uboot/arch/arm/mach-tegra/clock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2010-2019, NVIDIA CORPORATION.  All rights reserved.
   4 */
   5
   6/* Tegra SoC common clock control functions */
   7
   8#include <common.h>
   9#include <div64.h>
  10#include <dm.h>
  11#include <errno.h>
  12#include <log.h>
  13#include <time.h>
  14#include <asm/io.h>
  15#include <asm/arch/clock.h>
  16#include <asm/arch/tegra.h>
  17#include <asm/arch-tegra/ap.h>
  18#include <asm/arch-tegra/clk_rst.h>
  19#include <asm/arch-tegra/pmc.h>
  20#include <asm/arch-tegra/timer.h>
  21#include <linux/delay.h>
  22
  23/*
  24 * This is our record of the current clock rate of each clock. We don't
  25 * fill all of these in since we are only really interested in clocks which
  26 * we use as parents.
  27 */
  28static unsigned pll_rate[CLOCK_ID_COUNT];
  29
  30/*
  31 * The oscillator frequency is fixed to one of four set values. Based on this
  32 * the other clocks are set up appropriately.
  33 */
  34static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
  35        13000000,
  36        19200000,
  37        12000000,
  38        26000000,
  39        38400000,
  40        48000000,
  41};
  42
  43/* return 1 if a peripheral ID is in range */
  44#define clock_type_id_isvalid(id) ((id) >= 0 && \
  45                (id) < CLOCK_TYPE_COUNT)
  46
  47char pllp_valid = 1;    /* PLLP is set up correctly */
  48
  49/* return 1 if a periphc_internal_id is in range */
  50#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
  51                (id) < PERIPHC_COUNT)
  52
  53/* number of clock outputs of a PLL */
  54static const u8 pll_num_clkouts[] = {
  55        1,      /* PLLC */
  56        1,      /* PLLM */
  57        4,      /* PLLP */
  58        1,      /* PLLA */
  59        0,      /* PLLU */
  60        0,      /* PLLD */
  61};
  62
  63int clock_get_osc_bypass(void)
  64{
  65        struct clk_rst_ctlr *clkrst =
  66                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  67        u32 reg;
  68
  69        reg = readl(&clkrst->crc_osc_ctrl);
  70        return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
  71}
  72
  73/* Returns a pointer to the registers of the given pll */
  74static struct clk_pll *get_pll(enum clock_id clkid)
  75{
  76        struct clk_rst_ctlr *clkrst =
  77                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  78
  79        assert(clock_id_is_pll(clkid));
  80        if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
  81                debug("%s: Invalid PLL %d\n", __func__, clkid);
  82                return NULL;
  83        }
  84        return &clkrst->crc_pll[clkid];
  85}
  86
  87__weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
  88{
  89        return NULL;
  90}
  91
  92int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
  93                u32 *divp, u32 *cpcon, u32 *lfcon)
  94{
  95        struct clk_pll *pll = get_pll(clkid);
  96        struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
  97        u32 data;
  98
  99        assert(clkid != CLOCK_ID_USB);
 100
 101        /* Safety check, adds to code size but is small */
 102        if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
 103                return -1;
 104        data = readl(&pll->pll_base);
 105        *divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
 106        *divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
 107        *divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
 108        data = readl(&pll->pll_misc);
 109        /* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
 110        *cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
 111        *lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
 112
 113        return 0;
 114}
 115
 116unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
 117                u32 divp, u32 cpcon, u32 lfcon)
 118{
 119        struct clk_pll *pll = NULL;
 120        struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
 121        struct clk_pll_simple *simple_pll = NULL;
 122        u32 misc_data, data;
 123
 124        if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
 125                pll = get_pll(clkid);
 126        } else {
 127                simple_pll = clock_get_simple_pll(clkid);
 128                if (!simple_pll) {
 129                        debug("%s: Uknown simple PLL %d\n", __func__, clkid);
 130                        return 0;
 131                }
 132        }
 133
 134        /*
 135         * pllinfo has the m/n/p and kcp/kvco mask and shift
 136         * values for all of the PLLs used in U-Boot, with any
 137         * SoC differences accounted for.
 138         *
 139         * Preserve EN_LOCKDET, etc.
 140         */
 141        if (pll)
 142                misc_data = readl(&pll->pll_misc);
 143        else
 144                misc_data = readl(&simple_pll->pll_misc);
 145        misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
 146        misc_data |= cpcon << pllinfo->kcp_shift;
 147        misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
 148        misc_data |= lfcon << pllinfo->kvco_shift;
 149
 150        data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
 151        data |= divp << pllinfo->p_shift;
 152        data |= (1 << PLL_ENABLE_SHIFT);        /* BYPASS s/b 0 already */
 153
 154        if (pll) {
 155                writel(misc_data, &pll->pll_misc);
 156                writel(data, &pll->pll_base);
 157        } else {
 158                writel(misc_data, &simple_pll->pll_misc);
 159                writel(data, &simple_pll->pll_base);
 160        }
 161
 162        /* calculate the stable time */
 163        return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
 164}
 165
 166void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
 167                        unsigned divisor)
 168{
 169        u32 *reg = get_periph_source_reg(periph_id);
 170        u32 value;
 171
 172        value = readl(reg);
 173
 174        value &= ~OUT_CLK_SOURCE_31_30_MASK;
 175        value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
 176
 177        value &= ~OUT_CLK_DIVISOR_MASK;
 178        value |= divisor << OUT_CLK_DIVISOR_SHIFT;
 179
 180        writel(value, reg);
 181}
 182
 183int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
 184                             unsigned source)
 185{
 186        u32 *reg = get_periph_source_reg(periph_id);
 187
 188        switch (mux_bits) {
 189        case MASK_BITS_31_30:
 190                clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
 191                                source << OUT_CLK_SOURCE_31_30_SHIFT);
 192                break;
 193
 194        case MASK_BITS_31_29:
 195                clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
 196                                source << OUT_CLK_SOURCE_31_29_SHIFT);
 197                break;
 198
 199        case MASK_BITS_31_28:
 200                clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
 201                                source << OUT_CLK_SOURCE_31_28_SHIFT);
 202                break;
 203
 204        default:
 205                return -1;
 206        }
 207
 208        return 0;
 209}
 210
 211static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits)
 212{
 213        u32 *reg = get_periph_source_reg(periph_id);
 214        u32 val = readl(reg);
 215
 216        switch (mux_bits) {
 217        case MASK_BITS_31_30:
 218                val >>= OUT_CLK_SOURCE_31_30_SHIFT;
 219                val &= OUT_CLK_SOURCE_31_30_MASK;
 220                return val;
 221        case MASK_BITS_31_29:
 222                val >>= OUT_CLK_SOURCE_31_29_SHIFT;
 223                val &= OUT_CLK_SOURCE_31_29_MASK;
 224                return val;
 225        case MASK_BITS_31_28:
 226                val >>= OUT_CLK_SOURCE_31_28_SHIFT;
 227                val &= OUT_CLK_SOURCE_31_28_MASK;
 228                return val;
 229        default:
 230                return -1;
 231        }
 232}
 233
 234void clock_ll_set_source(enum periph_id periph_id, unsigned source)
 235{
 236        clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
 237}
 238
 239/**
 240 * Given the parent's rate and the required rate for the children, this works
 241 * out the peripheral clock divider to use, in 7.1 binary format.
 242 *
 243 * @param divider_bits  number of divider bits (8 or 16)
 244 * @param parent_rate   clock rate of parent clock in Hz
 245 * @param rate          required clock rate for this clock
 246 * @return divider which should be used
 247 */
 248static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
 249                           unsigned long rate)
 250{
 251        u64 divider = parent_rate * 2;
 252        unsigned max_divider = 1 << divider_bits;
 253
 254        divider += rate - 1;
 255        do_div(divider, rate);
 256
 257        if ((s64)divider - 2 < 0)
 258                return 0;
 259
 260        if ((s64)divider - 2 >= max_divider)
 261                return -1;
 262
 263        return divider - 2;
 264}
 265
 266int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
 267{
 268        struct clk_pll *pll = get_pll(clkid);
 269        int data = 0, div = 0, offset = 0;
 270
 271        if (!clock_id_is_pll(clkid))
 272                return -1;
 273
 274        if (pllout + 1 > pll_num_clkouts[clkid])
 275                return -1;
 276
 277        div = clk_get_divider(8, pll_rate[clkid], rate);
 278
 279        if (div < 0)
 280                return -1;
 281
 282        /* out2 and out4 are in the high part of the register */
 283        if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
 284                offset = 16;
 285
 286        data = (div << PLL_OUT_RATIO_SHIFT) |
 287                        PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
 288        clrsetbits_le32(&pll->pll_out[pllout >> 1],
 289                        PLL_OUT_RATIO_MASK << offset, data << offset);
 290
 291        return 0;
 292}
 293
 294/**
 295 * Given the parent's rate and the divider in 7.1 format, this works out the
 296 * resulting peripheral clock rate.
 297 *
 298 * @param parent_rate   clock rate of parent clock in Hz
 299 * @param divider which should be used in 7.1 format
 300 * @return effective clock rate of peripheral
 301 */
 302static unsigned long get_rate_from_divider(unsigned long parent_rate,
 303                                           int divider)
 304{
 305        u64 rate;
 306
 307        rate = (u64)parent_rate * 2;
 308        do_div(rate, divider + 2);
 309        return rate;
 310}
 311
 312unsigned long clock_get_periph_rate(enum periph_id periph_id,
 313                enum clock_id parent)
 314{
 315        u32 *reg = get_periph_source_reg(periph_id);
 316        unsigned parent_rate = pll_rate[parent];
 317        int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT;
 318
 319        switch (periph_id) {
 320        case PERIPH_ID_UART1:
 321        case PERIPH_ID_UART2:
 322        case PERIPH_ID_UART3:
 323        case PERIPH_ID_UART4:
 324        case PERIPH_ID_UART5:
 325#ifdef CONFIG_TEGRA20
 326                /* There's no divider for these clocks in this SoC. */
 327                return parent_rate;
 328#else
 329                /*
 330                 * This undoes the +2 in get_rate_from_divider() which I
 331                 * believe is incorrect. Ideally we would fix
 332                 * get_rate_from_divider(), but... Removing the +2 from
 333                 * get_rate_from_divider() would probably require remove the -2
 334                 * from the tail of clk_get_divider() since I believe that's
 335                 * only there to invert get_rate_from_divider()'s +2. Observe
 336                 * how find_best_divider() uses those two functions together.
 337                 * However, doing so breaks other stuff, such as Seaboard's
 338                 * display, likely due to clock_set_pllout()'s call to
 339                 * clk_get_divider(). Attempting to fix that by making
 340                 * clock_set_pllout() subtract 2 from clk_get_divider()'s
 341                 * return value doesn't help. In summary this clock driver is
 342                 * quite broken but I'm afraid I have no idea how to fix it
 343                 * without completely replacing it.
 344                 *
 345                 * Be careful to avoid a divide by zero error.
 346                 */
 347                if (div >= 1)
 348                        div -= 2;
 349                break;
 350#endif
 351        default:
 352                break;
 353        }
 354
 355        return get_rate_from_divider(parent_rate, div);
 356}
 357
 358/**
 359 * Find the best available 7.1 format divisor given a parent clock rate and
 360 * required child clock rate. This function assumes that a second-stage
 361 * divisor is available which can divide by powers of 2 from 1 to 256.
 362 *
 363 * @param divider_bits  number of divider bits (8 or 16)
 364 * @param parent_rate   clock rate of parent clock in Hz
 365 * @param rate          required clock rate for this clock
 366 * @param extra_div     value for the second-stage divisor (not set if this
 367 *                      function returns -1.
 368 * @return divider which should be used, or -1 if nothing is valid
 369 *
 370 */
 371static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
 372                                unsigned long rate, int *extra_div)
 373{
 374        int shift;
 375        int best_divider = -1;
 376        int best_error = rate;
 377
 378        /* try dividers from 1 to 256 and find closest match */
 379        for (shift = 0; shift <= 8 && best_error > 0; shift++) {
 380                unsigned divided_parent = parent_rate >> shift;
 381                int divider = clk_get_divider(divider_bits, divided_parent,
 382                                                rate);
 383                unsigned effective_rate = get_rate_from_divider(divided_parent,
 384                                                divider);
 385                int error = rate - effective_rate;
 386
 387                /* Given a valid divider, look for the lowest error */
 388                if (divider != -1 && error < best_error) {
 389                        best_error = error;
 390                        *extra_div = 1 << shift;
 391                        best_divider = divider;
 392                }
 393        }
 394
 395        /* return what we found - *extra_div will already be set */
 396        return best_divider;
 397}
 398
 399/**
 400 * Adjust peripheral PLL to use the given divider and source.
 401 *
 402 * @param periph_id     peripheral to adjust
 403 * @param source        Source number (0-3 or 0-7)
 404 * @param mux_bits      Number of mux bits (2 or 4)
 405 * @param divider       Required divider in 7.1 or 15.1 format
 406 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
 407 *              for this peripheral)
 408 */
 409static int adjust_periph_pll(enum periph_id periph_id, int source,
 410                                int mux_bits, unsigned divider)
 411{
 412        u32 *reg = get_periph_source_reg(periph_id);
 413
 414        clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
 415                        divider << OUT_CLK_DIVISOR_SHIFT);
 416        udelay(1);
 417
 418        /* work out the source clock and set it */
 419        if (source < 0)
 420                return -1;
 421
 422        clock_ll_set_source_bits(periph_id, mux_bits, source);
 423
 424        udelay(2);
 425        return 0;
 426}
 427
 428enum clock_id clock_get_periph_parent(enum periph_id periph_id)
 429{
 430        int err, mux_bits, divider_bits, type;
 431        int source;
 432
 433        err = get_periph_clock_info(periph_id, &mux_bits, &divider_bits, &type);
 434        if (err)
 435                return CLOCK_ID_NONE;
 436
 437        source = clock_ll_get_source_bits(periph_id, mux_bits);
 438
 439        return get_periph_clock_id(periph_id, source);
 440}
 441
 442unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
 443                enum clock_id parent, unsigned rate, int *extra_div)
 444{
 445        unsigned effective_rate;
 446        int mux_bits, divider_bits, source;
 447        int divider;
 448        int xdiv = 0;
 449
 450        /* work out the source clock and set it */
 451        source = get_periph_clock_source(periph_id, parent, &mux_bits,
 452                                         &divider_bits);
 453
 454        divider = find_best_divider(divider_bits, pll_rate[parent],
 455                                    rate, &xdiv);
 456        if (extra_div)
 457                *extra_div = xdiv;
 458
 459        assert(divider >= 0);
 460        if (adjust_periph_pll(periph_id, source, mux_bits, divider))
 461                return -1U;
 462        debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
 463                get_periph_source_reg(periph_id),
 464                readl(get_periph_source_reg(periph_id)));
 465
 466        /* Check what we ended up with. This shouldn't matter though */
 467        effective_rate = clock_get_periph_rate(periph_id, parent);
 468        if (extra_div)
 469                effective_rate /= *extra_div;
 470        if (rate != effective_rate)
 471                debug("Requested clock rate %u not honored (got %u)\n",
 472                        rate, effective_rate);
 473        return effective_rate;
 474}
 475
 476unsigned clock_start_periph_pll(enum periph_id periph_id,
 477                enum clock_id parent, unsigned rate)
 478{
 479        unsigned effective_rate;
 480
 481        reset_set_enable(periph_id, 1);
 482        clock_enable(periph_id);
 483        udelay(2);
 484
 485        effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
 486                                                 NULL);
 487
 488        reset_set_enable(periph_id, 0);
 489        return effective_rate;
 490}
 491
 492void clock_enable(enum periph_id clkid)
 493{
 494        clock_set_enable(clkid, 1);
 495}
 496
 497void clock_disable(enum periph_id clkid)
 498{
 499        clock_set_enable(clkid, 0);
 500}
 501
 502void reset_periph(enum periph_id periph_id, int us_delay)
 503{
 504        /* Put peripheral into reset */
 505        reset_set_enable(periph_id, 1);
 506        udelay(us_delay);
 507
 508        /* Remove reset */
 509        reset_set_enable(periph_id, 0);
 510
 511        udelay(us_delay);
 512}
 513
 514void reset_cmplx_set_enable(int cpu, int which, int reset)
 515{
 516        struct clk_rst_ctlr *clkrst =
 517                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 518        u32 mask;
 519
 520        /* Form the mask, which depends on the cpu chosen (2 or 4) */
 521        assert(cpu >= 0 && cpu < MAX_NUM_CPU);
 522        mask = which << cpu;
 523
 524        /* either enable or disable those reset for that CPU */
 525        if (reset)
 526                writel(mask, &clkrst->crc_cpu_cmplx_set);
 527        else
 528                writel(mask, &clkrst->crc_cpu_cmplx_clr);
 529}
 530
 531unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
 532{
 533        return parent_rate;
 534}
 535
 536unsigned clock_get_rate(enum clock_id clkid)
 537{
 538        struct clk_pll *pll;
 539        u32 base, divm;
 540        u64 parent_rate, rate;
 541        struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
 542
 543        parent_rate = osc_freq[clock_get_osc_freq()];
 544        if (clkid == CLOCK_ID_OSC)
 545                return parent_rate;
 546
 547        if (clkid == CLOCK_ID_CLK_M)
 548                return clk_m_get_rate(parent_rate);
 549
 550        pll = get_pll(clkid);
 551        if (!pll)
 552                return 0;
 553        base = readl(&pll->pll_base);
 554
 555        rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
 556        divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
 557        /*
 558         * PLLU uses p_mask/p_shift for VCO on all but T210,
 559         * T210 uses normal DIVP. Handled in pllinfo table.
 560         */
 561#ifdef CONFIG_TEGRA210
 562        /*
 563         * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
 564         * not applied. pllP_out2 does have divp applied. All other pllP_outN
 565         * are divided down from pllP_out0. We only support pllP_out0 in
 566         * U-Boot at the time of writing this comment.
 567         */
 568        if (clkid != CLOCK_ID_PERIPH)
 569#endif
 570                divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
 571        do_div(rate, divm);
 572        return rate;
 573}
 574
 575/**
 576 * Set the output frequency you want for each PLL clock.
 577 * PLL output frequencies are programmed by setting their N, M and P values.
 578 * The governing equations are:
 579 *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
 580 *     where Fo is the output frequency from the PLL.
 581 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
 582 *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
 583 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
 584 *
 585 * @param n PLL feedback divider(DIVN)
 586 * @param m PLL input divider(DIVN)
 587 * @param p post divider(DIVP)
 588 * @param cpcon base PLL charge pump(CPCON)
 589 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
 590 *              be overridden), 1 if PLL is already correct
 591 */
 592int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
 593{
 594        u32 base_reg, misc_reg;
 595        struct clk_pll *pll;
 596        struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
 597
 598        pll = get_pll(clkid);
 599
 600        base_reg = readl(&pll->pll_base);
 601
 602        /* Set BYPASS, m, n and p to PLL_BASE */
 603        base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
 604        base_reg |= m << pllinfo->m_shift;
 605
 606        base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
 607        base_reg |= n << pllinfo->n_shift;
 608
 609        base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
 610        base_reg |= p << pllinfo->p_shift;
 611
 612        if (clkid == CLOCK_ID_PERIPH) {
 613                /*
 614                 * If the PLL is already set up, check that it is correct
 615                 * and record this info for clock_verify() to check.
 616                 */
 617                if (base_reg & PLL_BASE_OVRRIDE_MASK) {
 618                        base_reg |= PLL_ENABLE_MASK;
 619                        if (base_reg != readl(&pll->pll_base))
 620                                pllp_valid = 0;
 621                        return pllp_valid ? 1 : -1;
 622                }
 623                base_reg |= PLL_BASE_OVRRIDE_MASK;
 624        }
 625
 626        base_reg |= PLL_BYPASS_MASK;
 627        writel(base_reg, &pll->pll_base);
 628
 629        /* Set cpcon (KCP) to PLL_MISC */
 630        misc_reg = readl(&pll->pll_misc);
 631        misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
 632        misc_reg |= cpcon << pllinfo->kcp_shift;
 633        writel(misc_reg, &pll->pll_misc);
 634
 635        /* Enable PLL */
 636        base_reg |= PLL_ENABLE_MASK;
 637        writel(base_reg, &pll->pll_base);
 638
 639        /* Disable BYPASS */
 640        base_reg &= ~PLL_BYPASS_MASK;
 641        writel(base_reg, &pll->pll_base);
 642
 643        return 0;
 644}
 645
 646void clock_ll_start_uart(enum periph_id periph_id)
 647{
 648        /* Assert UART reset and enable clock */
 649        reset_set_enable(periph_id, 1);
 650        clock_enable(periph_id);
 651        clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
 652
 653        /* wait for 2us */
 654        udelay(2);
 655
 656        /* De-assert reset to UART */
 657        reset_set_enable(periph_id, 0);
 658}
 659
 660#if CONFIG_IS_ENABLED(OF_CONTROL)
 661int clock_decode_periph_id(struct udevice *dev)
 662{
 663        enum periph_id id;
 664        u32 cell[2];
 665        int err;
 666
 667        err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
 668        if (err)
 669                return -1;
 670        id = clk_id_to_periph_id(cell[1]);
 671        assert(clock_periph_id_isvalid(id));
 672        return id;
 673}
 674#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
 675
 676int clock_verify(void)
 677{
 678        struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
 679        u32 reg = readl(&pll->pll_base);
 680
 681        if (!pllp_valid) {
 682                printf("Warning: PLLP %x is not correct\n", reg);
 683                return -1;
 684        }
 685        debug("PLLP %x is correct\n", reg);
 686        return 0;
 687}
 688
 689void clock_init(void)
 690{
 691        int i;
 692
 693        pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
 694        pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
 695        pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
 696        pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
 697        pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
 698        pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
 699        pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
 700        pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
 701        pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
 702
 703        debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
 704        debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
 705        debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
 706        debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
 707        debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
 708        debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
 709        debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
 710        debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
 711
 712        for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) {
 713                enum periph_id periph_id;
 714                enum clock_id parent;
 715                int source, mux_bits, divider_bits;
 716
 717                periph_id = periph_clk_init_table[i].periph_id;
 718                parent = periph_clk_init_table[i].parent_clock_id;
 719
 720                source = get_periph_clock_source(periph_id, parent, &mux_bits,
 721                                                 &divider_bits);
 722                clock_ll_set_source_bits(periph_id, mux_bits, source);
 723        }
 724}
 725
 726static void set_avp_clock_source(u32 src)
 727{
 728        struct clk_rst_ctlr *clkrst =
 729                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 730        u32 val;
 731
 732        val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
 733                (src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
 734                (src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
 735                (src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
 736                (SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
 737        writel(val, &clkrst->crc_sclk_brst_pol);
 738        udelay(3);
 739}
 740
 741/*
 742 * This function is useful on Tegra30, and any later SoCs that have compatible
 743 * PLLP configuration registers.
 744 * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
 745 */
 746void tegra30_set_up_pllp(void)
 747{
 748        struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 749        u32 reg;
 750
 751        /*
 752         * Based on the Tegra TRM, the system clock (which is the AVP clock) can
 753         * run up to 275MHz. On power on, the default sytem clock source is set
 754         * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
 755         * 408MHz which is beyond system clock's upper limit.
 756         *
 757         * The fix is to set the system clock to CLK_M before initializing PLLP,
 758         * and then switch back to PLLP_OUT4, which has an appropriate divider
 759         * configured, after PLLP has been configured
 760         */
 761        set_avp_clock_source(SCLK_SOURCE_CLKM);
 762
 763        /*
 764         * PLLP output frequency set to 408Mhz
 765         * PLLC output frequency set to 228Mhz
 766         */
 767        switch (clock_get_osc_freq()) {
 768        case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
 769                clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
 770                clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
 771                break;
 772
 773        case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
 774                clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
 775                clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
 776                break;
 777
 778        case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
 779                clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
 780                clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
 781                break;
 782        case CLOCK_OSC_FREQ_19_2:
 783        default:
 784                /*
 785                 * These are not supported. It is too early to print a
 786                 * message and the UART likely won't work anyway due to the
 787                 * oscillator being wrong.
 788                 */
 789                break;
 790        }
 791
 792        /* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
 793
 794        /* OUT1, 2 */
 795        /* Assert RSTN before enable */
 796        reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
 797        writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
 798        /* Set divisor and reenable */
 799        reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
 800                | PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
 801                | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
 802                | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
 803        writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
 804
 805        /* OUT3, 4 */
 806        /* Assert RSTN before enable */
 807        reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
 808        writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
 809        /* Set divisor and reenable */
 810        reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
 811                | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
 812                | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
 813                | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
 814        writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
 815
 816        set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
 817}
 818
 819int clock_external_output(int clk_id)
 820{
 821        u32 val;
 822
 823        if (clk_id >= 1 && clk_id <= 3) {
 824                val = tegra_pmc_readl(offsetof(struct pmc_ctlr,
 825                                      pmc_clk_out_cntrl));
 826                val |= 1 << (2 + (clk_id - 1) * 8);
 827                tegra_pmc_writel(val,
 828                                 offsetof(struct pmc_ctlr,
 829                                 pmc_clk_out_cntrl));
 830
 831        } else {
 832                printf("%s: Unknown output clock id %d\n", __func__, clk_id);
 833                return -EINVAL;
 834        }
 835
 836        return 0;
 837}
 838
 839__weak bool clock_early_init_done(void)
 840{
 841        return true;
 842}
 843