_NAND ||
1057                     part->target == STM32PROG_NOR ||
1058                     part->target == STM32PROG_SPI_NAND))
1059                        offset += snprintf(buf + offset,
1060                                           ALT_BUF_LEN - offset,
1061                                           "partubi");
1062                else
1063                        offset += snprintf(buf + offset,
1064                                           ALT_BUF_LEN - offset,
1065                                           "part");
1066                /* dev_id requested by DFU MMC */
1067                if (part->target == STM32PROG_MMC)
1068                        offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1069                                           " %d", part->dev_id);
1070                offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1071                                   " %d;", part->part_id);
1072        }
1073        switch (part->target) {
1074#ifdef CONFIG_MMC
1075        case STM32PROG_MMC:
1076                sprintf(dfustr, "mmc");
1077                sprintf(devstr, "%d", part->dev_id);
1078                break;
1079#endif
1080#ifdef CONFIG_MTD
1081        case STM32PROG_NAND:
1082        case STM32PROG_NOR:
1083        case STM32PROG_SPI_NAND:
1084                sprintf(dfustr, "mtd");
1085                get_mtd_by_target(devstr, part->target, part->dev_id);
1086                break;
1087#endif
1088        case STM32PROG_RAM:
1089                sprintf(dfustr, "ram");
1090                sprintf(devstr, "0");
1091                break;
1092        default:
1093                stm32prog_err("invalid target: %d", part->target);
1094                return -ENODEV;
1095        }
1096        pr_debug("dfu_alt_add(%s,%s,%s)\n", dfustr, devstr, buf);
1097        ret = dfu_alt_add(dfu, dfustr, devstr, buf);
1098        pr_debug("dfu_alt_add(%s,%s,%s) result %d\n",
1099                 dfustr, devstr, buf, ret);
1100
1101        return ret;
1102}
1103
1104static int stm32prog_alt_add_virt(struct dfu_entity *dfu,
1105                                  char *name, int phase, int size)
1106{
1107        int ret = 0;
1108        char devstr[4];
1109        char buf[ALT_BUF_LEN];
1110
1111        sprintf(devstr, "%d", phase);
1112        sprintf(buf, "@%s/0x%02x/1*%dBe", name, phase, size);
1113        ret = dfu_alt_add(dfu, "virt", devstr, buf);
1114        pr_debug("dfu_alt_add(virt,%s,%s) result %d\n", devstr, buf, ret);
1115
1116        return ret;
1117}
1118
1119static int dfu_init_entities(struct stm32prog_data *data)
1120{
1121        int ret = 0;
1122        int phase, i, alt_id;
1123        struct stm32prog_part_t *part;
1124        struct dfu_entity *dfu;
1125        int alt_nb;
1126
1127        alt_nb = 3; /* number of virtual = CMD, OTP, PMIC*/
1128        if (data->part_nb == 0)
1129                alt_nb++;  /* +1 for FlashLayout */
1130        else
1131                for (i = 0; i < data->part_nb; i++) {
1132                        if (data->part_array[i].target != STM32PROG_NONE)
1133                                alt_nb++;
1134                }
1135
1136        if (dfu_alt_init(alt_nb, &dfu))
1137                return -ENODEV;
1138
1139        puts("DFU alt info setting: ");
1140        if (data->part_nb) {
1141                alt_id = 0;
1142                for (phase = 1;
1143                     (phase <= PHASE_LAST_USER) &&
1144                     (alt_id < alt_nb) && !ret;
1145                     phase++) {
1146                        /* ordering alt setting by phase id */
1147                        part = NULL;
1148                        for (i = 0; i < data->part_nb; i++) {
1149                                if (phase == data->part_array[i].id) {
1150                                        part = &data->part_array[i];
1151                                        break;
1152                                }
1153                        }
1154                        if (!part)
1155                                continue;
1156                        if (part->target == STM32PROG_NONE)
1157                                continue;
1158                        part->alt_id = alt_id;
1159                        alt_id++;
1160
1161                        ret = stm32prog_alt_add(data, dfu, part);
1162                }
1163        } else {
1164                char buf[ALT_BUF_LEN];
1165
1166                sprintf(buf, "@FlashLayout/0x%02x/1*256Ke ram %x 40000",
1167                        PHASE_FLASHLAYOUT, STM32_DDR_BASE);
1168                ret = dfu_alt_add(dfu, "ram", NULL, buf);
1169                pr_debug("dfu_alt_add(ram, NULL,%s) result %d\n", buf, ret);
1170        }
1171
1172        if (!ret)
1173                ret = stm32prog_alt_add_virt(dfu, "virtual", PHASE_CMD, 512);
1174
1175        if (!ret)
1176                ret = stm32prog_alt_add_virt(dfu, "OTP", PHASE_OTP, 512);
1177
1178        if (!ret && CONFIG_IS_ENABLED(DM_PMIC))
1179                ret = stm32prog_alt_add_virt(dfu, "PMIC", PHASE_PMIC, 8);
1180
1181        if (ret)
1182                stm32prog_err("dfu init failed: %d", ret);
1183        puts("done\n");
1184
1185#ifdef DEBUG
1186        dfu_show_entities();
1187#endif
1188        return ret;
1189}
1190
1191int stm32prog_otp_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1192                        long *size)
1193{
1194        pr_debug("%s: %x %lx\n", __func__, offset, *size);
1195
1196        if (!data->otp_part) {
1197                data->otp_part = memalign(CONFIG_SYS_CACHELINE_SIZE, OTP_SIZE);
1198                if (!data->otp_part)
1199                        return -ENOMEM;
1200        }
1201
1202        if (!offset)
1203                memset(data->otp_part, 0, OTP_SIZE);
1204
1205        if (offset + *size > OTP_SIZE)
1206                *size = OTP_SIZE - offset;
1207
1208        memcpy((void *)((u32)data->otp_part + offset), buffer, *size);
1209
1210        return 0;
1211}
1212
1213int stm32prog_otp_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1214                       long *size)
1215{
1216#ifndef CONFIG_ARM_SMCCC
1217        stm32prog_err("OTP update not supported");
1218
1219        return -1;
1220#else
1221        int result = 0;
1222
1223        pr_debug("%s: %x %lx\n", __func__, offset, *size);
1224        /* alway read for first packet */
1225        if (!offset) {
1226                if (!data->otp_part)
1227                        data->otp_part =
1228                                memalign(CONFIG_SYS_CACHELINE_SIZE, OTP_SIZE);
1229
1230                if (!data->otp_part) {
1231                        result = -ENOMEM;
1232                        goto end_otp_read;
1233                }
1234
1235                /* init struct with 0 */
1236                memset(data->otp_part, 0, OTP_SIZE);
1237
1238                /* call the service */
1239                result = stm32_smc_exec(STM32_SMC_BSEC, STM32_SMC_READ_ALL,
1240                                        (u32)data->otp_part, 0);
1241                if (result)
1242                        goto end_otp_read;
1243        }
1244
1245        if (!data->otp_part) {
1246                result = -ENOMEM;
1247                goto end_otp_read;
1248        }
1249
1250        if (offset + *size > OTP_SIZE)
1251                *size = OTP_SIZE - offset;
1252        memcpy(buffer, (void *)((u32)data->otp_part + offset), *size);
1253
1254end_otp_read:
1255        pr_debug("%s: result %i\n", __func__, result);
1256
1257        return result;
1258#endif
1259}
1260
1261int stm32prog_otp_start(struct stm32prog_data *data)
1262{
1263#ifndef CONFIG_ARM_SMCCC
1264        stm32prog_err("OTP update not supported");
1265
1266        return -1;
1267#else
1268        int result = 0;
1269        struct arm_smccc_res res;
1270
1271        if (!data->otp_part) {
1272                stm32prog_err("start OTP without data");
1273                return -1;
1274        }
1275
1276        arm_smccc_smc(STM32_SMC_BSEC, STM32_SMC_WRITE_ALL,
1277                      (u32)data->otp_part, 0, 0, 0, 0, 0, &res);
1278
1279        if (!res.a0) {
1280                switch (res.a1) {
1281                case 0:
1282                        result = 0;
1283                        break;
1284                case 1:
1285                        stm32prog_err("Provisioning");
1286                        result = 0;
1287                        break;
1288                default:
1289                        pr_err("%s: OTP incorrect value (err = %ld)\n",
1290                               __func__, res.a1);
1291                        result = -EINVAL;
1292                        break;
1293                }
1294        } else {
1295                pr_err("%s: Failed to exec svc=%x op=%x in secure mode (err = %ld)\n",
1296                       __func__, STM32_SMC_BSEC, STM32_SMC_WRITE_ALL, res.a0);
1297                result = -EINVAL;
1298        }
1299
1300        free(data->otp_part);
1301        data->otp_part = NULL;
1302        pr_debug("%s: result %i\n", __func__, result);
1303
1304        return result;
1305#endif
1306}
1307
1308int stm32prog_pmic_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1309                         long *size)
1310{
1311        pr_debug("%s: %x %lx\n", __func__, offset, *size);
1312
1313        if (!offset)
1314                memset(data->pmic_part, 0, PMIC_SIZE);
1315
1316        if (offset + *size > PMIC_SIZE)
1317                *size = PMIC_SIZE - offset;
1318
1319        memcpy(&data->pmic_part[offset], buffer, *size);
1320
1321        return 0;
1322}
1323
1324int stm32prog_pmic_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1325                        long *size)
1326{
1327        int result = 0, ret;
1328        struct udevice *dev;
1329
1330        if (!CONFIG_IS_ENABLED(PMIC_STPMIC1)) {
1331                stm32prog_err("PMIC update not supported");
1332
1333                return -EOPNOTSUPP;
1334        }
1335
1336        pr_debug("%s: %x %lx\n", __func__, offset, *size);
1337        ret = uclass_get_device_by_driver(UCLASS_MISC,
1338                                          DM_GET_DRIVER(stpmic1_nvm),
1339                                          &dev);
1340        if (ret)
1341                return ret;
1342
1343        /* alway request PMIC for first packet */
1344        if (!offset) {
1345                /* init struct with 0 */
1346                memset(data->pmic_part, 0, PMIC_SIZE);
1347
1348                ret = uclass_get_device_by_driver(UCLASS_MISC,
1349                                                  DM_GET_DRIVER(stpmic1_nvm),
1350                                                  &dev);
1351                if (ret)
1352                        return ret;
1353
1354                ret = misc_read(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1355                if (ret < 0) {
1356                        result = ret;
1357                        goto end_pmic_read;
1358                }
1359                if (ret != PMIC_SIZE) {
1360                        result = -EACCES;
1361                        goto end_pmic_read;
1362                }
1363        }
1364
1365        if (offset + *size > PMIC_SIZE)
1366                *size = PMIC_SIZE - offset;
1367
1368        memcpy(buffer, &data->pmic_part[offset], *size);
1369
1370end_pmic_read:
1371        pr_debug("%s: result %i\n", __func__, result);
1372        return result;
1373}
1374
1375int stm32prog_pmic_start(struct stm32prog_data *data)
1376{
1377        int ret;
1378        struct udevice *dev;
1379
1380        if (!CONFIG_IS_ENABLED(PMIC_STPMIC1)) {
1381                stm32prog_err("PMIC update not supported");
1382
1383                return -EOPNOTSUPP;
1384        }
1385
1386        ret = uclass_get_device_by_driver(UCLASS_MISC,
1387                                          DM_GET_DRIVER(stpmic1_nvm),
1388                                          &dev);
1389        if (ret)
1390                return ret;
1391
1392        return misc_write(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1393}
1394
1395/* copy FSBL on NAND to improve reliability on NAND */
1396static int stm32prog_copy_fsbl(struct stm32prog_part_t *part)
1397{
1398        int ret, i;
1399        void *fsbl;
1400        struct image_header_s header;
1401        struct raw_header_s raw_header;
1402        struct dfu_entity *dfu;
1403        long size, offset;
1404
1405        if (part->target != STM32PROG_NAND &&
1406            part->target != STM32PROG_SPI_NAND)
1407                return -1;
1408
1409        dfu = dfu_get_entity(part->alt_id);
1410
1411        /* read header */
1412        dfu_transaction_cleanup(dfu);
1413        size = BL_HEADER_SIZE;
1414        ret = dfu->read_medium(dfu, 0, (void *)&raw_header, &size);
1415        if (ret)
1416                return ret;
1417        if (stm32prog_header_check(&raw_header, &header))
1418                return -1;
1419
1420        /* read header + payload */
1421        size = header.image_length + BL_HEADER_SIZE;
1422        size = round_up(size, part->dev->mtd->erasesize);
1423        fsbl = calloc(1, size);
1424        if (!fsbl)
1425                return -ENOMEM;
1426        ret = dfu->read_medium(dfu, 0, fsbl, &size);
1427        pr_debug("%s read size=%lx ret=%d\n", __func__, size, ret);
1428        if (ret)
1429                goto error;
1430
1431        dfu_transaction_cleanup(dfu);
1432        offset = 0;
1433        for (i = part->bin_nb - 1; i > 0; i--) {
1434                offset += size;
1435                /* write to the next erase block */
1436                ret = dfu->write_medium(dfu, offset, fsbl, &size);
1437                pr_debug("%s copy at ofset=%lx size=%lx ret=%d",
1438                         __func__, offset, size, ret);
1439                if (ret)
1440                        goto error;
1441        }
1442
1443error:
1444        free(fsbl);
1445        return ret;
1446}
1447
1448static void stm32prog_end_phase(struct stm32prog_data *data)
1449{
1450        if (data->phase == PHASE_FLASHLAYOUT) {
1451                if (parse_flash_layout(data, STM32_DDR_BASE, 0))
1452                        stm32prog_err("Layout: invalid FlashLayout");
1453                return;
1454        }
1455
1456        if (!data->cur_part)
1457                return;
1458
1459        if (data->cur_part->target == STM32PROG_RAM) {
1460                if (data->cur_part->part_type == PART_SYSTEM)
1461                        data->uimage = data->cur_part->addr;
1462                if (data->cur_part->part_type == PART_FILESYSTEM)
1463                        data->dtb = data->cur_part->addr;
1464        }
1465
1466        if (CONFIG_IS_ENABLED(MMC) &&
1467            data->cur_part->part_id < 0) {
1468                char cmdbuf[60];
1469
1470                sprintf(cmdbuf, "mmc bootbus %d 0 0 0; mmc partconf %d 1 %d 0",
1471                        data->cur_part->dev_id, data->cur_part->dev_id,
1472                        -(data->cur_part->part_id));
1473                if (run_command(cmdbuf, 0)) {
1474                        stm32prog_err("commands '%s' failed", cmdbuf);
1475                        return;
1476                }
1477        }
1478
1479        if (CONFIG_IS_ENABLED(MTD) &&
1480            data->cur_part->bin_nb > 1) {
1481                if (stm32prog_copy_fsbl(data->cur_part)) {
1482                        stm32prog_err("%s (0x%x): copy of fsbl failed",
1483                                      data->cur_part->name, data->cur_part->id);
1484                        return;
1485                }
1486        }
1487}
1488
1489void stm32prog_do_reset(struct stm32prog_data *data)
1490{
1491        if (data->phase == PHASE_RESET) {
1492                data->phase = PHASE_DO_RESET;
1493                puts("Reset requested\n");
1494        }
1495}
1496
1497void stm32prog_next_phase(struct stm32prog_data *data)
1498{
1499        int phase, i;
1500        struct stm32prog_part_t *part;
1501        bool found;
1502
1503        phase = data->phase;
1504        switch (phase) {
1505        case PHASE_RESET:
1506        case PHASE_END:
1507        case PHASE_DO_RESET:
1508                return;
1509        }
1510
1511        /* found next selected partition */
1512        data->dfu_seq = 0;
1513        data->cur_part = NULL;
1514        data->phase = PHASE_END;
1515        found = false;
1516        do {
1517                phase++;
1518                if (phase > PHASE_LAST_USER)
1519                        break;
1520                for (i = 0; i < data->part_nb; i++) {
1521                        part = &data->part_array[i];
1522                        if (part->id == phase) {
1523                                if (IS_SELECT(part) && !IS_EMPTY(part)) {
1524                                        data->cur_part = part;
1525                                        data->phase = phase;
1526                                        found = true;
1527                                }
1528                                break;
1529                        }
1530                }
1531        } while (!found);
1532
1533        if (data->phase == PHASE_END)
1534                puts("Phase=END\n");
1535}
1536
1537static int part_delete(struct stm32prog_data *data,
1538                       struct stm32prog_part_t *part)
1539{
1540        int ret = 0;
1541#ifdef CONFIG_MMC
1542        unsigned long blks, blks_offset, blks_size;
1543        struct blk_desc *block_dev = NULL;
1544 #endif
1545#ifdef CONFIG_MTD
1546        char cmdbuf[40];
1547        char devstr[10];
1548#endif
1549
1550        printf("Erasing %s ", part->name);
1551        switch (part->target) {
1552#ifdef CONFIG_MMC
1553        case STM32PROG_MMC:
1554                printf("on mmc %d: ", part->dev->dev_id);
1555                block_dev = mmc_get_blk_desc(part->dev->mmc);
1556                blks_offset = lldiv(part->addr, part->dev->mmc->read_bl_len);
1557                blks_size = lldiv(part->size, part->dev->mmc->read_bl_len);
1558                /* -1 or -2 : delete boot partition of MMC
1559                 * need to switch to associated hwpart 1 or 2
1560                 */
1561                if (part->part_id < 0)
1562                        if (blk_select_hwpart_devnum(IF_TYPE_MMC,
1563                                                     part->dev->dev_id,
1564                                                     -part->part_id))
1565                                return -1;
1566
1567                blks = blk_derase(block_dev, blks_offset, blks_size);
1568
1569                /* return to user partition */
1570                if (part->part_id < 0)
1571                        blk_select_hwpart_devnum(IF_TYPE_MMC,
1572                                                 part->dev->dev_id, 0);
1573                if (blks != blks_size) {
1574                        ret = -1;
1575                        stm32prog_err("%s (0x%x): MMC erase failed",
1576                                      part->name, part->id);
1577                }
1578                break;
1579#endif
1580#ifdef CONFIG_MTD
1581        case STM32PROG_NOR:
1582        case STM32PROG_NAND:
1583        case STM32PROG_SPI_NAND:
1584                get_mtd_by_target(devstr, part->target, part->dev->dev_id);
1585                printf("on %s: ", devstr);
1586                sprintf(cmdbuf, "mtd erase %s 0x%llx 0x%llx",
1587                        devstr, part->addr, part->size);
1588                if (run_command(cmdbuf, 0)) {
1589                        ret = -1;
1590                        stm32prog_err("%s (0x%x): MTD erase commands failed (%s)",
1591                                      part->name, part->id, cmdbuf);
1592                }
1593                break;
1594#endif
1595        case STM32PROG_RAM:
1596                printf("on ram: ");
1597                memset((void *)(uintptr_t)part->addr, 0, (size_t)part->size);
1598                break;
1599        default:
1600                ret = -1;
1601                stm32prog_err("%s (0x%x): erase invalid", part->name, part->id);
1602                break;
1603        }
1604        if (!ret)
1605                printf("done\n");
1606
1607        return ret;
1608}
1609
1610static void stm32prog_devices_init(struct stm32prog_data *data)
1611{
1612        int i;
1613        int ret;
1614        struct stm32prog_part_t *part;
1615
1616        ret = treat_partition_list(data);
1617        if (ret)
1618                goto error;
1619
1620        /* initialize the selected device */
1621        for (i = 0; i < data->dev_nb; i++) {
1622                ret = init_device(data, &data->dev[i]);
1623                if (ret)
1624                        goto error;
1625        }
1626
1627        /* delete RAW partition before create partition */
1628        for (i = 0; i < data->part_nb; i++) {
1629                part = &data->part_array[i];
1630
1631                if (part->part_type != RAW_IMAGE)
1632                        continue;
1633
1634                if (!IS_SELECT(part) || !IS_DELETE(part))
1635                        continue;
1636
1637                ret = part_delete(data, part);
1638                if (ret)
1639                        goto error;
1640        }
1641
1642        ret = create_partitions(data);
1643        if (ret)
1644                goto error;
1645
1646        /* delete partition GPT or MTD */
1647        for (i = 0; i < data->part_nb; i++) {
1648                part = &data->part_array[i];
1649
1650                if (part->part_type == RAW_IMAGE)
1651                        continue;
1652
1653                if (!IS_SELECT(part) || !IS_DELETE(part))
1654                        continue;
1655
1656                ret = part_delete(data, part);
1657                if (ret)
1658                        goto error;
1659        }
1660
1661        return;
1662
1663error:
1664        data->part_nb = 0;
1665}
1666
1667int stm32prog_dfu_init(struct stm32prog_data *data)
1668{
1669        /* init device if no error */
1670        if (data->part_nb)
1671                stm32prog_devices_init(data);
1672
1673        if (data->part_nb)
1674                stm32prog_next_phase(data);
1675
1676        /* prepare DFU for device read/write */
1677        dfu_free_entities();
1678        return dfu_init_entities(data);
1679}
1680
1681int stm32prog_init(struct stm32prog_data *data, ulong addr, ulong size)
1682{
1683        memset(data, 0x0, sizeof(*data));
1684        data->read_phase = PHASE_RESET;
1685        data->phase = PHASE_FLASHLAYOUT;
1686
1687        return parse_flash_layout(data, addr, size);
1688}
1689
1690void stm32prog_clean(struct stm32prog_data *data)
1691{
1692        /* clean */
1693        dfu_free_entities();
1694        free(data->part_array);
1695        free(data->otp_part);
1696        free(data->buffer);
1697        free(data->header_data);
1698}
1699
1700/* DFU callback: used after serial and direct DFU USB access */
1701void dfu_flush_callback(struct dfu_entity *dfu)
1702{
1703        if (!stm32prog_data)
1704                return;
1705
1706        if (dfu->dev_type == DFU_DEV_VIRT) {
1707                if (dfu->data.virt.dev_num == PHASE_OTP)
1708                        stm32prog_otp_start(stm32prog_data);
1709                else if (dfu->data.virt.dev_num == PHASE_PMIC)
1710                        stm32prog_pmic_start(stm32prog_data);
1711                return;
1712        }
1713
1714        if (dfu->dev_type == DFU_DEV_RAM) {
1715                if (dfu->alt == 0 &&
1716                    stm32prog_data->phase == PHASE_FLASHLAYOUT) {
1717                        stm32prog_end_phase(stm32prog_data);
1718                        /* waiting DFU DETACH for reenumeration */
1719                }
1720        }
1721
1722        if (!stm32prog_data->cur_part)
1723                return;
1724
1725        if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1726                stm32prog_end_phase(stm32prog_data);
1727                stm32prog_next_phase(stm32prog_data);
1728        }
1729}
1730
1731void dfu_initiated_callback(struct dfu_entity *dfu)
1732{
1733        if (!stm32prog_data)
1734                return;
1735
1736        if (!stm32prog_data->cur_part)
1737                return;
1738
1739        /* force the saved offset for the current partition */
1740        if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1741                dfu->offset = stm32prog_data->offset;
1742                stm32prog_data->dfu_seq = 0;
1743                pr_debug("dfu offset = 0x%llx\n", dfu->offset);
1744        }
1745}
1746