uboot/drivers/timer/tsc_timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (c) 2012 The Chromium OS Authors.
   4 *
   5 * TSC calibration codes are adapted from Linux kernel
   6 * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
   7 */
   8
   9#include <common.h>
  10#include <bootstage.h>
  11#include <dm.h>
  12#include <log.h>
  13#include <malloc.h>
  14#include <time.h>
  15#include <timer.h>
  16#include <asm/cpu.h>
  17#include <asm/io.h>
  18#include <asm/i8254.h>
  19#include <asm/ibmpc.h>
  20#include <asm/msr.h>
  21#include <asm/u-boot-x86.h>
  22#include <linux/delay.h>
  23
  24#define MAX_NUM_FREQS   9
  25
  26#define INTEL_FAM6_SKYLAKE_MOBILE       0x4E
  27#define INTEL_FAM6_ATOM_GOLDMONT        0x5C /* Apollo Lake */
  28#define INTEL_FAM6_SKYLAKE_DESKTOP      0x5E
  29#define INTEL_FAM6_ATOM_GOLDMONT_X      0x5F /* Denverton */
  30#define INTEL_FAM6_KABYLAKE_MOBILE      0x8E
  31#define INTEL_FAM6_KABYLAKE_DESKTOP     0x9E
  32
  33DECLARE_GLOBAL_DATA_PTR;
  34
  35/*
  36 * native_calibrate_tsc
  37 * Determine TSC frequency via CPUID, else return 0.
  38 */
  39static unsigned long native_calibrate_tsc(void)
  40{
  41        struct cpuid_result tsc_info;
  42        unsigned int crystal_freq;
  43
  44        if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
  45                return 0;
  46
  47        if (cpuid_eax(0) < 0x15)
  48                return 0;
  49
  50        tsc_info = cpuid(0x15);
  51
  52        if (tsc_info.ebx == 0 || tsc_info.eax == 0)
  53                return 0;
  54
  55        crystal_freq = tsc_info.ecx / 1000;
  56        if (!CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE) && !crystal_freq) {
  57                switch (gd->arch.x86_model) {
  58                case INTEL_FAM6_SKYLAKE_MOBILE:
  59                case INTEL_FAM6_SKYLAKE_DESKTOP:
  60                case INTEL_FAM6_KABYLAKE_MOBILE:
  61                case INTEL_FAM6_KABYLAKE_DESKTOP:
  62                        crystal_freq = 24000;   /* 24.0 MHz */
  63                        break;
  64                case INTEL_FAM6_ATOM_GOLDMONT_X:
  65                        crystal_freq = 25000;   /* 25.0 MHz */
  66                        break;
  67                case INTEL_FAM6_ATOM_GOLDMONT:
  68                        crystal_freq = 19200;   /* 19.2 MHz */
  69                        break;
  70                default:
  71                        return 0;
  72                }
  73        }
  74
  75        return (crystal_freq * tsc_info.ebx / tsc_info.eax) / 1000;
  76}
  77
  78static unsigned long cpu_mhz_from_cpuid(void)
  79{
  80        if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
  81                return 0;
  82
  83        if (cpuid_eax(0) < 0x16)
  84                return 0;
  85
  86        return cpuid_eax(0x16);
  87}
  88
  89/*
  90 * According to Intel 64 and IA-32 System Programming Guide,
  91 * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
  92 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
  93 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
  94 * so we need manually differentiate SoC families. This is what the
  95 * field msr_plat does.
  96 */
  97struct freq_desc {
  98        u8 x86_family;  /* CPU family */
  99        u8 x86_model;   /* model */
 100        /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
 101        u8 msr_plat;
 102        u32 freqs[MAX_NUM_FREQS];
 103};
 104
 105static struct freq_desc freq_desc_tables[] = {
 106        /* PNW */
 107        { 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
 108        /* CLV+ */
 109        { 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
 110        /* TNG - Intel Atom processor Z3400 series */
 111        { 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
 112        /* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
 113        { 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
 114        /* ANN - Intel Atom processor Z3500 series */
 115        { 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
 116        /* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
 117        { 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
 118                        80000, 93300, 90000, 88900, 87500 } },
 119        /* Ivybridge */
 120        { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
 121};
 122
 123static int match_cpu(u8 family, u8 model)
 124{
 125        int i;
 126
 127        for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
 128                if ((family == freq_desc_tables[i].x86_family) &&
 129                    (model == freq_desc_tables[i].x86_model))
 130                        return i;
 131        }
 132
 133        return -1;
 134}
 135
 136/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
 137#define id_to_freq(cpu_index, freq_id) \
 138        (freq_desc_tables[cpu_index].freqs[freq_id])
 139
 140/*
 141 * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
 142 * reliable and the frequency is known (provided by HW).
 143 *
 144 * On these platforms PIT/HPET is generally not available so calibration won't
 145 * work at all and there is no other clocksource to act as a watchdog for the
 146 * TSC, so we have no other choice than to trust it.
 147 *
 148 * Returns the TSC frequency in MHz or 0 if HW does not provide it.
 149 */
 150static unsigned long __maybe_unused cpu_mhz_from_msr(void)
 151{
 152        u32 lo, hi, ratio, freq_id, freq;
 153        unsigned long res;
 154        int cpu_index;
 155
 156        if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
 157                return 0;
 158
 159        cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
 160        if (cpu_index < 0)
 161                return 0;
 162
 163        if (freq_desc_tables[cpu_index].msr_plat) {
 164                rdmsr(MSR_PLATFORM_INFO, lo, hi);
 165                ratio = (lo >> 8) & 0xff;
 166        } else {
 167                rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 168                ratio = (hi >> 8) & 0x1f;
 169        }
 170        debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
 171
 172        if (freq_desc_tables[cpu_index].msr_plat == 2) {
 173                /* TODO: Figure out how best to deal with this */
 174                freq = 100000;
 175                debug("Using frequency: %u KHz\n", freq);
 176        } else {
 177                /* Get FSB FREQ ID */
 178                rdmsr(MSR_FSB_FREQ, lo, hi);
 179                freq_id = lo & 0x7;
 180                freq = id_to_freq(cpu_index, freq_id);
 181                debug("Resolved frequency ID: %u, frequency: %u KHz\n",
 182                      freq_id, freq);
 183        }
 184
 185        /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
 186        res = freq * ratio / 1000;
 187        debug("TSC runs at %lu MHz\n", res);
 188
 189        return res;
 190}
 191
 192/*
 193 * This reads the current MSB of the PIT counter, and
 194 * checks if we are running on sufficiently fast and
 195 * non-virtualized hardware.
 196 *
 197 * Our expectations are:
 198 *
 199 *  - the PIT is running at roughly 1.19MHz
 200 *
 201 *  - each IO is going to take about 1us on real hardware,
 202 *    but we allow it to be much faster (by a factor of 10) or
 203 *    _slightly_ slower (ie we allow up to a 2us read+counter
 204 *    update - anything else implies a unacceptably slow CPU
 205 *    or PIT for the fast calibration to work.
 206 *
 207 *  - with 256 PIT ticks to read the value, we have 214us to
 208 *    see the same MSB (and overhead like doing a single TSC
 209 *    read per MSB value etc).
 210 *
 211 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 212 *    them each to take about a microsecond on real hardware.
 213 *    So we expect a count value of around 100. But we'll be
 214 *    generous, and accept anything over 50.
 215 *
 216 *  - if the PIT is stuck, and we see *many* more reads, we
 217 *    return early (and the next caller of pit_expect_msb()
 218 *    then consider it a failure when they don't see the
 219 *    next expected value).
 220 *
 221 * These expectations mean that we know that we have seen the
 222 * transition from one expected value to another with a fairly
 223 * high accuracy, and we didn't miss any events. We can thus
 224 * use the TSC value at the transitions to calculate a pretty
 225 * good value for the TSC frequencty.
 226 */
 227static inline int pit_verify_msb(unsigned char val)
 228{
 229        /* Ignore LSB */
 230        inb(0x42);
 231        return inb(0x42) == val;
 232}
 233
 234static inline int pit_expect_msb(unsigned char val, u64 *tscp,
 235                                 unsigned long *deltap)
 236{
 237        int count;
 238        u64 tsc = 0, prev_tsc = 0;
 239
 240        for (count = 0; count < 50000; count++) {
 241                if (!pit_verify_msb(val))
 242                        break;
 243                prev_tsc = tsc;
 244                tsc = rdtsc();
 245        }
 246        *deltap = rdtsc() - prev_tsc;
 247        *tscp = tsc;
 248
 249        /*
 250         * We require _some_ success, but the quality control
 251         * will be based on the error terms on the TSC values.
 252         */
 253        return count > 5;
 254}
 255
 256/*
 257 * How many MSB values do we want to see? We aim for
 258 * a maximum error rate of 500ppm (in practice the
 259 * real error is much smaller), but refuse to spend
 260 * more than 50ms on it.
 261 */
 262#define MAX_QUICK_PIT_MS 50
 263#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 264
 265static unsigned long __maybe_unused quick_pit_calibrate(void)
 266{
 267        int i;
 268        u64 tsc, delta;
 269        unsigned long d1, d2;
 270
 271        /* Set the Gate high, disable speaker */
 272        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 273
 274        /*
 275         * Counter 2, mode 0 (one-shot), binary count
 276         *
 277         * NOTE! Mode 2 decrements by two (and then the
 278         * output is flipped each time, giving the same
 279         * final output frequency as a decrement-by-one),
 280         * so mode 0 is much better when looking at the
 281         * individual counts.
 282         */
 283        outb(0xb0, 0x43);
 284
 285        /* Start at 0xffff */
 286        outb(0xff, 0x42);
 287        outb(0xff, 0x42);
 288
 289        /*
 290         * The PIT starts counting at the next edge, so we
 291         * need to delay for a microsecond. The easiest way
 292         * to do that is to just read back the 16-bit counter
 293         * once from the PIT.
 294         */
 295        pit_verify_msb(0);
 296
 297        if (pit_expect_msb(0xff, &tsc, &d1)) {
 298                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 299                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 300                                break;
 301
 302                        /*
 303                         * Iterate until the error is less than 500 ppm
 304                         */
 305                        delta -= tsc;
 306                        if (d1+d2 >= delta >> 11)
 307                                continue;
 308
 309                        /*
 310                         * Check the PIT one more time to verify that
 311                         * all TSC reads were stable wrt the PIT.
 312                         *
 313                         * This also guarantees serialization of the
 314                         * last cycle read ('d2') in pit_expect_msb.
 315                         */
 316                        if (!pit_verify_msb(0xfe - i))
 317                                break;
 318                        goto success;
 319                }
 320        }
 321        debug("Fast TSC calibration failed\n");
 322        return 0;
 323
 324success:
 325        /*
 326         * Ok, if we get here, then we've seen the
 327         * MSB of the PIT decrement 'i' times, and the
 328         * error has shrunk to less than 500 ppm.
 329         *
 330         * As a result, we can depend on there not being
 331         * any odd delays anywhere, and the TSC reads are
 332         * reliable (within the error).
 333         *
 334         * kHz = ticks / time-in-seconds / 1000;
 335         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 336         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 337         */
 338        delta *= PIT_TICK_RATE;
 339        delta /= (i*256*1000);
 340        debug("Fast TSC calibration using PIT\n");
 341        return delta / 1000;
 342}
 343
 344/* Get the speed of the TSC timer in MHz */
 345unsigned notrace long get_tbclk_mhz(void)
 346{
 347        return get_tbclk() / 1000000;
 348}
 349
 350static ulong get_ms_timer(void)
 351{
 352        return (get_ticks() * 1000) / get_tbclk();
 353}
 354
 355ulong get_timer(ulong base)
 356{
 357        return get_ms_timer() - base;
 358}
 359
 360ulong notrace timer_get_us(void)
 361{
 362        return get_ticks() / get_tbclk_mhz();
 363}
 364
 365ulong timer_get_boot_us(void)
 366{
 367        return timer_get_us();
 368}
 369
 370void __udelay(unsigned long usec)
 371{
 372        u64 now = get_ticks();
 373        u64 stop;
 374
 375        stop = now + usec * get_tbclk_mhz();
 376
 377        while ((int64_t)(stop - get_ticks()) > 0)
 378#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
 379                /*
 380                 * Add a 'pause' instruction on qemu target,
 381                 * to give other VCPUs a chance to run.
 382                 */
 383                asm volatile("pause");
 384#else
 385                ;
 386#endif
 387}
 388
 389static u64 tsc_timer_get_count(struct udevice *dev)
 390{
 391        u64 now_tick = rdtsc();
 392
 393        return now_tick - gd->arch.tsc_base;
 394}
 395
 396static void tsc_timer_ensure_setup(bool early)
 397{
 398        if (gd->arch.tsc_inited)
 399                return;
 400        if (IS_ENABLED(CONFIG_X86_TSC_READ_BASE))
 401                gd->arch.tsc_base = rdtsc();
 402
 403        if (!gd->arch.clock_rate) {
 404                unsigned long fast_calibrate;
 405
 406                fast_calibrate = native_calibrate_tsc();
 407                if (fast_calibrate)
 408                        goto done;
 409
 410                /* Reduce code size by dropping other methods */
 411                if (CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE))
 412                        panic("no timer");
 413
 414                fast_calibrate = cpu_mhz_from_cpuid();
 415                if (fast_calibrate)
 416                        goto done;
 417
 418                fast_calibrate = cpu_mhz_from_msr();
 419                if (fast_calibrate)
 420                        goto done;
 421
 422                fast_calibrate = quick_pit_calibrate();
 423                if (fast_calibrate)
 424                        goto done;
 425
 426                if (early)
 427                        fast_calibrate = CONFIG_X86_TSC_TIMER_EARLY_FREQ;
 428                else
 429                        return;
 430
 431done:
 432                gd->arch.clock_rate = fast_calibrate * 1000000;
 433        }
 434        gd->arch.tsc_inited = true;
 435}
 436
 437static int tsc_timer_probe(struct udevice *dev)
 438{
 439        struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
 440
 441        /* Try hardware calibration first */
 442        tsc_timer_ensure_setup(false);
 443        if (!gd->arch.clock_rate) {
 444                /*
 445                 * Use the clock frequency specified in the
 446                 * device tree as last resort
 447                 */
 448                if (!uc_priv->clock_rate)
 449                        panic("TSC frequency is ZERO");
 450        } else {
 451                uc_priv->clock_rate = gd->arch.clock_rate;
 452        }
 453
 454        return 0;
 455}
 456
 457unsigned long notrace timer_early_get_rate(void)
 458{
 459        /*
 460         * When TSC timer is used as the early timer, be warned that the timer
 461         * clock rate can only be calibrated via some hardware ways. Specifying
 462         * it in the device tree won't work for the early timer.
 463         */
 464        tsc_timer_ensure_setup(true);
 465
 466        return gd->arch.clock_rate;
 467}
 468
 469u64 notrace timer_early_get_count(void)
 470{
 471        tsc_timer_ensure_setup(true);
 472
 473        return rdtsc() - gd->arch.tsc_base;
 474}
 475
 476static const struct timer_ops tsc_timer_ops = {
 477        .get_count = tsc_timer_get_count,
 478};
 479
 480static const struct udevice_id tsc_timer_ids[] = {
 481        { .compatible = "x86,tsc-timer", },
 482        { }
 483};
 484
 485U_BOOT_DRIVER(x86_tsc_timer) = {
 486        .name   = "x86_tsc_timer",
 487        .id     = UCLASS_TIMER,
 488        .of_match = tsc_timer_ids,
 489        .probe = tsc_timer_probe,
 490        .ops    = &tsc_timer_ops,
 491};
 492