uboot/fs/ubifs/tnc_misc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file contains miscelanious TNC-related functions shared betweend
  13 * different files. This file does not form any logically separate TNC
  14 * sub-system. The file was created because there is a lot of TNC code and
  15 * putting it all in one file would make that file too big and unreadable.
  16 */
  17
  18#ifdef __UBOOT__
  19#include <log.h>
  20#include <dm/devres.h>
  21#include <linux/err.h>
  22#endif
  23#include "ubifs.h"
  24
  25/**
  26 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
  27 * @zr: root of the subtree to traverse
  28 * @znode: previous znode
  29 *
  30 * This function implements levelorder TNC traversal. The LNC is ignored.
  31 * Returns the next element or %NULL if @znode is already the last one.
  32 */
  33struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
  34                                              struct ubifs_znode *znode)
  35{
  36        int level, iip, level_search = 0;
  37        struct ubifs_znode *zn;
  38
  39        ubifs_assert(zr);
  40
  41        if (unlikely(!znode))
  42                return zr;
  43
  44        if (unlikely(znode == zr)) {
  45                if (znode->level == 0)
  46                        return NULL;
  47                return ubifs_tnc_find_child(zr, 0);
  48        }
  49
  50        level = znode->level;
  51
  52        iip = znode->iip;
  53        while (1) {
  54                ubifs_assert(znode->level <= zr->level);
  55
  56                /*
  57                 * First walk up until there is a znode with next branch to
  58                 * look at.
  59                 */
  60                while (znode->parent != zr && iip >= znode->parent->child_cnt) {
  61                        znode = znode->parent;
  62                        iip = znode->iip;
  63                }
  64
  65                if (unlikely(znode->parent == zr &&
  66                             iip >= znode->parent->child_cnt)) {
  67                        /* This level is done, switch to the lower one */
  68                        level -= 1;
  69                        if (level_search || level < 0)
  70                                /*
  71                                 * We were already looking for znode at lower
  72                                 * level ('level_search'). As we are here
  73                                 * again, it just does not exist. Or all levels
  74                                 * were finished ('level < 0').
  75                                 */
  76                                return NULL;
  77
  78                        level_search = 1;
  79                        iip = -1;
  80                        znode = ubifs_tnc_find_child(zr, 0);
  81                        ubifs_assert(znode);
  82                }
  83
  84                /* Switch to the next index */
  85                zn = ubifs_tnc_find_child(znode->parent, iip + 1);
  86                if (!zn) {
  87                        /* No more children to look at, we have walk up */
  88                        iip = znode->parent->child_cnt;
  89                        continue;
  90                }
  91
  92                /* Walk back down to the level we came from ('level') */
  93                while (zn->level != level) {
  94                        znode = zn;
  95                        zn = ubifs_tnc_find_child(zn, 0);
  96                        if (!zn) {
  97                                /*
  98                                 * This path is not too deep so it does not
  99                                 * reach 'level'. Try next path.
 100                                 */
 101                                iip = znode->iip;
 102                                break;
 103                        }
 104                }
 105
 106                if (zn) {
 107                        ubifs_assert(zn->level >= 0);
 108                        return zn;
 109                }
 110        }
 111}
 112
 113/**
 114 * ubifs_search_zbranch - search znode branch.
 115 * @c: UBIFS file-system description object
 116 * @znode: znode to search in
 117 * @key: key to search for
 118 * @n: znode branch slot number is returned here
 119 *
 120 * This is a helper function which search branch with key @key in @znode using
 121 * binary search. The result of the search may be:
 122 *   o exact match, then %1 is returned, and the slot number of the branch is
 123 *     stored in @n;
 124 *   o no exact match, then %0 is returned and the slot number of the left
 125 *     closest branch is returned in @n; the slot if all keys in this znode are
 126 *     greater than @key, then %-1 is returned in @n.
 127 */
 128int ubifs_search_zbranch(const struct ubifs_info *c,
 129                         const struct ubifs_znode *znode,
 130                         const union ubifs_key *key, int *n)
 131{
 132        int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
 133        int uninitialized_var(cmp);
 134        const struct ubifs_zbranch *zbr = &znode->zbranch[0];
 135
 136        ubifs_assert(end > beg);
 137
 138        while (end > beg) {
 139                mid = (beg + end) >> 1;
 140                cmp = keys_cmp(c, key, &zbr[mid].key);
 141                if (cmp > 0)
 142                        beg = mid + 1;
 143                else if (cmp < 0)
 144                        end = mid;
 145                else {
 146                        *n = mid;
 147                        return 1;
 148                }
 149        }
 150
 151        *n = end - 1;
 152
 153        /* The insert point is after *n */
 154        ubifs_assert(*n >= -1 && *n < znode->child_cnt);
 155        if (*n == -1)
 156                ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0);
 157        else
 158                ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0);
 159        if (*n + 1 < znode->child_cnt)
 160                ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0);
 161
 162        return 0;
 163}
 164
 165/**
 166 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
 167 * @znode: znode to start at (root of the sub-tree to traverse)
 168 *
 169 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
 170 * ignored.
 171 */
 172struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
 173{
 174        if (unlikely(!znode))
 175                return NULL;
 176
 177        while (znode->level > 0) {
 178                struct ubifs_znode *child;
 179
 180                child = ubifs_tnc_find_child(znode, 0);
 181                if (!child)
 182                        return znode;
 183                znode = child;
 184        }
 185
 186        return znode;
 187}
 188
 189/**
 190 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
 191 * @znode: previous znode
 192 *
 193 * This function implements postorder TNC traversal. The LNC is ignored.
 194 * Returns the next element or %NULL if @znode is already the last one.
 195 */
 196struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode)
 197{
 198        struct ubifs_znode *zn;
 199
 200        ubifs_assert(znode);
 201        if (unlikely(!znode->parent))
 202                return NULL;
 203
 204        /* Switch to the next index in the parent */
 205        zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
 206        if (!zn)
 207                /* This is in fact the last child, return parent */
 208                return znode->parent;
 209
 210        /* Go to the first znode in this new subtree */
 211        return ubifs_tnc_postorder_first(zn);
 212}
 213
 214/**
 215 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
 216 * @znode: znode defining subtree to destroy
 217 *
 218 * This function destroys subtree of the TNC tree. Returns number of clean
 219 * znodes in the subtree.
 220 */
 221long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode)
 222{
 223        struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
 224        long clean_freed = 0;
 225        int n;
 226
 227        ubifs_assert(zn);
 228        while (1) {
 229                for (n = 0; n < zn->child_cnt; n++) {
 230                        if (!zn->zbranch[n].znode)
 231                                continue;
 232
 233                        if (zn->level > 0 &&
 234                            !ubifs_zn_dirty(zn->zbranch[n].znode))
 235                                clean_freed += 1;
 236
 237                        cond_resched();
 238                        kfree(zn->zbranch[n].znode);
 239                }
 240
 241                if (zn == znode) {
 242                        if (!ubifs_zn_dirty(zn))
 243                                clean_freed += 1;
 244                        kfree(zn);
 245                        return clean_freed;
 246                }
 247
 248                zn = ubifs_tnc_postorder_next(zn);
 249        }
 250}
 251
 252/**
 253 * read_znode - read an indexing node from flash and fill znode.
 254 * @c: UBIFS file-system description object
 255 * @lnum: LEB of the indexing node to read
 256 * @offs: node offset
 257 * @len: node length
 258 * @znode: znode to read to
 259 *
 260 * This function reads an indexing node from the flash media and fills znode
 261 * with the read data. Returns zero in case of success and a negative error
 262 * code in case of failure. The read indexing node is validated and if anything
 263 * is wrong with it, this function prints complaint messages and returns
 264 * %-EINVAL.
 265 */
 266static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
 267                      struct ubifs_znode *znode)
 268{
 269        int i, err, type, cmp;
 270        struct ubifs_idx_node *idx;
 271
 272        idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
 273        if (!idx)
 274                return -ENOMEM;
 275
 276        err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
 277        if (err < 0) {
 278                kfree(idx);
 279                return err;
 280        }
 281
 282        znode->child_cnt = le16_to_cpu(idx->child_cnt);
 283        znode->level = le16_to_cpu(idx->level);
 284
 285        dbg_tnc("LEB %d:%d, level %d, %d branch",
 286                lnum, offs, znode->level, znode->child_cnt);
 287
 288        if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
 289                ubifs_err(c, "current fanout %d, branch count %d",
 290                          c->fanout, znode->child_cnt);
 291                ubifs_err(c, "max levels %d, znode level %d",
 292                          UBIFS_MAX_LEVELS, znode->level);
 293                err = 1;
 294                goto out_dump;
 295        }
 296
 297        for (i = 0; i < znode->child_cnt; i++) {
 298                const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
 299                struct ubifs_zbranch *zbr = &znode->zbranch[i];
 300
 301                key_read(c, &br->key, &zbr->key);
 302                zbr->lnum = le32_to_cpu(br->lnum);
 303                zbr->offs = le32_to_cpu(br->offs);
 304                zbr->len  = le32_to_cpu(br->len);
 305                zbr->znode = NULL;
 306
 307                /* Validate branch */
 308
 309                if (zbr->lnum < c->main_first ||
 310                    zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
 311                    zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
 312                        ubifs_err(c, "bad branch %d", i);
 313                        err = 2;
 314                        goto out_dump;
 315                }
 316
 317                switch (key_type(c, &zbr->key)) {
 318                case UBIFS_INO_KEY:
 319                case UBIFS_DATA_KEY:
 320                case UBIFS_DENT_KEY:
 321                case UBIFS_XENT_KEY:
 322                        break;
 323                default:
 324                        ubifs_err(c, "bad key type at slot %d: %d",
 325                                  i, key_type(c, &zbr->key));
 326                        err = 3;
 327                        goto out_dump;
 328                }
 329
 330                if (znode->level)
 331                        continue;
 332
 333                type = key_type(c, &zbr->key);
 334                if (c->ranges[type].max_len == 0) {
 335                        if (zbr->len != c->ranges[type].len) {
 336                                ubifs_err(c, "bad target node (type %d) length (%d)",
 337                                          type, zbr->len);
 338                                ubifs_err(c, "have to be %d", c->ranges[type].len);
 339                                err = 4;
 340                                goto out_dump;
 341                        }
 342                } else if (zbr->len < c->ranges[type].min_len ||
 343                           zbr->len > c->ranges[type].max_len) {
 344                        ubifs_err(c, "bad target node (type %d) length (%d)",
 345                                  type, zbr->len);
 346                        ubifs_err(c, "have to be in range of %d-%d",
 347                                  c->ranges[type].min_len,
 348                                  c->ranges[type].max_len);
 349                        err = 5;
 350                        goto out_dump;
 351                }
 352        }
 353
 354        /*
 355         * Ensure that the next key is greater or equivalent to the
 356         * previous one.
 357         */
 358        for (i = 0; i < znode->child_cnt - 1; i++) {
 359                const union ubifs_key *key1, *key2;
 360
 361                key1 = &znode->zbranch[i].key;
 362                key2 = &znode->zbranch[i + 1].key;
 363
 364                cmp = keys_cmp(c, key1, key2);
 365                if (cmp > 0) {
 366                        ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1);
 367                        err = 6;
 368                        goto out_dump;
 369                } else if (cmp == 0 && !is_hash_key(c, key1)) {
 370                        /* These can only be keys with colliding hash */
 371                        ubifs_err(c, "keys %d and %d are not hashed but equivalent",
 372                                  i, i + 1);
 373                        err = 7;
 374                        goto out_dump;
 375                }
 376        }
 377
 378        kfree(idx);
 379        return 0;
 380
 381out_dump:
 382        ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
 383        ubifs_dump_node(c, idx);
 384        kfree(idx);
 385        return -EINVAL;
 386}
 387
 388/**
 389 * ubifs_load_znode - load znode to TNC cache.
 390 * @c: UBIFS file-system description object
 391 * @zbr: znode branch
 392 * @parent: znode's parent
 393 * @iip: index in parent
 394 *
 395 * This function loads znode pointed to by @zbr into the TNC cache and
 396 * returns pointer to it in case of success and a negative error code in case
 397 * of failure.
 398 */
 399struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
 400                                     struct ubifs_zbranch *zbr,
 401                                     struct ubifs_znode *parent, int iip)
 402{
 403        int err;
 404        struct ubifs_znode *znode;
 405
 406        ubifs_assert(!zbr->znode);
 407        /*
 408         * A slab cache is not presently used for znodes because the znode size
 409         * depends on the fanout which is stored in the superblock.
 410         */
 411        znode = kzalloc(c->max_znode_sz, GFP_NOFS);
 412        if (!znode)
 413                return ERR_PTR(-ENOMEM);
 414
 415        err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode);
 416        if (err)
 417                goto out;
 418
 419        atomic_long_inc(&c->clean_zn_cnt);
 420
 421        /*
 422         * Increment the global clean znode counter as well. It is OK that
 423         * global and per-FS clean znode counters may be inconsistent for some
 424         * short time (because we might be preempted at this point), the global
 425         * one is only used in shrinker.
 426         */
 427        atomic_long_inc(&ubifs_clean_zn_cnt);
 428
 429        zbr->znode = znode;
 430        znode->parent = parent;
 431        znode->time = get_seconds();
 432        znode->iip = iip;
 433
 434        return znode;
 435
 436out:
 437        kfree(znode);
 438        return ERR_PTR(err);
 439}
 440
 441/**
 442 * ubifs_tnc_read_node - read a leaf node from the flash media.
 443 * @c: UBIFS file-system description object
 444 * @zbr: key and position of the node
 445 * @node: node is returned here
 446 *
 447 * This function reads a node defined by @zbr from the flash media. Returns
 448 * zero in case of success or a negative negative error code in case of
 449 * failure.
 450 */
 451int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 452                        void *node)
 453{
 454        union ubifs_key key1, *key = &zbr->key;
 455        int err, type = key_type(c, key);
 456        struct ubifs_wbuf *wbuf;
 457
 458        /*
 459         * 'zbr' has to point to on-flash node. The node may sit in a bud and
 460         * may even be in a write buffer, so we have to take care about this.
 461         */
 462        wbuf = ubifs_get_wbuf(c, zbr->lnum);
 463        if (wbuf)
 464                err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
 465                                           zbr->lnum, zbr->offs);
 466        else
 467                err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
 468                                      zbr->offs);
 469
 470        if (err) {
 471                dbg_tnck(key, "key ");
 472                return err;
 473        }
 474
 475        /* Make sure the key of the read node is correct */
 476        key_read(c, node + UBIFS_KEY_OFFSET, &key1);
 477        if (!keys_eq(c, key, &key1)) {
 478                ubifs_err(c, "bad key in node at LEB %d:%d",
 479                          zbr->lnum, zbr->offs);
 480                dbg_tnck(key, "looked for key ");
 481                dbg_tnck(&key1, "but found node's key ");
 482                ubifs_dump_node(c, node);
 483                return -EINVAL;
 484        }
 485
 486        return 0;
 487}
 488