uboot/drivers/net/fsl_enetc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * ENETC ethernet controller driver
   4 * Copyright 2017-2019 NXP
   5 */
   6
   7#include <common.h>
   8#include <dm.h>
   9#include <errno.h>
  10#include <fdt_support.h>
  11#include <malloc.h>
  12#include <memalign.h>
  13#include <net.h>
  14#include <asm/cache.h>
  15#include <asm/io.h>
  16#include <pci.h>
  17#include <miiphy.h>
  18#include <linux/bug.h>
  19#include <linux/delay.h>
  20
  21#include "fsl_enetc.h"
  22
  23#define ENETC_DRIVER_NAME       "enetc_eth"
  24
  25/*
  26 * sets the MAC address in IERB registers, this setting is persistent and
  27 * carried over to Linux.
  28 */
  29static void enetc_set_ierb_primary_mac(struct udevice *dev, int devfn,
  30                                       const u8 *enetaddr)
  31{
  32#ifdef CONFIG_ARCH_LS1028A
  33/*
  34 * LS1028A is the only part with IERB at this time and there are plans to change
  35 * its structure, keep this LS1028A specific for now
  36 */
  37#define IERB_BASE               0x1f0800000ULL
  38#define IERB_PFMAC(pf, vf, n)   (IERB_BASE + 0x8000 + (pf) * 0x100 + (vf) * 8 \
  39                                 + (n) * 4)
  40
  41static int ierb_fn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
  42
  43        u16 lower = *(const u16 *)(enetaddr + 4);
  44        u32 upper = *(const u32 *)enetaddr;
  45
  46        if (ierb_fn_to_pf[devfn] < 0)
  47                return;
  48
  49        out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 0), upper);
  50        out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 1), (u32)lower);
  51#endif
  52}
  53
  54/* sets up primary MAC addresses in DT/IERB */
  55void fdt_fixup_enetc_mac(void *blob)
  56{
  57        struct pci_child_platdata *ppdata;
  58        struct eth_pdata *pdata;
  59        struct udevice *dev;
  60        struct uclass *uc;
  61        char path[256];
  62        int offset;
  63        int devfn;
  64
  65        uclass_get(UCLASS_ETH, &uc);
  66        uclass_foreach_dev(dev, uc) {
  67                if (!dev->driver || !dev->driver->name ||
  68                    strcmp(dev->driver->name, ENETC_DRIVER_NAME))
  69                        continue;
  70
  71                pdata = dev_get_platdata(dev);
  72                ppdata = dev_get_parent_platdata(dev);
  73                devfn = PCI_FUNC(ppdata->devfn);
  74
  75                enetc_set_ierb_primary_mac(dev, devfn, pdata->enetaddr);
  76
  77                snprintf(path, 256, "/soc/pcie@1f0000000/ethernet@%x,%x",
  78                         PCI_DEV(ppdata->devfn), PCI_FUNC(ppdata->devfn));
  79                offset = fdt_path_offset(blob, path);
  80                if (offset < 0)
  81                        continue;
  82                fdt_setprop(blob, offset, "mac-address", pdata->enetaddr, 6);
  83        }
  84}
  85
  86/*
  87 * Bind the device:
  88 * - set a more explicit name on the interface
  89 */
  90static int enetc_bind(struct udevice *dev)
  91{
  92        char name[16];
  93        static int eth_num_devices;
  94
  95        /*
  96         * prefer using PCI function numbers to number interfaces, but these
  97         * are only available if dts nodes are present.  For PCI they are
  98         * optional, handle that case too.  Just in case some nodes are present
  99         * and some are not, use different naming scheme - enetc-N based on
 100         * PCI function # and enetc#N based on interface count
 101         */
 102        if (ofnode_valid(dev->node))
 103                sprintf(name, "enetc-%u", PCI_FUNC(pci_get_devfn(dev)));
 104        else
 105                sprintf(name, "enetc#%u", eth_num_devices++);
 106        device_set_name(dev, name);
 107
 108        return 0;
 109}
 110
 111/* MDIO wrappers, we're using these to drive internal MDIO to get to serdes */
 112static int enetc_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
 113{
 114        struct enetc_mdio_priv priv;
 115
 116        priv.regs_base = bus->priv;
 117        return enetc_mdio_read_priv(&priv, addr, devad, reg);
 118}
 119
 120static int enetc_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
 121                            u16 val)
 122{
 123        struct enetc_mdio_priv priv;
 124
 125        priv.regs_base = bus->priv;
 126        return enetc_mdio_write_priv(&priv, addr, devad, reg, val);
 127}
 128
 129/* only interfaces that can pin out through serdes have internal MDIO */
 130static bool enetc_has_imdio(struct udevice *dev)
 131{
 132        struct enetc_priv *priv = dev_get_priv(dev);
 133
 134        return !!(priv->imdio.priv);
 135}
 136
 137/* set up serdes for SGMII */
 138static int enetc_init_sgmii(struct udevice *dev)
 139{
 140        struct enetc_priv *priv = dev_get_priv(dev);
 141        bool is2500 = false;
 142        u16 reg;
 143
 144        if (!enetc_has_imdio(dev))
 145                return 0;
 146
 147        if (priv->if_type == PHY_INTERFACE_MODE_SGMII_2500)
 148                is2500 = true;
 149
 150        /*
 151         * Set to SGMII mode, for 1Gbps enable AN, for 2.5Gbps set fixed speed.
 152         * Although fixed speed is 1Gbps, we could be running at 2.5Gbps based
 153         * on PLL configuration.  Setting 1G for 2.5G here is counter intuitive
 154         * but intentional.
 155         */
 156        reg = ENETC_PCS_IF_MODE_SGMII;
 157        reg |= is2500 ? ENETC_PCS_IF_MODE_SPEED_1G : ENETC_PCS_IF_MODE_SGMII_AN;
 158        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
 159                         ENETC_PCS_IF_MODE, reg);
 160
 161        /* Dev ability - SGMII */
 162        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
 163                         ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SGMII);
 164
 165        /* Adjust link timer for SGMII */
 166        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
 167                         ENETC_PCS_LINK_TIMER1, ENETC_PCS_LINK_TIMER1_VAL);
 168        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
 169                         ENETC_PCS_LINK_TIMER2, ENETC_PCS_LINK_TIMER2_VAL);
 170
 171        reg = ENETC_PCS_CR_DEF_VAL;
 172        reg |= is2500 ? ENETC_PCS_CR_RST : ENETC_PCS_CR_RESET_AN;
 173        /* restart PCS AN */
 174        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
 175                         ENETC_PCS_CR, reg);
 176
 177        return 0;
 178}
 179
 180/* set up MAC for RGMII */
 181static int enetc_init_rgmii(struct udevice *dev)
 182{
 183        struct enetc_priv *priv = dev_get_priv(dev);
 184        u32 if_mode;
 185
 186        /* enable RGMII AN */
 187        if_mode = enetc_read_port(priv, ENETC_PM_IF_MODE);
 188        if_mode |= ENETC_PM_IF_MODE_AN_ENA;
 189        enetc_write_port(priv, ENETC_PM_IF_MODE, if_mode);
 190
 191        return 0;
 192}
 193
 194/* set up MAC configuration for the given interface type */
 195static void enetc_setup_mac_iface(struct udevice *dev)
 196{
 197        struct enetc_priv *priv = dev_get_priv(dev);
 198        u32 if_mode;
 199
 200        switch (priv->if_type) {
 201        case PHY_INTERFACE_MODE_RGMII:
 202        case PHY_INTERFACE_MODE_RGMII_ID:
 203        case PHY_INTERFACE_MODE_RGMII_RXID:
 204        case PHY_INTERFACE_MODE_RGMII_TXID:
 205                enetc_init_rgmii(dev);
 206                break;
 207        case PHY_INTERFACE_MODE_XGMII:
 208        case PHY_INTERFACE_MODE_USXGMII:
 209        case PHY_INTERFACE_MODE_XFI:
 210                /* set ifmode to (US)XGMII */
 211                if_mode = enetc_read_port(priv, ENETC_PM_IF_MODE);
 212                if_mode &= ~ENETC_PM_IF_IFMODE_MASK;
 213                enetc_write_port(priv, ENETC_PM_IF_MODE, if_mode);
 214                break;
 215        };
 216}
 217
 218/* set up serdes for SXGMII */
 219static int enetc_init_sxgmii(struct udevice *dev)
 220{
 221        struct enetc_priv *priv = dev_get_priv(dev);
 222
 223        if (!enetc_has_imdio(dev))
 224                return 0;
 225
 226        /* Dev ability - SXGMII */
 227        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
 228                         ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SXGMII);
 229
 230        /* Restart PCS AN */
 231        enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
 232                         ENETC_PCS_CR,
 233                         ENETC_PCS_CR_RST | ENETC_PCS_CR_RESET_AN);
 234
 235        return 0;
 236}
 237
 238/* Apply protocol specific configuration to MAC, serdes as needed */
 239static void enetc_start_pcs(struct udevice *dev)
 240{
 241        struct enetc_priv *priv = dev_get_priv(dev);
 242        const char *if_str;
 243
 244        priv->if_type = PHY_INTERFACE_MODE_NONE;
 245
 246        /* register internal MDIO for debug purposes */
 247        if (enetc_read_port(priv, ENETC_PCAPR0) & ENETC_PCAPRO_MDIO) {
 248                priv->imdio.read = enetc_mdio_read;
 249                priv->imdio.write = enetc_mdio_write;
 250                priv->imdio.priv = priv->port_regs + ENETC_PM_IMDIO_BASE;
 251                strncpy(priv->imdio.name, dev->name, MDIO_NAME_LEN);
 252                if (!miiphy_get_dev_by_name(priv->imdio.name))
 253                        mdio_register(&priv->imdio);
 254        }
 255
 256        if (!ofnode_valid(dev->node)) {
 257                enetc_dbg(dev, "no enetc ofnode found, skipping PCS set-up\n");
 258                return;
 259        }
 260
 261        if_str = ofnode_read_string(dev->node, "phy-mode");
 262        if (if_str)
 263                priv->if_type = phy_get_interface_by_name(if_str);
 264        else
 265                enetc_dbg(dev,
 266                          "phy-mode property not found, defaulting to SGMII\n");
 267        if (priv->if_type < 0)
 268                priv->if_type = PHY_INTERFACE_MODE_NONE;
 269
 270        switch (priv->if_type) {
 271        case PHY_INTERFACE_MODE_SGMII:
 272        case PHY_INTERFACE_MODE_SGMII_2500:
 273                enetc_init_sgmii(dev);
 274                break;
 275        case PHY_INTERFACE_MODE_XGMII:
 276        case PHY_INTERFACE_MODE_USXGMII:
 277        case PHY_INTERFACE_MODE_XFI:
 278                enetc_init_sxgmii(dev);
 279                break;
 280        };
 281}
 282
 283/* Configure the actual/external ethernet PHY, if one is found */
 284static void enetc_config_phy(struct udevice *dev)
 285{
 286        struct enetc_priv *priv = dev_get_priv(dev);
 287        int supported;
 288
 289        priv->phy = dm_eth_phy_connect(dev);
 290
 291        if (!priv->phy)
 292                return;
 293
 294        supported = PHY_GBIT_FEATURES | SUPPORTED_2500baseX_Full;
 295        priv->phy->supported &= supported;
 296        priv->phy->advertising &= supported;
 297
 298        phy_config(priv->phy);
 299}
 300
 301/*
 302 * Probe ENETC driver:
 303 * - initialize port and station interface BARs
 304 */
 305static int enetc_probe(struct udevice *dev)
 306{
 307        struct enetc_priv *priv = dev_get_priv(dev);
 308
 309        if (ofnode_valid(dev->node) && !ofnode_is_available(dev->node)) {
 310                enetc_dbg(dev, "interface disabled\n");
 311                return -ENODEV;
 312        }
 313
 314        priv->enetc_txbd = memalign(ENETC_BD_ALIGN,
 315                                    sizeof(struct enetc_tx_bd) * ENETC_BD_CNT);
 316        priv->enetc_rxbd = memalign(ENETC_BD_ALIGN,
 317                                    sizeof(union enetc_rx_bd) * ENETC_BD_CNT);
 318
 319        if (!priv->enetc_txbd || !priv->enetc_rxbd) {
 320                /* free should be able to handle NULL, just free all pointers */
 321                free(priv->enetc_txbd);
 322                free(priv->enetc_rxbd);
 323
 324                return -ENOMEM;
 325        }
 326
 327        /* initialize register */
 328        priv->regs_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0);
 329        if (!priv->regs_base) {
 330                enetc_dbg(dev, "failed to map BAR0\n");
 331                return -EINVAL;
 332        }
 333        priv->port_regs = priv->regs_base + ENETC_PORT_REGS_OFF;
 334
 335        dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
 336
 337        enetc_start_pcs(dev);
 338        enetc_config_phy(dev);
 339
 340        return 0;
 341}
 342
 343/*
 344 * Remove the driver from an interface:
 345 * - free up allocated memory
 346 */
 347static int enetc_remove(struct udevice *dev)
 348{
 349        struct enetc_priv *priv = dev_get_priv(dev);
 350
 351        free(priv->enetc_txbd);
 352        free(priv->enetc_rxbd);
 353
 354        return 0;
 355}
 356
 357/*
 358 * LS1028A is the only part with IERB at this time and there are plans to
 359 * change its structure, keep this LS1028A specific for now.
 360 */
 361#define LS1028A_IERB_BASE               0x1f0800000ULL
 362#define LS1028A_IERB_PSIPMAR0(pf, vf)   (LS1028A_IERB_BASE + 0x8000 \
 363                                         + (pf) * 0x100 + (vf) * 8)
 364#define LS1028A_IERB_PSIPMAR1(pf, vf)   (LS1028A_IERB_PSIPMAR0(pf, vf) + 4)
 365
 366static int enetc_ls1028a_write_hwaddr(struct udevice *dev)
 367{
 368        struct pci_child_platdata *ppdata = dev_get_parent_platdata(dev);
 369        const int devfn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
 370        struct eth_pdata *plat = dev_get_platdata(dev);
 371        int devfn = PCI_FUNC(ppdata->devfn);
 372        u8 *addr = plat->enetaddr;
 373        u32 lower, upper;
 374        int pf;
 375
 376        if (devfn >= ARRAY_SIZE(devfn_to_pf))
 377                return 0;
 378
 379        pf = devfn_to_pf[devfn];
 380        if (pf < 0)
 381                return 0;
 382
 383        lower = *(const u16 *)(addr + 4);
 384        upper = *(const u32 *)addr;
 385
 386        out_le32(LS1028A_IERB_PSIPMAR0(pf, 0), upper);
 387        out_le32(LS1028A_IERB_PSIPMAR1(pf, 0), lower);
 388
 389        return 0;
 390}
 391
 392static int enetc_write_hwaddr(struct udevice *dev)
 393{
 394        struct eth_pdata *plat = dev_get_platdata(dev);
 395        struct enetc_priv *priv = dev_get_priv(dev);
 396        u8 *addr = plat->enetaddr;
 397
 398        if (IS_ENABLED(CONFIG_ARCH_LS1028A))
 399                return enetc_ls1028a_write_hwaddr(dev);
 400
 401        u16 lower = *(const u16 *)(addr + 4);
 402        u32 upper = *(const u32 *)addr;
 403
 404        enetc_write_port(priv, ENETC_PSIPMAR0, upper);
 405        enetc_write_port(priv, ENETC_PSIPMAR1, lower);
 406
 407        return 0;
 408}
 409
 410/* Configure port parameters (# of rings, frame size, enable port) */
 411static void enetc_enable_si_port(struct enetc_priv *priv)
 412{
 413        u32 val;
 414
 415        /* set Rx/Tx BDR count */
 416        val = ENETC_PSICFGR_SET_TXBDR(ENETC_TX_BDR_CNT);
 417        val |= ENETC_PSICFGR_SET_RXBDR(ENETC_RX_BDR_CNT);
 418        enetc_write_port(priv, ENETC_PSICFGR(0), val);
 419        /* set Rx max frame size */
 420        enetc_write_port(priv, ENETC_PM_MAXFRM, ENETC_RX_MAXFRM_SIZE);
 421        /* enable MAC port */
 422        enetc_write_port(priv, ENETC_PM_CC, ENETC_PM_CC_RX_TX_EN);
 423        /* enable port */
 424        enetc_write_port(priv, ENETC_PMR, ENETC_PMR_SI0_EN);
 425        /* set SI cache policy */
 426        enetc_write(priv, ENETC_SICAR0,
 427                    ENETC_SICAR_RD_CFG | ENETC_SICAR_WR_CFG);
 428        /* enable SI */
 429        enetc_write(priv, ENETC_SIMR, ENETC_SIMR_EN);
 430}
 431
 432/* returns DMA address for a given buffer index */
 433static inline u64 enetc_rxb_address(struct udevice *dev, int i)
 434{
 435        return cpu_to_le64(dm_pci_virt_to_mem(dev, net_rx_packets[i]));
 436}
 437
 438/*
 439 * Setup a single Tx BD Ring (ID = 0):
 440 * - set Tx buffer descriptor address
 441 * - set the BD count
 442 * - initialize the producer and consumer index
 443 */
 444static void enetc_setup_tx_bdr(struct udevice *dev)
 445{
 446        struct enetc_priv *priv = dev_get_priv(dev);
 447        struct bd_ring *tx_bdr = &priv->tx_bdr;
 448        u64 tx_bd_add = (u64)priv->enetc_txbd;
 449
 450        /* used later to advance to the next Tx BD */
 451        tx_bdr->bd_count = ENETC_BD_CNT;
 452        tx_bdr->next_prod_idx = 0;
 453        tx_bdr->next_cons_idx = 0;
 454        tx_bdr->cons_idx = priv->regs_base +
 455                                ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBCIR);
 456        tx_bdr->prod_idx = priv->regs_base +
 457                                ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBPIR);
 458
 459        /* set Tx BD address */
 460        enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR0,
 461                        lower_32_bits(tx_bd_add));
 462        enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR1,
 463                        upper_32_bits(tx_bd_add));
 464        /* set Tx 8 BD count */
 465        enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBLENR,
 466                        tx_bdr->bd_count);
 467
 468        /* reset both producer/consumer indexes */
 469        enetc_write_reg(tx_bdr->cons_idx, tx_bdr->next_cons_idx);
 470        enetc_write_reg(tx_bdr->prod_idx, tx_bdr->next_prod_idx);
 471
 472        /* enable TX ring */
 473        enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBMR, ENETC_TBMR_EN);
 474}
 475
 476/*
 477 * Setup a single Rx BD Ring (ID = 0):
 478 * - set Rx buffer descriptors address (one descriptor per buffer)
 479 * - set buffer size as max frame size
 480 * - enable Rx ring
 481 * - reset consumer and producer indexes
 482 * - set buffer for each descriptor
 483 */
 484static void enetc_setup_rx_bdr(struct udevice *dev)
 485{
 486        struct enetc_priv *priv = dev_get_priv(dev);
 487        struct bd_ring *rx_bdr = &priv->rx_bdr;
 488        u64 rx_bd_add = (u64)priv->enetc_rxbd;
 489        int i;
 490
 491        /* used later to advance to the next BD produced by ENETC HW */
 492        rx_bdr->bd_count = ENETC_BD_CNT;
 493        rx_bdr->next_prod_idx = 0;
 494        rx_bdr->next_cons_idx = 0;
 495        rx_bdr->cons_idx = priv->regs_base +
 496                                ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBCIR);
 497        rx_bdr->prod_idx = priv->regs_base +
 498                                ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBPIR);
 499
 500        /* set Rx BD address */
 501        enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR0,
 502                        lower_32_bits(rx_bd_add));
 503        enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR1,
 504                        upper_32_bits(rx_bd_add));
 505        /* set Rx BD count (multiple of 8) */
 506        enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBLENR,
 507                        rx_bdr->bd_count);
 508        /* set Rx buffer  size */
 509        enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBSR, PKTSIZE_ALIGN);
 510
 511        /* fill Rx BD */
 512        memset(priv->enetc_rxbd, 0,
 513               rx_bdr->bd_count * sizeof(union enetc_rx_bd));
 514        for (i = 0; i < rx_bdr->bd_count; i++) {
 515                priv->enetc_rxbd[i].w.addr = enetc_rxb_address(dev, i);
 516                /* each RX buffer must be aligned to 64B */
 517                WARN_ON(priv->enetc_rxbd[i].w.addr & (ARCH_DMA_MINALIGN - 1));
 518        }
 519
 520        /* reset producer (ENETC owned) and consumer (SW owned) index */
 521        enetc_write_reg(rx_bdr->cons_idx, rx_bdr->next_cons_idx);
 522        enetc_write_reg(rx_bdr->prod_idx, rx_bdr->next_prod_idx);
 523
 524        /* enable Rx ring */
 525        enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBMR, ENETC_RBMR_EN);
 526}
 527
 528/*
 529 * Start ENETC interface:
 530 * - perform FLR
 531 * - enable access to port and SI registers
 532 * - set mac address
 533 * - setup TX/RX buffer descriptors
 534 * - enable Tx/Rx rings
 535 */
 536static int enetc_start(struct udevice *dev)
 537{
 538        struct enetc_priv *priv = dev_get_priv(dev);
 539
 540        /* reset and enable the PCI device */
 541        dm_pci_flr(dev);
 542        dm_pci_clrset_config16(dev, PCI_COMMAND, 0,
 543                               PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
 544
 545        enetc_enable_si_port(priv);
 546
 547        /* setup Tx/Rx buffer descriptors */
 548        enetc_setup_tx_bdr(dev);
 549        enetc_setup_rx_bdr(dev);
 550
 551        enetc_setup_mac_iface(dev);
 552
 553        if (priv->phy)
 554                phy_startup(priv->phy);
 555
 556        return 0;
 557}
 558
 559/*
 560 * Stop the network interface:
 561 * - just quiesce it, we can wipe all configuration as _start starts from
 562 * scratch each time
 563 */
 564static void enetc_stop(struct udevice *dev)
 565{
 566        /* FLR is sufficient to quiesce the device */
 567        dm_pci_flr(dev);
 568        /* leave the BARs accessible after we stop, this is needed to use
 569         * internal MDIO in command line.
 570         */
 571        dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
 572}
 573
 574/*
 575 * ENETC transmit packet:
 576 * - check if Tx BD ring is full
 577 * - set buffer/packet address (dma address)
 578 * - set final fragment flag
 579 * - try while producer index equals consumer index or timeout
 580 */
 581static int enetc_send(struct udevice *dev, void *packet, int length)
 582{
 583        struct enetc_priv *priv = dev_get_priv(dev);
 584        struct bd_ring *txr = &priv->tx_bdr;
 585        void *nv_packet = (void *)packet;
 586        int tries = ENETC_POLL_TRIES;
 587        u32 pi, ci;
 588
 589        pi = txr->next_prod_idx;
 590        ci = enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK;
 591        /* Tx ring is full when */
 592        if (((pi + 1) % txr->bd_count) == ci) {
 593                enetc_dbg(dev, "Tx BDR full\n");
 594                return -ETIMEDOUT;
 595        }
 596        enetc_dbg(dev, "TxBD[%d]send: pkt_len=%d, buff @0x%x%08x\n", pi, length,
 597                  upper_32_bits((u64)nv_packet), lower_32_bits((u64)nv_packet));
 598
 599        /* prepare Tx BD */
 600        memset(&priv->enetc_txbd[pi], 0x0, sizeof(struct enetc_tx_bd));
 601        priv->enetc_txbd[pi].addr =
 602                cpu_to_le64(dm_pci_virt_to_mem(dev, nv_packet));
 603        priv->enetc_txbd[pi].buf_len = cpu_to_le16(length);
 604        priv->enetc_txbd[pi].frm_len = cpu_to_le16(length);
 605        priv->enetc_txbd[pi].flags = cpu_to_le16(ENETC_TXBD_FLAGS_F);
 606        dmb();
 607        /* send frame: increment producer index */
 608        pi = (pi + 1) % txr->bd_count;
 609        txr->next_prod_idx = pi;
 610        enetc_write_reg(txr->prod_idx, pi);
 611        while ((--tries >= 0) &&
 612               (pi != (enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK)))
 613                udelay(10);
 614
 615        return tries > 0 ? 0 : -ETIMEDOUT;
 616}
 617
 618/*
 619 * Receive frame:
 620 * - wait for the next BD to get ready bit set
 621 * - clean up the descriptor
 622 * - move on and indicate to HW that the cleaned BD is available for Rx
 623 */
 624static int enetc_recv(struct udevice *dev, int flags, uchar **packetp)
 625{
 626        struct enetc_priv *priv = dev_get_priv(dev);
 627        struct bd_ring *rxr = &priv->rx_bdr;
 628        int tries = ENETC_POLL_TRIES;
 629        int pi = rxr->next_prod_idx;
 630        int ci = rxr->next_cons_idx;
 631        u32 status;
 632        int len;
 633        u8 rdy;
 634
 635        do {
 636                dmb();
 637                status = le32_to_cpu(priv->enetc_rxbd[pi].r.lstatus);
 638                /* check if current BD is ready to be consumed */
 639                rdy = ENETC_RXBD_STATUS_R(status);
 640        } while (--tries >= 0 && !rdy);
 641
 642        if (!rdy)
 643                return -EAGAIN;
 644
 645        dmb();
 646        len = le16_to_cpu(priv->enetc_rxbd[pi].r.buf_len);
 647        *packetp = (uchar *)enetc_rxb_address(dev, pi);
 648        enetc_dbg(dev, "RxBD[%d]: len=%d err=%d pkt=0x%x%08x\n", pi, len,
 649                  ENETC_RXBD_STATUS_ERRORS(status),
 650                  upper_32_bits((u64)*packetp), lower_32_bits((u64)*packetp));
 651
 652        /* BD clean up and advance to next in ring */
 653        memset(&priv->enetc_rxbd[pi], 0, sizeof(union enetc_rx_bd));
 654        priv->enetc_rxbd[pi].w.addr = enetc_rxb_address(dev, pi);
 655        rxr->next_prod_idx = (pi + 1) % rxr->bd_count;
 656        ci = (ci + 1) % rxr->bd_count;
 657        rxr->next_cons_idx = ci;
 658        dmb();
 659        /* free up the slot in the ring for HW */
 660        enetc_write_reg(rxr->cons_idx, ci);
 661
 662        return len;
 663}
 664
 665static const struct eth_ops enetc_ops = {
 666        .start  = enetc_start,
 667        .send   = enetc_send,
 668        .recv   = enetc_recv,
 669        .stop   = enetc_stop,
 670        .write_hwaddr = enetc_write_hwaddr,
 671};
 672
 673U_BOOT_DRIVER(eth_enetc) = {
 674        .name   = ENETC_DRIVER_NAME,
 675        .id     = UCLASS_ETH,
 676        .bind   = enetc_bind,
 677        .probe  = enetc_probe,
 678        .remove = enetc_remove,
 679        .ops    = &enetc_ops,
 680        .priv_auto_alloc_size = sizeof(struct enetc_priv),
 681        .platdata_auto_alloc_size = sizeof(struct eth_pdata),
 682};
 683
 684static struct pci_device_id enetc_ids[] = {
 685        { PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, PCI_DEVICE_ID_ENETC_ETH) },
 686        {}
 687};
 688
 689U_BOOT_PCI_DEVICE(eth_enetc, enetc_ids);
 690