uboot/drivers/mtd/spi/spi-nor-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
   4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
   5 *
   6 * Copyright (C) 2005, Intec Automation Inc.
   7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
   8 *
   9 * Synced from Linux v4.19
  10 */
  11
  12#include <common.h>
  13#include <log.h>
  14#include <dm/device_compat.h>
  15#include <dm/devres.h>
  16#include <linux/bitops.h>
  17#include <linux/err.h>
  18#include <linux/errno.h>
  19#include <linux/log2.h>
  20#include <linux/math64.h>
  21#include <linux/sizes.h>
  22
  23#include <linux/mtd/mtd.h>
  24#include <linux/mtd/spi-nor.h>
  25#include <spi-mem.h>
  26#include <spi.h>
  27
  28#include "sf_internal.h"
  29
  30/* Define max times to check status register before we give up. */
  31
  32/*
  33 * For everything but full-chip erase; probably could be much smaller, but kept
  34 * around for safety for now
  35 */
  36
  37#define HZ                                      CONFIG_SYS_HZ
  38
  39#define DEFAULT_READY_WAIT_JIFFIES              (40UL * HZ)
  40
  41static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
  42                *op, void *buf)
  43{
  44        if (op->data.dir == SPI_MEM_DATA_IN)
  45                op->data.buf.in = buf;
  46        else
  47                op->data.buf.out = buf;
  48        return spi_mem_exec_op(nor->spi, op);
  49}
  50
  51static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
  52{
  53        struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1),
  54                                          SPI_MEM_OP_NO_ADDR,
  55                                          SPI_MEM_OP_NO_DUMMY,
  56                                          SPI_MEM_OP_DATA_IN(len, NULL, 1));
  57        int ret;
  58
  59        ret = spi_nor_read_write_reg(nor, &op, val);
  60        if (ret < 0)
  61                dev_dbg(nor->dev, "error %d reading %x\n", ret, code);
  62
  63        return ret;
  64}
  65
  66static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  67{
  68        struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1),
  69                                          SPI_MEM_OP_NO_ADDR,
  70                                          SPI_MEM_OP_NO_DUMMY,
  71                                          SPI_MEM_OP_DATA_OUT(len, NULL, 1));
  72
  73        return spi_nor_read_write_reg(nor, &op, buf);
  74}
  75
  76static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
  77                                 u_char *buf)
  78{
  79        struct spi_mem_op op =
  80                        SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
  81                                   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
  82                                   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
  83                                   SPI_MEM_OP_DATA_IN(len, buf, 1));
  84        size_t remaining = len;
  85        int ret;
  86
  87        /* get transfer protocols. */
  88        op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
  89        op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
  90        op.dummy.buswidth = op.addr.buswidth;
  91        op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
  92
  93        /* convert the dummy cycles to the number of bytes */
  94        op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
  95
  96        while (remaining) {
  97                op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
  98                ret = spi_mem_adjust_op_size(nor->spi, &op);
  99                if (ret)
 100                        return ret;
 101
 102                ret = spi_mem_exec_op(nor->spi, &op);
 103                if (ret)
 104                        return ret;
 105
 106                op.addr.val += op.data.nbytes;
 107                remaining -= op.data.nbytes;
 108                op.data.buf.in += op.data.nbytes;
 109        }
 110
 111        return len;
 112}
 113
 114static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
 115                                  const u_char *buf)
 116{
 117        struct spi_mem_op op =
 118                        SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
 119                                   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
 120                                   SPI_MEM_OP_NO_DUMMY,
 121                                   SPI_MEM_OP_DATA_OUT(len, buf, 1));
 122        int ret;
 123
 124        /* get transfer protocols. */
 125        op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
 126        op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
 127        op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
 128
 129        if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
 130                op.addr.nbytes = 0;
 131
 132        ret = spi_mem_adjust_op_size(nor->spi, &op);
 133        if (ret)
 134                return ret;
 135        op.data.nbytes = len < op.data.nbytes ? len : op.data.nbytes;
 136
 137        ret = spi_mem_exec_op(nor->spi, &op);
 138        if (ret)
 139                return ret;
 140
 141        return op.data.nbytes;
 142}
 143
 144/*
 145 * Read the status register, returning its value in the location
 146 * Return the status register value.
 147 * Returns negative if error occurred.
 148 */
 149static int read_sr(struct spi_nor *nor)
 150{
 151        int ret;
 152        u8 val;
 153
 154        ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
 155        if (ret < 0) {
 156                pr_debug("error %d reading SR\n", (int)ret);
 157                return ret;
 158        }
 159
 160        return val;
 161}
 162
 163/*
 164 * Read the flag status register, returning its value in the location
 165 * Return the status register value.
 166 * Returns negative if error occurred.
 167 */
 168static int read_fsr(struct spi_nor *nor)
 169{
 170        int ret;
 171        u8 val;
 172
 173        ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
 174        if (ret < 0) {
 175                pr_debug("error %d reading FSR\n", ret);
 176                return ret;
 177        }
 178
 179        return val;
 180}
 181
 182/*
 183 * Read configuration register, returning its value in the
 184 * location. Return the configuration register value.
 185 * Returns negative if error occurred.
 186 */
 187#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
 188static int read_cr(struct spi_nor *nor)
 189{
 190        int ret;
 191        u8 val;
 192
 193        ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
 194        if (ret < 0) {
 195                dev_dbg(nor->dev, "error %d reading CR\n", ret);
 196                return ret;
 197        }
 198
 199        return val;
 200}
 201#endif
 202
 203/*
 204 * Write status register 1 byte
 205 * Returns negative if error occurred.
 206 */
 207static int write_sr(struct spi_nor *nor, u8 val)
 208{
 209        nor->cmd_buf[0] = val;
 210        return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
 211}
 212
 213/*
 214 * Set write enable latch with Write Enable command.
 215 * Returns negative if error occurred.
 216 */
 217static int write_enable(struct spi_nor *nor)
 218{
 219        return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
 220}
 221
 222/*
 223 * Send write disable instruction to the chip.
 224 */
 225static int write_disable(struct spi_nor *nor)
 226{
 227        return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
 228}
 229
 230static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
 231{
 232        return mtd->priv;
 233}
 234
 235#ifndef CONFIG_SPI_FLASH_BAR
 236static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
 237{
 238        size_t i;
 239
 240        for (i = 0; i < size; i++)
 241                if (table[i][0] == opcode)
 242                        return table[i][1];
 243
 244        /* No conversion found, keep input op code. */
 245        return opcode;
 246}
 247
 248static u8 spi_nor_convert_3to4_read(u8 opcode)
 249{
 250        static const u8 spi_nor_3to4_read[][2] = {
 251                { SPINOR_OP_READ,       SPINOR_OP_READ_4B },
 252                { SPINOR_OP_READ_FAST,  SPINOR_OP_READ_FAST_4B },
 253                { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
 254                { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
 255                { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
 256                { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
 257                { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
 258                { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
 259
 260                { SPINOR_OP_READ_1_1_1_DTR,     SPINOR_OP_READ_1_1_1_DTR_4B },
 261                { SPINOR_OP_READ_1_2_2_DTR,     SPINOR_OP_READ_1_2_2_DTR_4B },
 262                { SPINOR_OP_READ_1_4_4_DTR,     SPINOR_OP_READ_1_4_4_DTR_4B },
 263        };
 264
 265        return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
 266                                      ARRAY_SIZE(spi_nor_3to4_read));
 267}
 268
 269static u8 spi_nor_convert_3to4_program(u8 opcode)
 270{
 271        static const u8 spi_nor_3to4_program[][2] = {
 272                { SPINOR_OP_PP,         SPINOR_OP_PP_4B },
 273                { SPINOR_OP_PP_1_1_4,   SPINOR_OP_PP_1_1_4_4B },
 274                { SPINOR_OP_PP_1_4_4,   SPINOR_OP_PP_1_4_4_4B },
 275                { SPINOR_OP_PP_1_1_8,   SPINOR_OP_PP_1_1_8_4B },
 276                { SPINOR_OP_PP_1_8_8,   SPINOR_OP_PP_1_8_8_4B },
 277        };
 278
 279        return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
 280                                      ARRAY_SIZE(spi_nor_3to4_program));
 281}
 282
 283static u8 spi_nor_convert_3to4_erase(u8 opcode)
 284{
 285        static const u8 spi_nor_3to4_erase[][2] = {
 286                { SPINOR_OP_BE_4K,      SPINOR_OP_BE_4K_4B },
 287                { SPINOR_OP_BE_32K,     SPINOR_OP_BE_32K_4B },
 288                { SPINOR_OP_SE,         SPINOR_OP_SE_4B },
 289        };
 290
 291        return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
 292                                      ARRAY_SIZE(spi_nor_3to4_erase));
 293}
 294
 295static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
 296                                      const struct flash_info *info)
 297{
 298        /* Do some manufacturer fixups first */
 299        switch (JEDEC_MFR(info)) {
 300        case SNOR_MFR_SPANSION:
 301                /* No small sector erase for 4-byte command set */
 302                nor->erase_opcode = SPINOR_OP_SE;
 303                nor->mtd.erasesize = info->sector_size;
 304                break;
 305
 306        default:
 307                break;
 308        }
 309
 310        nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
 311        nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
 312        nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
 313}
 314#endif /* !CONFIG_SPI_FLASH_BAR */
 315
 316/* Enable/disable 4-byte addressing mode. */
 317static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
 318                     int enable)
 319{
 320        int status;
 321        bool need_wren = false;
 322        u8 cmd;
 323
 324        switch (JEDEC_MFR(info)) {
 325        case SNOR_MFR_ST:
 326        case SNOR_MFR_MICRON:
 327                /* Some Micron need WREN command; all will accept it */
 328                need_wren = true;
 329        case SNOR_MFR_ISSI:
 330        case SNOR_MFR_MACRONIX:
 331        case SNOR_MFR_WINBOND:
 332                if (need_wren)
 333                        write_enable(nor);
 334
 335                cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
 336                status = nor->write_reg(nor, cmd, NULL, 0);
 337                if (need_wren)
 338                        write_disable(nor);
 339
 340                if (!status && !enable &&
 341                    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
 342                        /*
 343                         * On Winbond W25Q256FV, leaving 4byte mode causes
 344                         * the Extended Address Register to be set to 1, so all
 345                         * 3-byte-address reads come from the second 16M.
 346                         * We must clear the register to enable normal behavior.
 347                         */
 348                        write_enable(nor);
 349                        nor->cmd_buf[0] = 0;
 350                        nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
 351                        write_disable(nor);
 352                }
 353
 354                return status;
 355        default:
 356                /* Spansion style */
 357                nor->cmd_buf[0] = enable << 7;
 358                return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
 359        }
 360}
 361
 362static int spi_nor_sr_ready(struct spi_nor *nor)
 363{
 364        int sr = read_sr(nor);
 365
 366        if (sr < 0)
 367                return sr;
 368
 369        if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
 370                if (sr & SR_E_ERR)
 371                        dev_dbg(nor->dev, "Erase Error occurred\n");
 372                else
 373                        dev_dbg(nor->dev, "Programming Error occurred\n");
 374
 375                nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
 376                return -EIO;
 377        }
 378
 379        return !(sr & SR_WIP);
 380}
 381
 382static int spi_nor_fsr_ready(struct spi_nor *nor)
 383{
 384        int fsr = read_fsr(nor);
 385
 386        if (fsr < 0)
 387                return fsr;
 388
 389        if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
 390                if (fsr & FSR_E_ERR)
 391                        dev_err(nor->dev, "Erase operation failed.\n");
 392                else
 393                        dev_err(nor->dev, "Program operation failed.\n");
 394
 395                if (fsr & FSR_PT_ERR)
 396                        dev_err(nor->dev,
 397                                "Attempted to modify a protected sector.\n");
 398
 399                nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
 400                return -EIO;
 401        }
 402
 403        return fsr & FSR_READY;
 404}
 405
 406static int spi_nor_ready(struct spi_nor *nor)
 407{
 408        int sr, fsr;
 409
 410        sr = spi_nor_sr_ready(nor);
 411        if (sr < 0)
 412                return sr;
 413        fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
 414        if (fsr < 0)
 415                return fsr;
 416        return sr && fsr;
 417}
 418
 419/*
 420 * Service routine to read status register until ready, or timeout occurs.
 421 * Returns non-zero if error.
 422 */
 423static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
 424                                                unsigned long timeout)
 425{
 426        unsigned long timebase;
 427        int ret;
 428
 429        timebase = get_timer(0);
 430
 431        while (get_timer(timebase) < timeout) {
 432                ret = spi_nor_ready(nor);
 433                if (ret < 0)
 434                        return ret;
 435                if (ret)
 436                        return 0;
 437        }
 438
 439        dev_err(nor->dev, "flash operation timed out\n");
 440
 441        return -ETIMEDOUT;
 442}
 443
 444static int spi_nor_wait_till_ready(struct spi_nor *nor)
 445{
 446        return spi_nor_wait_till_ready_with_timeout(nor,
 447                                                    DEFAULT_READY_WAIT_JIFFIES);
 448}
 449
 450#ifdef CONFIG_SPI_FLASH_BAR
 451/*
 452 * This "clean_bar" is necessary in a situation when one was accessing
 453 * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
 454 *
 455 * After it the BA24 bit shall be cleared to allow access to correct
 456 * memory region after SW reset (by calling "reset" command).
 457 *
 458 * Otherwise, the BA24 bit may be left set and then after reset, the
 459 * ROM would read/write/erase SPL from 16 MiB * bank_sel address.
 460 */
 461static int clean_bar(struct spi_nor *nor)
 462{
 463        u8 cmd, bank_sel = 0;
 464
 465        if (nor->bank_curr == 0)
 466                return 0;
 467        cmd = nor->bank_write_cmd;
 468        nor->bank_curr = 0;
 469        write_enable(nor);
 470
 471        return nor->write_reg(nor, cmd, &bank_sel, 1);
 472}
 473
 474static int write_bar(struct spi_nor *nor, u32 offset)
 475{
 476        u8 cmd, bank_sel;
 477        int ret;
 478
 479        bank_sel = offset / SZ_16M;
 480        if (bank_sel == nor->bank_curr)
 481                goto bar_end;
 482
 483        cmd = nor->bank_write_cmd;
 484        write_enable(nor);
 485        ret = nor->write_reg(nor, cmd, &bank_sel, 1);
 486        if (ret < 0) {
 487                debug("SF: fail to write bank register\n");
 488                return ret;
 489        }
 490
 491bar_end:
 492        nor->bank_curr = bank_sel;
 493        return nor->bank_curr;
 494}
 495
 496static int read_bar(struct spi_nor *nor, const struct flash_info *info)
 497{
 498        u8 curr_bank = 0;
 499        int ret;
 500
 501        switch (JEDEC_MFR(info)) {
 502        case SNOR_MFR_SPANSION:
 503                nor->bank_read_cmd = SPINOR_OP_BRRD;
 504                nor->bank_write_cmd = SPINOR_OP_BRWR;
 505                break;
 506        default:
 507                nor->bank_read_cmd = SPINOR_OP_RDEAR;
 508                nor->bank_write_cmd = SPINOR_OP_WREAR;
 509        }
 510
 511        ret = nor->read_reg(nor, nor->bank_read_cmd,
 512                                    &curr_bank, 1);
 513        if (ret) {
 514                debug("SF: fail to read bank addr register\n");
 515                return ret;
 516        }
 517        nor->bank_curr = curr_bank;
 518
 519        return 0;
 520}
 521#endif
 522
 523/*
 524 * Initiate the erasure of a single sector
 525 */
 526static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
 527{
 528        struct spi_mem_op op =
 529                SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
 530                           SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
 531                           SPI_MEM_OP_NO_DUMMY,
 532                           SPI_MEM_OP_NO_DATA);
 533
 534        if (nor->erase)
 535                return nor->erase(nor, addr);
 536
 537        /*
 538         * Default implementation, if driver doesn't have a specialized HW
 539         * control
 540         */
 541        return spi_mem_exec_op(nor->spi, &op);
 542}
 543
 544/*
 545 * Erase an address range on the nor chip.  The address range may extend
 546 * one or more erase sectors.  Return an error is there is a problem erasing.
 547 */
 548static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
 549{
 550        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 551        u32 addr, len, rem;
 552        int ret;
 553
 554        dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
 555                (long long)instr->len);
 556
 557        if (!instr->len)
 558                return 0;
 559
 560        div_u64_rem(instr->len, mtd->erasesize, &rem);
 561        if (rem)
 562                return -EINVAL;
 563
 564        addr = instr->addr;
 565        len = instr->len;
 566
 567        while (len) {
 568#ifdef CONFIG_SPI_FLASH_BAR
 569                ret = write_bar(nor, addr);
 570                if (ret < 0)
 571                        return ret;
 572#endif
 573                write_enable(nor);
 574
 575                ret = spi_nor_erase_sector(nor, addr);
 576                if (ret)
 577                        goto erase_err;
 578
 579                addr += mtd->erasesize;
 580                len -= mtd->erasesize;
 581
 582                ret = spi_nor_wait_till_ready(nor);
 583                if (ret)
 584                        goto erase_err;
 585        }
 586
 587erase_err:
 588#ifdef CONFIG_SPI_FLASH_BAR
 589        ret = clean_bar(nor);
 590#endif
 591        write_disable(nor);
 592
 593        return ret;
 594}
 595
 596#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
 597/* Write status register and ensure bits in mask match written values */
 598static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
 599{
 600        int ret;
 601
 602        write_enable(nor);
 603        ret = write_sr(nor, status_new);
 604        if (ret)
 605                return ret;
 606
 607        ret = spi_nor_wait_till_ready(nor);
 608        if (ret)
 609                return ret;
 610
 611        ret = read_sr(nor);
 612        if (ret < 0)
 613                return ret;
 614
 615        return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
 616}
 617
 618static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
 619                                 uint64_t *len)
 620{
 621        struct mtd_info *mtd = &nor->mtd;
 622        u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 623        int shift = ffs(mask) - 1;
 624        int pow;
 625
 626        if (!(sr & mask)) {
 627                /* No protection */
 628                *ofs = 0;
 629                *len = 0;
 630        } else {
 631                pow = ((sr & mask) ^ mask) >> shift;
 632                *len = mtd->size >> pow;
 633                if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
 634                        *ofs = 0;
 635                else
 636                        *ofs = mtd->size - *len;
 637        }
 638}
 639
 640/*
 641 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 642 * @locked is false); 0 otherwise
 643 */
 644static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
 645                                    u8 sr, bool locked)
 646{
 647        loff_t lock_offs;
 648        uint64_t lock_len;
 649
 650        if (!len)
 651                return 1;
 652
 653        stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
 654
 655        if (locked)
 656                /* Requested range is a sub-range of locked range */
 657                return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
 658        else
 659                /* Requested range does not overlap with locked range */
 660                return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
 661}
 662
 663static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
 664                            u8 sr)
 665{
 666        return stm_check_lock_status_sr(nor, ofs, len, sr, true);
 667}
 668
 669static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
 670                              u8 sr)
 671{
 672        return stm_check_lock_status_sr(nor, ofs, len, sr, false);
 673}
 674
 675/*
 676 * Lock a region of the flash. Compatible with ST Micro and similar flash.
 677 * Supports the block protection bits BP{0,1,2} in the status register
 678 * (SR). Does not support these features found in newer SR bitfields:
 679 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 680 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 681 *
 682 * Support for the following is provided conditionally for some flash:
 683 *   - TB: top/bottom protect
 684 *
 685 * Sample table portion for 8MB flash (Winbond w25q64fw):
 686 *
 687 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 688 *  --------------------------------------------------------------------------
 689 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 690 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 691 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 692 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 693 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 694 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 695 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 696 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
 697 *  ------|-------|-------|-------|-------|---------------|-------------------
 698 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 699 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 700 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 701 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 702 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 703 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
 704 *
 705 * Returns negative on errors, 0 on success.
 706 */
 707static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 708{
 709        struct mtd_info *mtd = &nor->mtd;
 710        int status_old, status_new;
 711        u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 712        u8 shift = ffs(mask) - 1, pow, val;
 713        loff_t lock_len;
 714        bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
 715        bool use_top;
 716
 717        status_old = read_sr(nor);
 718        if (status_old < 0)
 719                return status_old;
 720
 721        /* If nothing in our range is unlocked, we don't need to do anything */
 722        if (stm_is_locked_sr(nor, ofs, len, status_old))
 723                return 0;
 724
 725        /* If anything below us is unlocked, we can't use 'bottom' protection */
 726        if (!stm_is_locked_sr(nor, 0, ofs, status_old))
 727                can_be_bottom = false;
 728
 729        /* If anything above us is unlocked, we can't use 'top' protection */
 730        if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
 731                              status_old))
 732                can_be_top = false;
 733
 734        if (!can_be_bottom && !can_be_top)
 735                return -EINVAL;
 736
 737        /* Prefer top, if both are valid */
 738        use_top = can_be_top;
 739
 740        /* lock_len: length of region that should end up locked */
 741        if (use_top)
 742                lock_len = mtd->size - ofs;
 743        else
 744                lock_len = ofs + len;
 745
 746        /*
 747         * Need smallest pow such that:
 748         *
 749         *   1 / (2^pow) <= (len / size)
 750         *
 751         * so (assuming power-of-2 size) we do:
 752         *
 753         *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
 754         */
 755        pow = ilog2(mtd->size) - ilog2(lock_len);
 756        val = mask - (pow << shift);
 757        if (val & ~mask)
 758                return -EINVAL;
 759        /* Don't "lock" with no region! */
 760        if (!(val & mask))
 761                return -EINVAL;
 762
 763        status_new = (status_old & ~mask & ~SR_TB) | val;
 764
 765        /* Disallow further writes if WP pin is asserted */
 766        status_new |= SR_SRWD;
 767
 768        if (!use_top)
 769                status_new |= SR_TB;
 770
 771        /* Don't bother if they're the same */
 772        if (status_new == status_old)
 773                return 0;
 774
 775        /* Only modify protection if it will not unlock other areas */
 776        if ((status_new & mask) < (status_old & mask))
 777                return -EINVAL;
 778
 779        return write_sr_and_check(nor, status_new, mask);
 780}
 781
 782/*
 783 * Unlock a region of the flash. See stm_lock() for more info
 784 *
 785 * Returns negative on errors, 0 on success.
 786 */
 787static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
 788{
 789        struct mtd_info *mtd = &nor->mtd;
 790        int status_old, status_new;
 791        u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
 792        u8 shift = ffs(mask) - 1, pow, val;
 793        loff_t lock_len;
 794        bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
 795        bool use_top;
 796
 797        status_old = read_sr(nor);
 798        if (status_old < 0)
 799                return status_old;
 800
 801        /* If nothing in our range is locked, we don't need to do anything */
 802        if (stm_is_unlocked_sr(nor, ofs, len, status_old))
 803                return 0;
 804
 805        /* If anything below us is locked, we can't use 'top' protection */
 806        if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
 807                can_be_top = false;
 808
 809        /* If anything above us is locked, we can't use 'bottom' protection */
 810        if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
 811                                status_old))
 812                can_be_bottom = false;
 813
 814        if (!can_be_bottom && !can_be_top)
 815                return -EINVAL;
 816
 817        /* Prefer top, if both are valid */
 818        use_top = can_be_top;
 819
 820        /* lock_len: length of region that should remain locked */
 821        if (use_top)
 822                lock_len = mtd->size - (ofs + len);
 823        else
 824                lock_len = ofs;
 825
 826        /*
 827         * Need largest pow such that:
 828         *
 829         *   1 / (2^pow) >= (len / size)
 830         *
 831         * so (assuming power-of-2 size) we do:
 832         *
 833         *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
 834         */
 835        pow = ilog2(mtd->size) - order_base_2(lock_len);
 836        if (lock_len == 0) {
 837                val = 0; /* fully unlocked */
 838        } else {
 839                val = mask - (pow << shift);
 840                /* Some power-of-two sizes are not supported */
 841                if (val & ~mask)
 842                        return -EINVAL;
 843        }
 844
 845        status_new = (status_old & ~mask & ~SR_TB) | val;
 846
 847        /* Don't protect status register if we're fully unlocked */
 848        if (lock_len == 0)
 849                status_new &= ~SR_SRWD;
 850
 851        if (!use_top)
 852                status_new |= SR_TB;
 853
 854        /* Don't bother if they're the same */
 855        if (status_new == status_old)
 856                return 0;
 857
 858        /* Only modify protection if it will not lock other areas */
 859        if ((status_new & mask) > (status_old & mask))
 860                return -EINVAL;
 861
 862        return write_sr_and_check(nor, status_new, mask);
 863}
 864
 865/*
 866 * Check if a region of the flash is (completely) locked. See stm_lock() for
 867 * more info.
 868 *
 869 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 870 * negative on errors.
 871 */
 872static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
 873{
 874        int status;
 875
 876        status = read_sr(nor);
 877        if (status < 0)
 878                return status;
 879
 880        return stm_is_locked_sr(nor, ofs, len, status);
 881}
 882#endif /* CONFIG_SPI_FLASH_STMICRO */
 883
 884static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
 885{
 886        int                     tmp;
 887        u8                      id[SPI_NOR_MAX_ID_LEN];
 888        const struct flash_info *info;
 889
 890        tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
 891        if (tmp < 0) {
 892                dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
 893                return ERR_PTR(tmp);
 894        }
 895
 896        info = spi_nor_ids;
 897        for (; info->name; info++) {
 898                if (info->id_len) {
 899                        if (!memcmp(info->id, id, info->id_len))
 900                                return info;
 901                }
 902        }
 903
 904        dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
 905                id[0], id[1], id[2]);
 906        return ERR_PTR(-ENODEV);
 907}
 908
 909static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
 910                        size_t *retlen, u_char *buf)
 911{
 912        struct spi_nor *nor = mtd_to_spi_nor(mtd);
 913        int ret;
 914
 915        dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
 916
 917        while (len) {
 918                loff_t addr = from;
 919                size_t read_len = len;
 920
 921#ifdef CONFIG_SPI_FLASH_BAR
 922                u32 remain_len;
 923
 924                ret = write_bar(nor, addr);
 925                if (ret < 0)
 926                        return log_ret(ret);
 927                remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr;
 928
 929                if (len < remain_len)
 930                        read_len = len;
 931                else
 932                        read_len = remain_len;
 933#endif
 934
 935                ret = nor->read(nor, addr, read_len, buf);
 936                if (ret == 0) {
 937                        /* We shouldn't see 0-length reads */
 938                        ret = -EIO;
 939                        goto read_err;
 940                }
 941                if (ret < 0)
 942                        goto read_err;
 943
 944                *retlen += ret;
 945                buf += ret;
 946                from += ret;
 947                len -= ret;
 948        }
 949        ret = 0;
 950
 951read_err:
 952#ifdef CONFIG_SPI_FLASH_BAR
 953        ret = clean_bar(nor);
 954#endif
 955        return ret;
 956}
 957
 958#ifdef CONFIG_SPI_FLASH_SST
 959/*
 960 * sst26 flash series has its own block protection implementation:
 961 * 4x   - 8  KByte blocks - read & write protection bits - upper addresses
 962 * 1x   - 32 KByte blocks - write protection bits
 963 * rest - 64 KByte blocks - write protection bits
 964 * 1x   - 32 KByte blocks - write protection bits
 965 * 4x   - 8  KByte blocks - read & write protection bits - lower addresses
 966 *
 967 * We'll support only per 64k lock/unlock so lower and upper 64 KByte region
 968 * will be treated as single block.
 969 */
 970#define SST26_BPR_8K_NUM                4
 971#define SST26_MAX_BPR_REG_LEN           (18 + 1)
 972#define SST26_BOUND_REG_SIZE            ((32 + SST26_BPR_8K_NUM * 8) * SZ_1K)
 973
 974enum lock_ctl {
 975        SST26_CTL_LOCK,
 976        SST26_CTL_UNLOCK,
 977        SST26_CTL_CHECK
 978};
 979
 980static bool sst26_process_bpr(u32 bpr_size, u8 *cmd, u32 bit, enum lock_ctl ctl)
 981{
 982        switch (ctl) {
 983        case SST26_CTL_LOCK:
 984                cmd[bpr_size - (bit / 8) - 1] |= BIT(bit % 8);
 985                break;
 986        case SST26_CTL_UNLOCK:
 987                cmd[bpr_size - (bit / 8) - 1] &= ~BIT(bit % 8);
 988                break;
 989        case SST26_CTL_CHECK:
 990                return !!(cmd[bpr_size - (bit / 8) - 1] & BIT(bit % 8));
 991        }
 992
 993        return false;
 994}
 995
 996/*
 997 * Lock, unlock or check lock status of the flash region of the flash (depending
 998 * on the lock_ctl value)
 999 */
1000static int sst26_lock_ctl(struct spi_nor *nor, loff_t ofs, uint64_t len, enum lock_ctl ctl)
1001{
1002        struct mtd_info *mtd = &nor->mtd;
1003        u32 i, bpr_ptr, rptr_64k, lptr_64k, bpr_size;
1004        bool lower_64k = false, upper_64k = false;
1005        u8 bpr_buff[SST26_MAX_BPR_REG_LEN] = {};
1006        int ret;
1007
1008        /* Check length and offset for 64k alignment */
1009        if ((ofs & (SZ_64K - 1)) || (len & (SZ_64K - 1))) {
1010                dev_err(nor->dev, "length or offset is not 64KiB allighned\n");
1011                return -EINVAL;
1012        }
1013
1014        if (ofs + len > mtd->size) {
1015                dev_err(nor->dev, "range is more than device size: %#llx + %#llx > %#llx\n",
1016                        ofs, len, mtd->size);
1017                return -EINVAL;
1018        }
1019
1020        /* SST26 family has only 16 Mbit, 32 Mbit and 64 Mbit IC */
1021        if (mtd->size != SZ_2M &&
1022            mtd->size != SZ_4M &&
1023            mtd->size != SZ_8M)
1024                return -EINVAL;
1025
1026        bpr_size = 2 + (mtd->size / SZ_64K / 8);
1027
1028        ret = nor->read_reg(nor, SPINOR_OP_READ_BPR, bpr_buff, bpr_size);
1029        if (ret < 0) {
1030                dev_err(nor->dev, "fail to read block-protection register\n");
1031                return ret;
1032        }
1033
1034        rptr_64k = min_t(u32, ofs + len, mtd->size - SST26_BOUND_REG_SIZE);
1035        lptr_64k = max_t(u32, ofs, SST26_BOUND_REG_SIZE);
1036
1037        upper_64k = ((ofs + len) > (mtd->size - SST26_BOUND_REG_SIZE));
1038        lower_64k = (ofs < SST26_BOUND_REG_SIZE);
1039
1040        /* Lower bits in block-protection register are about 64k region */
1041        bpr_ptr = lptr_64k / SZ_64K - 1;
1042
1043        /* Process 64K blocks region */
1044        while (lptr_64k < rptr_64k) {
1045                if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1046                        return EACCES;
1047
1048                bpr_ptr++;
1049                lptr_64k += SZ_64K;
1050        }
1051
1052        /* 32K and 8K region bits in BPR are after 64k region bits */
1053        bpr_ptr = (mtd->size - 2 * SST26_BOUND_REG_SIZE) / SZ_64K;
1054
1055        /* Process lower 32K block region */
1056        if (lower_64k)
1057                if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1058                        return EACCES;
1059
1060        bpr_ptr++;
1061
1062        /* Process upper 32K block region */
1063        if (upper_64k)
1064                if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1065                        return EACCES;
1066
1067        bpr_ptr++;
1068
1069        /* Process lower 8K block regions */
1070        for (i = 0; i < SST26_BPR_8K_NUM; i++) {
1071                if (lower_64k)
1072                        if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1073                                return EACCES;
1074
1075                /* In 8K area BPR has both read and write protection bits */
1076                bpr_ptr += 2;
1077        }
1078
1079        /* Process upper 8K block regions */
1080        for (i = 0; i < SST26_BPR_8K_NUM; i++) {
1081                if (upper_64k)
1082                        if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
1083                                return EACCES;
1084
1085                /* In 8K area BPR has both read and write protection bits */
1086                bpr_ptr += 2;
1087        }
1088
1089        /* If we check region status we don't need to write BPR back */
1090        if (ctl == SST26_CTL_CHECK)
1091                return 0;
1092
1093        ret = nor->write_reg(nor, SPINOR_OP_WRITE_BPR, bpr_buff, bpr_size);
1094        if (ret < 0) {
1095                dev_err(nor->dev, "fail to write block-protection register\n");
1096                return ret;
1097        }
1098
1099        return 0;
1100}
1101
1102static int sst26_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1103{
1104        return sst26_lock_ctl(nor, ofs, len, SST26_CTL_UNLOCK);
1105}
1106
1107static int sst26_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1108{
1109        return sst26_lock_ctl(nor, ofs, len, SST26_CTL_LOCK);
1110}
1111
1112/*
1113 * Returns EACCES (positive value) if region is locked, 0 if region is unlocked,
1114 * and negative on errors.
1115 */
1116static int sst26_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1117{
1118        /*
1119         * is_locked function is used for check before reading or erasing flash
1120         * region, so offset and length might be not 64k allighned, so adjust
1121         * them to be 64k allighned as sst26_lock_ctl works only with 64k
1122         * allighned regions.
1123         */
1124        ofs -= ofs & (SZ_64K - 1);
1125        len = len & (SZ_64K - 1) ? (len & ~(SZ_64K - 1)) + SZ_64K : len;
1126
1127        return sst26_lock_ctl(nor, ofs, len, SST26_CTL_CHECK);
1128}
1129
1130static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
1131                                 size_t *retlen, const u_char *buf)
1132{
1133        size_t actual;
1134        int ret = 0;
1135
1136        for (actual = 0; actual < len; actual++) {
1137                nor->program_opcode = SPINOR_OP_BP;
1138
1139                write_enable(nor);
1140                /* write one byte. */
1141                ret = nor->write(nor, to, 1, buf + actual);
1142                if (ret < 0)
1143                        goto sst_write_err;
1144                ret = spi_nor_wait_till_ready(nor);
1145                if (ret)
1146                        goto sst_write_err;
1147                to++;
1148        }
1149
1150sst_write_err:
1151        write_disable(nor);
1152        return ret;
1153}
1154
1155static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
1156                     size_t *retlen, const u_char *buf)
1157{
1158        struct spi_nor *nor = mtd_to_spi_nor(mtd);
1159        struct spi_slave *spi = nor->spi;
1160        size_t actual;
1161        int ret;
1162
1163        dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1164        if (spi->mode & SPI_TX_BYTE)
1165                return sst_write_byteprogram(nor, to, len, retlen, buf);
1166
1167        write_enable(nor);
1168
1169        nor->sst_write_second = false;
1170
1171        actual = to % 2;
1172        /* Start write from odd address. */
1173        if (actual) {
1174                nor->program_opcode = SPINOR_OP_BP;
1175
1176                /* write one byte. */
1177                ret = nor->write(nor, to, 1, buf);
1178                if (ret < 0)
1179                        goto sst_write_err;
1180                ret = spi_nor_wait_till_ready(nor);
1181                if (ret)
1182                        goto sst_write_err;
1183        }
1184        to += actual;
1185
1186        /* Write out most of the data here. */
1187        for (; actual < len - 1; actual += 2) {
1188                nor->program_opcode = SPINOR_OP_AAI_WP;
1189
1190                /* write two bytes. */
1191                ret = nor->write(nor, to, 2, buf + actual);
1192                if (ret < 0)
1193                        goto sst_write_err;
1194                ret = spi_nor_wait_till_ready(nor);
1195                if (ret)
1196                        goto sst_write_err;
1197                to += 2;
1198                nor->sst_write_second = true;
1199        }
1200        nor->sst_write_second = false;
1201
1202        write_disable(nor);
1203        ret = spi_nor_wait_till_ready(nor);
1204        if (ret)
1205                goto sst_write_err;
1206
1207        /* Write out trailing byte if it exists. */
1208        if (actual != len) {
1209                write_enable(nor);
1210
1211                nor->program_opcode = SPINOR_OP_BP;
1212                ret = nor->write(nor, to, 1, buf + actual);
1213                if (ret < 0)
1214                        goto sst_write_err;
1215                ret = spi_nor_wait_till_ready(nor);
1216                if (ret)
1217                        goto sst_write_err;
1218                write_disable(nor);
1219                actual += 1;
1220        }
1221sst_write_err:
1222        *retlen += actual;
1223        return ret;
1224}
1225#endif
1226/*
1227 * Write an address range to the nor chip.  Data must be written in
1228 * FLASH_PAGESIZE chunks.  The address range may be any size provided
1229 * it is within the physical boundaries.
1230 */
1231static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1232        size_t *retlen, const u_char *buf)
1233{
1234        struct spi_nor *nor = mtd_to_spi_nor(mtd);
1235        size_t page_offset, page_remain, i;
1236        ssize_t ret;
1237
1238#ifdef CONFIG_SPI_FLASH_SST
1239        /* sst nor chips use AAI word program */
1240        if (nor->info->flags & SST_WRITE)
1241                return sst_write(mtd, to, len, retlen, buf);
1242#endif
1243
1244        dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1245
1246        if (!len)
1247                return 0;
1248
1249        for (i = 0; i < len; ) {
1250                ssize_t written;
1251                loff_t addr = to + i;
1252
1253                /*
1254                 * If page_size is a power of two, the offset can be quickly
1255                 * calculated with an AND operation. On the other cases we
1256                 * need to do a modulus operation (more expensive).
1257                 */
1258                if (is_power_of_2(nor->page_size)) {
1259                        page_offset = addr & (nor->page_size - 1);
1260                } else {
1261                        u64 aux = addr;
1262
1263                        page_offset = do_div(aux, nor->page_size);
1264                }
1265                /* the size of data remaining on the first page */
1266                page_remain = min_t(size_t,
1267                                    nor->page_size - page_offset, len - i);
1268
1269#ifdef CONFIG_SPI_FLASH_BAR
1270                ret = write_bar(nor, addr);
1271                if (ret < 0)
1272                        return ret;
1273#endif
1274                write_enable(nor);
1275                ret = nor->write(nor, addr, page_remain, buf + i);
1276                if (ret < 0)
1277                        goto write_err;
1278                written = ret;
1279
1280                ret = spi_nor_wait_till_ready(nor);
1281                if (ret)
1282                        goto write_err;
1283                *retlen += written;
1284                i += written;
1285        }
1286
1287write_err:
1288#ifdef CONFIG_SPI_FLASH_BAR
1289        ret = clean_bar(nor);
1290#endif
1291        return ret;
1292}
1293
1294#ifdef CONFIG_SPI_FLASH_MACRONIX
1295/**
1296 * macronix_quad_enable() - set QE bit in Status Register.
1297 * @nor:        pointer to a 'struct spi_nor'
1298 *
1299 * Set the Quad Enable (QE) bit in the Status Register.
1300 *
1301 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1302 *
1303 * Return: 0 on success, -errno otherwise.
1304 */
1305static int macronix_quad_enable(struct spi_nor *nor)
1306{
1307        int ret, val;
1308
1309        val = read_sr(nor);
1310        if (val < 0)
1311                return val;
1312        if (val & SR_QUAD_EN_MX)
1313                return 0;
1314
1315        write_enable(nor);
1316
1317        write_sr(nor, val | SR_QUAD_EN_MX);
1318
1319        ret = spi_nor_wait_till_ready(nor);
1320        if (ret)
1321                return ret;
1322
1323        ret = read_sr(nor);
1324        if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1325                dev_err(nor->dev, "Macronix Quad bit not set\n");
1326                return -EINVAL;
1327        }
1328
1329        return 0;
1330}
1331#endif
1332
1333#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1334/*
1335 * Write status Register and configuration register with 2 bytes
1336 * The first byte will be written to the status register, while the
1337 * second byte will be written to the configuration register.
1338 * Return negative if error occurred.
1339 */
1340static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
1341{
1342        int ret;
1343
1344        write_enable(nor);
1345
1346        ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
1347        if (ret < 0) {
1348                dev_dbg(nor->dev,
1349                        "error while writing configuration register\n");
1350                return -EINVAL;
1351        }
1352
1353        ret = spi_nor_wait_till_ready(nor);
1354        if (ret) {
1355                dev_dbg(nor->dev,
1356                        "timeout while writing configuration register\n");
1357                return ret;
1358        }
1359
1360        return 0;
1361}
1362
1363/**
1364 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1365 * @nor:        pointer to a 'struct spi_nor'
1366 *
1367 * Set the Quad Enable (QE) bit in the Configuration Register.
1368 * This function should be used with QSPI memories supporting the Read
1369 * Configuration Register (35h) instruction.
1370 *
1371 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1372 * memories.
1373 *
1374 * Return: 0 on success, -errno otherwise.
1375 */
1376static int spansion_read_cr_quad_enable(struct spi_nor *nor)
1377{
1378        u8 sr_cr[2];
1379        int ret;
1380
1381        /* Check current Quad Enable bit value. */
1382        ret = read_cr(nor);
1383        if (ret < 0) {
1384                dev_dbg(nor->dev,
1385                        "error while reading configuration register\n");
1386                return -EINVAL;
1387        }
1388
1389        if (ret & CR_QUAD_EN_SPAN)
1390                return 0;
1391
1392        sr_cr[1] = ret | CR_QUAD_EN_SPAN;
1393
1394        /* Keep the current value of the Status Register. */
1395        ret = read_sr(nor);
1396        if (ret < 0) {
1397                dev_dbg(nor->dev, "error while reading status register\n");
1398                return -EINVAL;
1399        }
1400        sr_cr[0] = ret;
1401
1402        ret = write_sr_cr(nor, sr_cr);
1403        if (ret)
1404                return ret;
1405
1406        /* Read back and check it. */
1407        ret = read_cr(nor);
1408        if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1409                dev_dbg(nor->dev, "Spansion Quad bit not set\n");
1410                return -EINVAL;
1411        }
1412
1413        return 0;
1414}
1415
1416#if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1417/**
1418 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1419 * @nor:        pointer to a 'struct spi_nor'
1420 *
1421 * Set the Quad Enable (QE) bit in the Configuration Register.
1422 * This function should be used with QSPI memories not supporting the Read
1423 * Configuration Register (35h) instruction.
1424 *
1425 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1426 * memories.
1427 *
1428 * Return: 0 on success, -errno otherwise.
1429 */
1430static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
1431{
1432        u8 sr_cr[2];
1433        int ret;
1434
1435        /* Keep the current value of the Status Register. */
1436        ret = read_sr(nor);
1437        if (ret < 0) {
1438                dev_dbg(nor->dev, "error while reading status register\n");
1439                return -EINVAL;
1440        }
1441        sr_cr[0] = ret;
1442        sr_cr[1] = CR_QUAD_EN_SPAN;
1443
1444        return write_sr_cr(nor, sr_cr);
1445}
1446
1447#endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
1448#endif /* CONFIG_SPI_FLASH_SPANSION */
1449
1450struct spi_nor_read_command {
1451        u8                      num_mode_clocks;
1452        u8                      num_wait_states;
1453        u8                      opcode;
1454        enum spi_nor_protocol   proto;
1455};
1456
1457struct spi_nor_pp_command {
1458        u8                      opcode;
1459        enum spi_nor_protocol   proto;
1460};
1461
1462enum spi_nor_read_command_index {
1463        SNOR_CMD_READ,
1464        SNOR_CMD_READ_FAST,
1465        SNOR_CMD_READ_1_1_1_DTR,
1466
1467        /* Dual SPI */
1468        SNOR_CMD_READ_1_1_2,
1469        SNOR_CMD_READ_1_2_2,
1470        SNOR_CMD_READ_2_2_2,
1471        SNOR_CMD_READ_1_2_2_DTR,
1472
1473        /* Quad SPI */
1474        SNOR_CMD_READ_1_1_4,
1475        SNOR_CMD_READ_1_4_4,
1476        SNOR_CMD_READ_4_4_4,
1477        SNOR_CMD_READ_1_4_4_DTR,
1478
1479        /* Octo SPI */
1480        SNOR_CMD_READ_1_1_8,
1481        SNOR_CMD_READ_1_8_8,
1482        SNOR_CMD_READ_8_8_8,
1483        SNOR_CMD_READ_1_8_8_DTR,
1484
1485        SNOR_CMD_READ_MAX
1486};
1487
1488enum spi_nor_pp_command_index {
1489        SNOR_CMD_PP,
1490
1491        /* Quad SPI */
1492        SNOR_CMD_PP_1_1_4,
1493        SNOR_CMD_PP_1_4_4,
1494        SNOR_CMD_PP_4_4_4,
1495
1496        /* Octo SPI */
1497        SNOR_CMD_PP_1_1_8,
1498        SNOR_CMD_PP_1_8_8,
1499        SNOR_CMD_PP_8_8_8,
1500
1501        SNOR_CMD_PP_MAX
1502};
1503
1504struct spi_nor_flash_parameter {
1505        u64                             size;
1506        u32                             page_size;
1507
1508        struct spi_nor_hwcaps           hwcaps;
1509        struct spi_nor_read_command     reads[SNOR_CMD_READ_MAX];
1510        struct spi_nor_pp_command       page_programs[SNOR_CMD_PP_MAX];
1511
1512        int (*quad_enable)(struct spi_nor *nor);
1513};
1514
1515static void
1516spi_nor_set_read_settings(struct spi_nor_read_command *read,
1517                          u8 num_mode_clocks,
1518                          u8 num_wait_states,
1519                          u8 opcode,
1520                          enum spi_nor_protocol proto)
1521{
1522        read->num_mode_clocks = num_mode_clocks;
1523        read->num_wait_states = num_wait_states;
1524        read->opcode = opcode;
1525        read->proto = proto;
1526}
1527
1528static void
1529spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
1530                        u8 opcode,
1531                        enum spi_nor_protocol proto)
1532{
1533        pp->opcode = opcode;
1534        pp->proto = proto;
1535}
1536
1537#if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1538/*
1539 * Serial Flash Discoverable Parameters (SFDP) parsing.
1540 */
1541
1542/**
1543 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
1544 * @nor:        pointer to a 'struct spi_nor'
1545 * @addr:       offset in the SFDP area to start reading data from
1546 * @len:        number of bytes to read
1547 * @buf:        buffer where the SFDP data are copied into (dma-safe memory)
1548 *
1549 * Whatever the actual numbers of bytes for address and dummy cycles are
1550 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
1551 * followed by a 3-byte address and 8 dummy clock cycles.
1552 *
1553 * Return: 0 on success, -errno otherwise.
1554 */
1555static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
1556                             size_t len, void *buf)
1557{
1558        u8 addr_width, read_opcode, read_dummy;
1559        int ret;
1560
1561        read_opcode = nor->read_opcode;
1562        addr_width = nor->addr_width;
1563        read_dummy = nor->read_dummy;
1564
1565        nor->read_opcode = SPINOR_OP_RDSFDP;
1566        nor->addr_width = 3;
1567        nor->read_dummy = 8;
1568
1569        while (len) {
1570                ret = nor->read(nor, addr, len, (u8 *)buf);
1571                if (!ret || ret > len) {
1572                        ret = -EIO;
1573                        goto read_err;
1574                }
1575                if (ret < 0)
1576                        goto read_err;
1577
1578                buf += ret;
1579                addr += ret;
1580                len -= ret;
1581        }
1582        ret = 0;
1583
1584read_err:
1585        nor->read_opcode = read_opcode;
1586        nor->addr_width = addr_width;
1587        nor->read_dummy = read_dummy;
1588
1589        return ret;
1590}
1591
1592struct sfdp_parameter_header {
1593        u8              id_lsb;
1594        u8              minor;
1595        u8              major;
1596        u8              length; /* in double words */
1597        u8              parameter_table_pointer[3]; /* byte address */
1598        u8              id_msb;
1599};
1600
1601#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
1602#define SFDP_PARAM_HEADER_PTP(p) \
1603        (((p)->parameter_table_pointer[2] << 16) | \
1604         ((p)->parameter_table_pointer[1] <<  8) | \
1605         ((p)->parameter_table_pointer[0] <<  0))
1606
1607#define SFDP_BFPT_ID            0xff00  /* Basic Flash Parameter Table */
1608#define SFDP_SECTOR_MAP_ID      0xff81  /* Sector Map Table */
1609#define SFDP_SST_ID             0x01bf  /* Manufacturer specific Table */
1610
1611#define SFDP_SIGNATURE          0x50444653U
1612#define SFDP_JESD216_MAJOR      1
1613#define SFDP_JESD216_MINOR      0
1614#define SFDP_JESD216A_MINOR     5
1615#define SFDP_JESD216B_MINOR     6
1616
1617struct sfdp_header {
1618        u32             signature; /* Ox50444653U <=> "SFDP" */
1619        u8              minor;
1620        u8              major;
1621        u8              nph; /* 0-base number of parameter headers */
1622        u8              unused;
1623
1624        /* Basic Flash Parameter Table. */
1625        struct sfdp_parameter_header    bfpt_header;
1626};
1627
1628/* Basic Flash Parameter Table */
1629
1630/*
1631 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
1632 * They are indexed from 1 but C arrays are indexed from 0.
1633 */
1634#define BFPT_DWORD(i)           ((i) - 1)
1635#define BFPT_DWORD_MAX          16
1636
1637/* The first version of JESB216 defined only 9 DWORDs. */
1638#define BFPT_DWORD_MAX_JESD216                  9
1639
1640/* 1st DWORD. */
1641#define BFPT_DWORD1_FAST_READ_1_1_2             BIT(16)
1642#define BFPT_DWORD1_ADDRESS_BYTES_MASK          GENMASK(18, 17)
1643#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY        (0x0UL << 17)
1644#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4        (0x1UL << 17)
1645#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY        (0x2UL << 17)
1646#define BFPT_DWORD1_DTR                         BIT(19)
1647#define BFPT_DWORD1_FAST_READ_1_2_2             BIT(20)
1648#define BFPT_DWORD1_FAST_READ_1_4_4             BIT(21)
1649#define BFPT_DWORD1_FAST_READ_1_1_4             BIT(22)
1650
1651/* 5th DWORD. */
1652#define BFPT_DWORD5_FAST_READ_2_2_2             BIT(0)
1653#define BFPT_DWORD5_FAST_READ_4_4_4             BIT(4)
1654
1655/* 11th DWORD. */
1656#define BFPT_DWORD11_PAGE_SIZE_SHIFT            4
1657#define BFPT_DWORD11_PAGE_SIZE_MASK             GENMASK(7, 4)
1658
1659/* 15th DWORD. */
1660
1661/*
1662 * (from JESD216 rev B)
1663 * Quad Enable Requirements (QER):
1664 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
1665 *         reads based on instruction. DQ3/HOLD# functions are hold during
1666 *         instruction phase.
1667 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
1668 *         two data bytes where bit 1 of the second byte is one.
1669 *         [...]
1670 *         Writing only one byte to the status register has the side-effect of
1671 *         clearing status register 2, including the QE bit. The 100b code is
1672 *         used if writing one byte to the status register does not modify
1673 *         status register 2.
1674 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
1675 *         one data byte where bit 6 is one.
1676 *         [...]
1677 * - 011b: QE is bit 7 of status register 2. It is set via Write status
1678 *         register 2 instruction 3Eh with one data byte where bit 7 is one.
1679 *         [...]
1680 *         The status register 2 is read using instruction 3Fh.
1681 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
1682 *         two data bytes where bit 1 of the second byte is one.
1683 *         [...]
1684 *         In contrast to the 001b code, writing one byte to the status
1685 *         register does not modify status register 2.
1686 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
1687 *         Read Status instruction 05h. Status register2 is read using
1688 *         instruction 35h. QE is set via Writ Status instruction 01h with
1689 *         two data bytes where bit 1 of the second byte is one.
1690 *         [...]
1691 */
1692#define BFPT_DWORD15_QER_MASK                   GENMASK(22, 20)
1693#define BFPT_DWORD15_QER_NONE                   (0x0UL << 20) /* Micron */
1694#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY         (0x1UL << 20)
1695#define BFPT_DWORD15_QER_SR1_BIT6               (0x2UL << 20) /* Macronix */
1696#define BFPT_DWORD15_QER_SR2_BIT7               (0x3UL << 20)
1697#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD         (0x4UL << 20)
1698#define BFPT_DWORD15_QER_SR2_BIT1               (0x5UL << 20) /* Spansion */
1699
1700struct sfdp_bfpt {
1701        u32     dwords[BFPT_DWORD_MAX];
1702};
1703
1704/* Fast Read settings. */
1705
1706static void
1707spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
1708                                    u16 half,
1709                                    enum spi_nor_protocol proto)
1710{
1711        read->num_mode_clocks = (half >> 5) & 0x07;
1712        read->num_wait_states = (half >> 0) & 0x1f;
1713        read->opcode = (half >> 8) & 0xff;
1714        read->proto = proto;
1715}
1716
1717struct sfdp_bfpt_read {
1718        /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
1719        u32                     hwcaps;
1720
1721        /*
1722         * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
1723         * whether the Fast Read x-y-z command is supported.
1724         */
1725        u32                     supported_dword;
1726        u32                     supported_bit;
1727
1728        /*
1729         * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
1730         * encodes the op code, the number of mode clocks and the number of wait
1731         * states to be used by Fast Read x-y-z command.
1732         */
1733        u32                     settings_dword;
1734        u32                     settings_shift;
1735
1736        /* The SPI protocol for this Fast Read x-y-z command. */
1737        enum spi_nor_protocol   proto;
1738};
1739
1740static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
1741        /* Fast Read 1-1-2 */
1742        {
1743                SNOR_HWCAPS_READ_1_1_2,
1744                BFPT_DWORD(1), BIT(16), /* Supported bit */
1745                BFPT_DWORD(4), 0,       /* Settings */
1746                SNOR_PROTO_1_1_2,
1747        },
1748
1749        /* Fast Read 1-2-2 */
1750        {
1751                SNOR_HWCAPS_READ_1_2_2,
1752                BFPT_DWORD(1), BIT(20), /* Supported bit */
1753                BFPT_DWORD(4), 16,      /* Settings */
1754                SNOR_PROTO_1_2_2,
1755        },
1756
1757        /* Fast Read 2-2-2 */
1758        {
1759                SNOR_HWCAPS_READ_2_2_2,
1760                BFPT_DWORD(5),  BIT(0), /* Supported bit */
1761                BFPT_DWORD(6), 16,      /* Settings */
1762                SNOR_PROTO_2_2_2,
1763        },
1764
1765        /* Fast Read 1-1-4 */
1766        {
1767                SNOR_HWCAPS_READ_1_1_4,
1768                BFPT_DWORD(1), BIT(22), /* Supported bit */
1769                BFPT_DWORD(3), 16,      /* Settings */
1770                SNOR_PROTO_1_1_4,
1771        },
1772
1773        /* Fast Read 1-4-4 */
1774        {
1775                SNOR_HWCAPS_READ_1_4_4,
1776                BFPT_DWORD(1), BIT(21), /* Supported bit */
1777                BFPT_DWORD(3), 0,       /* Settings */
1778                SNOR_PROTO_1_4_4,
1779        },
1780
1781        /* Fast Read 4-4-4 */
1782        {
1783                SNOR_HWCAPS_READ_4_4_4,
1784                BFPT_DWORD(5), BIT(4),  /* Supported bit */
1785                BFPT_DWORD(7), 16,      /* Settings */
1786                SNOR_PROTO_4_4_4,
1787        },
1788};
1789
1790struct sfdp_bfpt_erase {
1791        /*
1792         * The half-word at offset <shift> in DWORD <dwoard> encodes the
1793         * op code and erase sector size to be used by Sector Erase commands.
1794         */
1795        u32                     dword;
1796        u32                     shift;
1797};
1798
1799static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
1800        /* Erase Type 1 in DWORD8 bits[15:0] */
1801        {BFPT_DWORD(8), 0},
1802
1803        /* Erase Type 2 in DWORD8 bits[31:16] */
1804        {BFPT_DWORD(8), 16},
1805
1806        /* Erase Type 3 in DWORD9 bits[15:0] */
1807        {BFPT_DWORD(9), 0},
1808
1809        /* Erase Type 4 in DWORD9 bits[31:16] */
1810        {BFPT_DWORD(9), 16},
1811};
1812
1813static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
1814
1815/**
1816 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
1817 * @nor:                pointer to a 'struct spi_nor'
1818 * @bfpt_header:        pointer to the 'struct sfdp_parameter_header' describing
1819 *                      the Basic Flash Parameter Table length and version
1820 * @params:             pointer to the 'struct spi_nor_flash_parameter' to be
1821 *                      filled
1822 *
1823 * The Basic Flash Parameter Table is the main and only mandatory table as
1824 * defined by the SFDP (JESD216) specification.
1825 * It provides us with the total size (memory density) of the data array and
1826 * the number of address bytes for Fast Read, Page Program and Sector Erase
1827 * commands.
1828 * For Fast READ commands, it also gives the number of mode clock cycles and
1829 * wait states (regrouped in the number of dummy clock cycles) for each
1830 * supported instruction op code.
1831 * For Page Program, the page size is now available since JESD216 rev A, however
1832 * the supported instruction op codes are still not provided.
1833 * For Sector Erase commands, this table stores the supported instruction op
1834 * codes and the associated sector sizes.
1835 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
1836 * rev A. The QER bits encode the manufacturer dependent procedure to be
1837 * executed to set the Quad Enable (QE) bit in some internal register of the
1838 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
1839 * sending any Quad SPI command to the memory. Actually, setting the QE bit
1840 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
1841 * and IO3 hence enabling 4 (Quad) I/O lines.
1842 *
1843 * Return: 0 on success, -errno otherwise.
1844 */
1845static int spi_nor_parse_bfpt(struct spi_nor *nor,
1846                              const struct sfdp_parameter_header *bfpt_header,
1847                              struct spi_nor_flash_parameter *params)
1848{
1849        struct mtd_info *mtd = &nor->mtd;
1850        struct sfdp_bfpt bfpt;
1851        size_t len;
1852        int i, cmd, err;
1853        u32 addr;
1854        u16 half;
1855
1856        /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
1857        if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
1858                return -EINVAL;
1859
1860        /* Read the Basic Flash Parameter Table. */
1861        len = min_t(size_t, sizeof(bfpt),
1862                    bfpt_header->length * sizeof(u32));
1863        addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
1864        memset(&bfpt, 0, sizeof(bfpt));
1865        err = spi_nor_read_sfdp(nor,  addr, len, &bfpt);
1866        if (err < 0)
1867                return err;
1868
1869        /* Fix endianness of the BFPT DWORDs. */
1870        for (i = 0; i < BFPT_DWORD_MAX; i++)
1871                bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
1872
1873        /* Number of address bytes. */
1874        switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
1875        case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
1876                nor->addr_width = 3;
1877                break;
1878
1879        case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
1880                nor->addr_width = 4;
1881                break;
1882
1883        default:
1884                break;
1885        }
1886
1887        /* Flash Memory Density (in bits). */
1888        params->size = bfpt.dwords[BFPT_DWORD(2)];
1889        if (params->size & BIT(31)) {
1890                params->size &= ~BIT(31);
1891
1892                /*
1893                 * Prevent overflows on params->size. Anyway, a NOR of 2^64
1894                 * bits is unlikely to exist so this error probably means
1895                 * the BFPT we are reading is corrupted/wrong.
1896                 */
1897                if (params->size > 63)
1898                        return -EINVAL;
1899
1900                params->size = 1ULL << params->size;
1901        } else {
1902                params->size++;
1903        }
1904        params->size >>= 3; /* Convert to bytes. */
1905
1906        /* Fast Read settings. */
1907        for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
1908                const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
1909                struct spi_nor_read_command *read;
1910
1911                if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
1912                        params->hwcaps.mask &= ~rd->hwcaps;
1913                        continue;
1914                }
1915
1916                params->hwcaps.mask |= rd->hwcaps;
1917                cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
1918                read = &params->reads[cmd];
1919                half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
1920                spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
1921        }
1922
1923        /* Sector Erase settings. */
1924        for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
1925                const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
1926                u32 erasesize;
1927                u8 opcode;
1928
1929                half = bfpt.dwords[er->dword] >> er->shift;
1930                erasesize = half & 0xff;
1931
1932                /* erasesize == 0 means this Erase Type is not supported. */
1933                if (!erasesize)
1934                        continue;
1935
1936                erasesize = 1U << erasesize;
1937                opcode = (half >> 8) & 0xff;
1938#ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
1939                if (erasesize == SZ_4K) {
1940                        nor->erase_opcode = opcode;
1941                        mtd->erasesize = erasesize;
1942                        break;
1943                }
1944#endif
1945                if (!mtd->erasesize || mtd->erasesize < erasesize) {
1946                        nor->erase_opcode = opcode;
1947                        mtd->erasesize = erasesize;
1948                }
1949        }
1950
1951        /* Stop here if not JESD216 rev A or later. */
1952        if (bfpt_header->length < BFPT_DWORD_MAX)
1953                return 0;
1954
1955        /* Page size: this field specifies 'N' so the page size = 2^N bytes. */
1956        params->page_size = bfpt.dwords[BFPT_DWORD(11)];
1957        params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
1958        params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
1959        params->page_size = 1U << params->page_size;
1960
1961        /* Quad Enable Requirements. */
1962        switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
1963        case BFPT_DWORD15_QER_NONE:
1964                params->quad_enable = NULL;
1965                break;
1966#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1967        case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
1968        case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
1969                params->quad_enable = spansion_no_read_cr_quad_enable;
1970                break;
1971#endif
1972#ifdef CONFIG_SPI_FLASH_MACRONIX
1973        case BFPT_DWORD15_QER_SR1_BIT6:
1974                params->quad_enable = macronix_quad_enable;
1975                break;
1976#endif
1977#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1978        case BFPT_DWORD15_QER_SR2_BIT1:
1979                params->quad_enable = spansion_read_cr_quad_enable;
1980                break;
1981#endif
1982        default:
1983                return -EINVAL;
1984        }
1985
1986        return 0;
1987}
1988
1989/**
1990 * spi_nor_parse_microchip_sfdp() - parse the Microchip manufacturer specific
1991 * SFDP table.
1992 * @nor:                pointer to a 'struct spi_nor'.
1993 * @param_header:       pointer to the SFDP parameter header.
1994 *
1995 * Return: 0 on success, -errno otherwise.
1996 */
1997static int
1998spi_nor_parse_microchip_sfdp(struct spi_nor *nor,
1999                             const struct sfdp_parameter_header *param_header)
2000{
2001        size_t size;
2002        u32 addr;
2003        int ret;
2004
2005        size = param_header->length * sizeof(u32);
2006        addr = SFDP_PARAM_HEADER_PTP(param_header);
2007
2008        nor->manufacturer_sfdp = devm_kmalloc(nor->dev, size, GFP_KERNEL);
2009        if (!nor->manufacturer_sfdp)
2010                return -ENOMEM;
2011
2012        ret = spi_nor_read_sfdp(nor, addr, size, nor->manufacturer_sfdp);
2013
2014        return ret;
2015}
2016
2017/**
2018 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
2019 * @nor:                pointer to a 'struct spi_nor'
2020 * @params:             pointer to the 'struct spi_nor_flash_parameter' to be
2021 *                      filled
2022 *
2023 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
2024 * specification. This is a standard which tends to supported by almost all
2025 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
2026 * runtime the main parameters needed to perform basic SPI flash operations such
2027 * as Fast Read, Page Program or Sector Erase commands.
2028 *
2029 * Return: 0 on success, -errno otherwise.
2030 */
2031static int spi_nor_parse_sfdp(struct spi_nor *nor,
2032                              struct spi_nor_flash_parameter *params)
2033{
2034        const struct sfdp_parameter_header *param_header, *bfpt_header;
2035        struct sfdp_parameter_header *param_headers = NULL;
2036        struct sfdp_header header;
2037        size_t psize;
2038        int i, err;
2039
2040        /* Get the SFDP header. */
2041        err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
2042        if (err < 0)
2043                return err;
2044
2045        /* Check the SFDP header version. */
2046        if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
2047            header.major != SFDP_JESD216_MAJOR)
2048                return -EINVAL;
2049
2050        /*
2051         * Verify that the first and only mandatory parameter header is a
2052         * Basic Flash Parameter Table header as specified in JESD216.
2053         */
2054        bfpt_header = &header.bfpt_header;
2055        if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
2056            bfpt_header->major != SFDP_JESD216_MAJOR)
2057                return -EINVAL;
2058
2059        /*
2060         * Allocate memory then read all parameter headers with a single
2061         * Read SFDP command. These parameter headers will actually be parsed
2062         * twice: a first time to get the latest revision of the basic flash
2063         * parameter table, then a second time to handle the supported optional
2064         * tables.
2065         * Hence we read the parameter headers once for all to reduce the
2066         * processing time. Also we use kmalloc() instead of devm_kmalloc()
2067         * because we don't need to keep these parameter headers: the allocated
2068         * memory is always released with kfree() before exiting this function.
2069         */
2070        if (header.nph) {
2071                psize = header.nph * sizeof(*param_headers);
2072
2073                param_headers = kmalloc(psize, GFP_KERNEL);
2074                if (!param_headers)
2075                        return -ENOMEM;
2076
2077                err = spi_nor_read_sfdp(nor, sizeof(header),
2078                                        psize, param_headers);
2079                if (err < 0) {
2080                        dev_err(nor->dev,
2081                                "failed to read SFDP parameter headers\n");
2082                        goto exit;
2083                }
2084        }
2085
2086        /*
2087         * Check other parameter headers to get the latest revision of
2088         * the basic flash parameter table.
2089         */
2090        for (i = 0; i < header.nph; i++) {
2091                param_header = &param_headers[i];
2092
2093                if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
2094                    param_header->major == SFDP_JESD216_MAJOR &&
2095                    (param_header->minor > bfpt_header->minor ||
2096                     (param_header->minor == bfpt_header->minor &&
2097                      param_header->length > bfpt_header->length)))
2098                        bfpt_header = param_header;
2099        }
2100
2101        err = spi_nor_parse_bfpt(nor, bfpt_header, params);
2102        if (err)
2103                goto exit;
2104
2105        /* Parse other parameter headers. */
2106        for (i = 0; i < header.nph; i++) {
2107                param_header = &param_headers[i];
2108
2109                switch (SFDP_PARAM_HEADER_ID(param_header)) {
2110                case SFDP_SECTOR_MAP_ID:
2111                        dev_info(nor->dev,
2112                                 "non-uniform erase sector maps are not supported yet.\n");
2113                        break;
2114
2115                case SFDP_SST_ID:
2116                        err = spi_nor_parse_microchip_sfdp(nor, param_header);
2117                        break;
2118
2119                default:
2120                        break;
2121                }
2122
2123                if (err) {
2124                        dev_warn(nor->dev,
2125                                 "Failed to parse optional parameter table: %04x\n",
2126                                 SFDP_PARAM_HEADER_ID(param_header));
2127                        /*
2128                         * Let's not drop all information we extracted so far
2129                         * if optional table parsers fail. In case of failing,
2130                         * each optional parser is responsible to roll back to
2131                         * the previously known spi_nor data.
2132                         */
2133                        err = 0;
2134                }
2135        }
2136
2137exit:
2138        kfree(param_headers);
2139        return err;
2140}
2141#else
2142static int spi_nor_parse_sfdp(struct spi_nor *nor,
2143                              struct spi_nor_flash_parameter *params)
2144{
2145        return -EINVAL;
2146}
2147#endif /* SPI_FLASH_SFDP_SUPPORT */
2148
2149static int spi_nor_init_params(struct spi_nor *nor,
2150                               const struct flash_info *info,
2151                               struct spi_nor_flash_parameter *params)
2152{
2153        /* Set legacy flash parameters as default. */
2154        memset(params, 0, sizeof(*params));
2155
2156        /* Set SPI NOR sizes. */
2157        params->size = info->sector_size * info->n_sectors;
2158        params->page_size = info->page_size;
2159
2160        /* (Fast) Read settings. */
2161        params->hwcaps.mask |= SNOR_HWCAPS_READ;
2162        spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2163                                  0, 0, SPINOR_OP_READ,
2164                                  SNOR_PROTO_1_1_1);
2165
2166        if (!(info->flags & SPI_NOR_NO_FR)) {
2167                params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2168                spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2169                                          0, 8, SPINOR_OP_READ_FAST,
2170                                          SNOR_PROTO_1_1_1);
2171        }
2172
2173        if (info->flags & SPI_NOR_DUAL_READ) {
2174                params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2175                spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2176                                          0, 8, SPINOR_OP_READ_1_1_2,
2177                                          SNOR_PROTO_1_1_2);
2178        }
2179
2180        if (info->flags & SPI_NOR_QUAD_READ) {
2181                params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2182                spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2183                                          0, 8, SPINOR_OP_READ_1_1_4,
2184                                          SNOR_PROTO_1_1_4);
2185        }
2186
2187        if (info->flags & SPI_NOR_OCTAL_READ) {
2188                params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2189                spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2190                                          0, 8, SPINOR_OP_READ_1_1_8,
2191                                          SNOR_PROTO_1_1_8);
2192        }
2193
2194        /* Page Program settings. */
2195        params->hwcaps.mask |= SNOR_HWCAPS_PP;
2196        spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2197                                SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2198
2199        if (info->flags & SPI_NOR_QUAD_READ) {
2200                params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
2201                spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
2202                                        SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
2203        }
2204
2205        /* Select the procedure to set the Quad Enable bit. */
2206        if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
2207                                   SNOR_HWCAPS_PP_QUAD)) {
2208                switch (JEDEC_MFR(info)) {
2209#ifdef CONFIG_SPI_FLASH_MACRONIX
2210                case SNOR_MFR_MACRONIX:
2211                        params->quad_enable = macronix_quad_enable;
2212                        break;
2213#endif
2214                case SNOR_MFR_ST:
2215                case SNOR_MFR_MICRON:
2216                        break;
2217
2218                default:
2219#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
2220                        /* Kept only for backward compatibility purpose. */
2221                        params->quad_enable = spansion_read_cr_quad_enable;
2222#endif
2223                        break;
2224                }
2225        }
2226
2227        /* Override the parameters with data read from SFDP tables. */
2228        nor->addr_width = 0;
2229        nor->mtd.erasesize = 0;
2230        if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
2231            !(info->flags & SPI_NOR_SKIP_SFDP)) {
2232                struct spi_nor_flash_parameter sfdp_params;
2233
2234                memcpy(&sfdp_params, params, sizeof(sfdp_params));
2235                if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
2236                        nor->addr_width = 0;
2237                        nor->mtd.erasesize = 0;
2238                } else {
2239                        memcpy(params, &sfdp_params, sizeof(*params));
2240                }
2241        }
2242
2243        return 0;
2244}
2245
2246static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2247{
2248        size_t i;
2249
2250        for (i = 0; i < size; i++)
2251                if (table[i][0] == (int)hwcaps)
2252                        return table[i][1];
2253
2254        return -EINVAL;
2255}
2256
2257static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2258{
2259        static const int hwcaps_read2cmd[][2] = {
2260                { SNOR_HWCAPS_READ,             SNOR_CMD_READ },
2261                { SNOR_HWCAPS_READ_FAST,        SNOR_CMD_READ_FAST },
2262                { SNOR_HWCAPS_READ_1_1_1_DTR,   SNOR_CMD_READ_1_1_1_DTR },
2263                { SNOR_HWCAPS_READ_1_1_2,       SNOR_CMD_READ_1_1_2 },
2264                { SNOR_HWCAPS_READ_1_2_2,       SNOR_CMD_READ_1_2_2 },
2265                { SNOR_HWCAPS_READ_2_2_2,       SNOR_CMD_READ_2_2_2 },
2266                { SNOR_HWCAPS_READ_1_2_2_DTR,   SNOR_CMD_READ_1_2_2_DTR },
2267                { SNOR_HWCAPS_READ_1_1_4,       SNOR_CMD_READ_1_1_4 },
2268                { SNOR_HWCAPS_READ_1_4_4,       SNOR_CMD_READ_1_4_4 },
2269                { SNOR_HWCAPS_READ_4_4_4,       SNOR_CMD_READ_4_4_4 },
2270                { SNOR_HWCAPS_READ_1_4_4_DTR,   SNOR_CMD_READ_1_4_4_DTR },
2271                { SNOR_HWCAPS_READ_1_1_8,       SNOR_CMD_READ_1_1_8 },
2272                { SNOR_HWCAPS_READ_1_8_8,       SNOR_CMD_READ_1_8_8 },
2273                { SNOR_HWCAPS_READ_8_8_8,       SNOR_CMD_READ_8_8_8 },
2274                { SNOR_HWCAPS_READ_1_8_8_DTR,   SNOR_CMD_READ_1_8_8_DTR },
2275        };
2276
2277        return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2278                                  ARRAY_SIZE(hwcaps_read2cmd));
2279}
2280
2281static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2282{
2283        static const int hwcaps_pp2cmd[][2] = {
2284                { SNOR_HWCAPS_PP,               SNOR_CMD_PP },
2285                { SNOR_HWCAPS_PP_1_1_4,         SNOR_CMD_PP_1_1_4 },
2286                { SNOR_HWCAPS_PP_1_4_4,         SNOR_CMD_PP_1_4_4 },
2287                { SNOR_HWCAPS_PP_4_4_4,         SNOR_CMD_PP_4_4_4 },
2288                { SNOR_HWCAPS_PP_1_1_8,         SNOR_CMD_PP_1_1_8 },
2289                { SNOR_HWCAPS_PP_1_8_8,         SNOR_CMD_PP_1_8_8 },
2290                { SNOR_HWCAPS_PP_8_8_8,         SNOR_CMD_PP_8_8_8 },
2291        };
2292
2293        return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2294                                  ARRAY_SIZE(hwcaps_pp2cmd));
2295}
2296
2297static int spi_nor_select_read(struct spi_nor *nor,
2298                               const struct spi_nor_flash_parameter *params,
2299                               u32 shared_hwcaps)
2300{
2301        int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2302        const struct spi_nor_read_command *read;
2303
2304        if (best_match < 0)
2305                return -EINVAL;
2306
2307        cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2308        if (cmd < 0)
2309                return -EINVAL;
2310
2311        read = &params->reads[cmd];
2312        nor->read_opcode = read->opcode;
2313        nor->read_proto = read->proto;
2314
2315        /*
2316         * In the spi-nor framework, we don't need to make the difference
2317         * between mode clock cycles and wait state clock cycles.
2318         * Indeed, the value of the mode clock cycles is used by a QSPI
2319         * flash memory to know whether it should enter or leave its 0-4-4
2320         * (Continuous Read / XIP) mode.
2321         * eXecution In Place is out of the scope of the mtd sub-system.
2322         * Hence we choose to merge both mode and wait state clock cycles
2323         * into the so called dummy clock cycles.
2324         */
2325        nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2326        return 0;
2327}
2328
2329static int spi_nor_select_pp(struct spi_nor *nor,
2330                             const struct spi_nor_flash_parameter *params,
2331                             u32 shared_hwcaps)
2332{
2333        int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2334        const struct spi_nor_pp_command *pp;
2335
2336        if (best_match < 0)
2337                return -EINVAL;
2338
2339        cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2340        if (cmd < 0)
2341                return -EINVAL;
2342
2343        pp = &params->page_programs[cmd];
2344        nor->program_opcode = pp->opcode;
2345        nor->write_proto = pp->proto;
2346        return 0;
2347}
2348
2349static int spi_nor_select_erase(struct spi_nor *nor,
2350                                const struct flash_info *info)
2351{
2352        struct mtd_info *mtd = &nor->mtd;
2353
2354        /* Do nothing if already configured from SFDP. */
2355        if (mtd->erasesize)
2356                return 0;
2357
2358#ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
2359        /* prefer "small sector" erase if possible */
2360        if (info->flags & SECT_4K) {
2361                nor->erase_opcode = SPINOR_OP_BE_4K;
2362                mtd->erasesize = 4096;
2363        } else if (info->flags & SECT_4K_PMC) {
2364                nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
2365                mtd->erasesize = 4096;
2366        } else
2367#endif
2368        {
2369                nor->erase_opcode = SPINOR_OP_SE;
2370                mtd->erasesize = info->sector_size;
2371        }
2372        return 0;
2373}
2374
2375static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
2376                         const struct spi_nor_flash_parameter *params,
2377                         const struct spi_nor_hwcaps *hwcaps)
2378{
2379        u32 ignored_mask, shared_mask;
2380        bool enable_quad_io;
2381        int err;
2382
2383        /*
2384         * Keep only the hardware capabilities supported by both the SPI
2385         * controller and the SPI flash memory.
2386         */
2387        shared_mask = hwcaps->mask & params->hwcaps.mask;
2388
2389        /* SPI n-n-n protocols are not supported yet. */
2390        ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
2391                        SNOR_HWCAPS_READ_4_4_4 |
2392                        SNOR_HWCAPS_READ_8_8_8 |
2393                        SNOR_HWCAPS_PP_4_4_4 |
2394                        SNOR_HWCAPS_PP_8_8_8);
2395        if (shared_mask & ignored_mask) {
2396                dev_dbg(nor->dev,
2397                        "SPI n-n-n protocols are not supported yet.\n");
2398                shared_mask &= ~ignored_mask;
2399        }
2400
2401        /* Select the (Fast) Read command. */
2402        err = spi_nor_select_read(nor, params, shared_mask);
2403        if (err) {
2404                dev_dbg(nor->dev,
2405                        "can't select read settings supported by both the SPI controller and memory.\n");
2406                return err;
2407        }
2408
2409        /* Select the Page Program command. */
2410        err = spi_nor_select_pp(nor, params, shared_mask);
2411        if (err) {
2412                dev_dbg(nor->dev,
2413                        "can't select write settings supported by both the SPI controller and memory.\n");
2414                return err;
2415        }
2416
2417        /* Select the Sector Erase command. */
2418        err = spi_nor_select_erase(nor, info);
2419        if (err) {
2420                dev_dbg(nor->dev,
2421                        "can't select erase settings supported by both the SPI controller and memory.\n");
2422                return err;
2423        }
2424
2425        /* Enable Quad I/O if needed. */
2426        enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2427                          spi_nor_get_protocol_width(nor->write_proto) == 4);
2428        if (enable_quad_io && params->quad_enable)
2429                nor->quad_enable = params->quad_enable;
2430        else
2431                nor->quad_enable = NULL;
2432
2433        return 0;
2434}
2435
2436static int spi_nor_init(struct spi_nor *nor)
2437{
2438        int err;
2439
2440        /*
2441         * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
2442         * with the software protection bits set
2443         */
2444        if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
2445            JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
2446            JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
2447            nor->info->flags & SPI_NOR_HAS_LOCK) {
2448                write_enable(nor);
2449                write_sr(nor, 0);
2450                spi_nor_wait_till_ready(nor);
2451        }
2452
2453        if (nor->quad_enable) {
2454                err = nor->quad_enable(nor);
2455                if (err) {
2456                        dev_dbg(nor->dev, "quad mode not supported\n");
2457                        return err;
2458                }
2459        }
2460
2461        if (nor->addr_width == 4 &&
2462            (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
2463            !(nor->info->flags & SPI_NOR_4B_OPCODES)) {
2464                /*
2465                 * If the RESET# pin isn't hooked up properly, or the system
2466                 * otherwise doesn't perform a reset command in the boot
2467                 * sequence, it's impossible to 100% protect against unexpected
2468                 * reboots (e.g., crashes). Warn the user (or hopefully, system
2469                 * designer) that this is bad.
2470                 */
2471                if (nor->flags & SNOR_F_BROKEN_RESET)
2472                        printf("enabling reset hack; may not recover from unexpected reboots\n");
2473                set_4byte(nor, nor->info, 1);
2474        }
2475
2476        return 0;
2477}
2478
2479int spi_nor_scan(struct spi_nor *nor)
2480{
2481        struct spi_nor_flash_parameter params;
2482        const struct flash_info *info = NULL;
2483        struct mtd_info *mtd = &nor->mtd;
2484        struct spi_nor_hwcaps hwcaps = {
2485                .mask = SNOR_HWCAPS_READ |
2486                        SNOR_HWCAPS_READ_FAST |
2487                        SNOR_HWCAPS_PP,
2488        };
2489        struct spi_slave *spi = nor->spi;
2490        int ret;
2491
2492        /* Reset SPI protocol for all commands. */
2493        nor->reg_proto = SNOR_PROTO_1_1_1;
2494        nor->read_proto = SNOR_PROTO_1_1_1;
2495        nor->write_proto = SNOR_PROTO_1_1_1;
2496        nor->read = spi_nor_read_data;
2497        nor->write = spi_nor_write_data;
2498        nor->read_reg = spi_nor_read_reg;
2499        nor->write_reg = spi_nor_write_reg;
2500
2501        if (spi->mode & SPI_RX_OCTAL) {
2502                hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2503
2504                if (spi->mode & SPI_TX_OCTAL)
2505                        hwcaps.mask |= (SNOR_HWCAPS_READ_1_8_8 |
2506                                        SNOR_HWCAPS_PP_1_1_8 |
2507                                        SNOR_HWCAPS_PP_1_8_8);
2508        } else if (spi->mode & SPI_RX_QUAD) {
2509                hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2510
2511                if (spi->mode & SPI_TX_QUAD)
2512                        hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 |
2513                                        SNOR_HWCAPS_PP_1_1_4 |
2514                                        SNOR_HWCAPS_PP_1_4_4);
2515        } else if (spi->mode & SPI_RX_DUAL) {
2516                hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2517
2518                if (spi->mode & SPI_TX_DUAL)
2519                        hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2;
2520        }
2521
2522        info = spi_nor_read_id(nor);
2523        if (IS_ERR_OR_NULL(info))
2524                return -ENOENT;
2525        /* Parse the Serial Flash Discoverable Parameters table. */
2526        ret = spi_nor_init_params(nor, info, &params);
2527        if (ret)
2528                return ret;
2529
2530        if (!mtd->name)
2531                mtd->name = info->name;
2532        mtd->priv = nor;
2533        mtd->type = MTD_NORFLASH;
2534        mtd->writesize = 1;
2535        mtd->flags = MTD_CAP_NORFLASH;
2536        mtd->size = params.size;
2537        mtd->_erase = spi_nor_erase;
2538        mtd->_read = spi_nor_read;
2539        mtd->_write = spi_nor_write;
2540
2541#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
2542        /* NOR protection support for STmicro/Micron chips and similar */
2543        if (JEDEC_MFR(info) == SNOR_MFR_ST ||
2544            JEDEC_MFR(info) == SNOR_MFR_MICRON ||
2545            JEDEC_MFR(info) == SNOR_MFR_SST ||
2546                        info->flags & SPI_NOR_HAS_LOCK) {
2547                nor->flash_lock = stm_lock;
2548                nor->flash_unlock = stm_unlock;
2549                nor->flash_is_locked = stm_is_locked;
2550        }
2551#endif
2552
2553#ifdef CONFIG_SPI_FLASH_SST
2554        /*
2555         * sst26 series block protection implementation differs from other
2556         * series.
2557         */
2558        if (info->flags & SPI_NOR_HAS_SST26LOCK) {
2559                nor->flash_lock = sst26_lock;
2560                nor->flash_unlock = sst26_unlock;
2561                nor->flash_is_locked = sst26_is_locked;
2562        }
2563#endif
2564
2565        if (info->flags & USE_FSR)
2566                nor->flags |= SNOR_F_USE_FSR;
2567        if (info->flags & SPI_NOR_HAS_TB)
2568                nor->flags |= SNOR_F_HAS_SR_TB;
2569        if (info->flags & NO_CHIP_ERASE)
2570                nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2571        if (info->flags & USE_CLSR)
2572                nor->flags |= SNOR_F_USE_CLSR;
2573
2574        if (info->flags & SPI_NOR_NO_ERASE)
2575                mtd->flags |= MTD_NO_ERASE;
2576
2577        nor->page_size = params.page_size;
2578        mtd->writebufsize = nor->page_size;
2579
2580        /* Some devices cannot do fast-read, no matter what DT tells us */
2581        if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
2582                params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2583
2584        /*
2585         * Configure the SPI memory:
2586         * - select op codes for (Fast) Read, Page Program and Sector Erase.
2587         * - set the number of dummy cycles (mode cycles + wait states).
2588         * - set the SPI protocols for register and memory accesses.
2589         * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
2590         */
2591        ret = spi_nor_setup(nor, info, &params, &hwcaps);
2592        if (ret)
2593                return ret;
2594
2595        if (nor->addr_width) {
2596                /* already configured from SFDP */
2597        } else if (info->addr_width) {
2598                nor->addr_width = info->addr_width;
2599        } else if (mtd->size > SZ_16M) {
2600#ifndef CONFIG_SPI_FLASH_BAR
2601                /* enable 4-byte addressing if the device exceeds 16MiB */
2602                nor->addr_width = 4;
2603                if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
2604                    info->flags & SPI_NOR_4B_OPCODES)
2605                        spi_nor_set_4byte_opcodes(nor, info);
2606#else
2607        /* Configure the BAR - discover bank cmds and read current bank */
2608        nor->addr_width = 3;
2609        ret = read_bar(nor, info);
2610        if (ret < 0)
2611                return ret;
2612#endif
2613        } else {
2614                nor->addr_width = 3;
2615        }
2616
2617        if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
2618                dev_dbg(nor->dev, "address width is too large: %u\n",
2619                        nor->addr_width);
2620                return -EINVAL;
2621        }
2622
2623        /* Send all the required SPI flash commands to initialize device */
2624        nor->info = info;
2625        ret = spi_nor_init(nor);
2626        if (ret)
2627                return ret;
2628
2629        nor->name = mtd->name;
2630        nor->size = mtd->size;
2631        nor->erase_size = mtd->erasesize;
2632        nor->sector_size = mtd->erasesize;
2633
2634#ifndef CONFIG_SPL_BUILD
2635        printf("SF: Detected %s with page size ", nor->name);
2636        print_size(nor->page_size, ", erase size ");
2637        print_size(nor->erase_size, ", total ");
2638        print_size(nor->size, "");
2639        puts("\n");
2640#endif
2641
2642        return 0;
2643}
2644