uboot/drivers/mtd/nand/raw/fsmc_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright 2010
   4 * Vipin Kumar, ST Microelectronics, vipin.kumar@st.com.
   5 *
   6 * (C) Copyright 2012
   7 * Amit Virdi, ST Microelectronics, amit.virdi@st.com.
   8 */
   9
  10#include <common.h>
  11#include <nand.h>
  12#include <asm/io.h>
  13#include <linux/bitops.h>
  14#include <linux/err.h>
  15#include <linux/mtd/nand_ecc.h>
  16#include <linux/mtd/fsmc_nand.h>
  17#include <asm/arch/hardware.h>
  18
  19static u32 fsmc_version;
  20static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *)
  21        CONFIG_SYS_FSMC_BASE;
  22
  23/*
  24 * ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of
  25 * data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can
  26 * correct 1 bit in 512 bytes
  27 */
  28
  29static struct nand_ecclayout fsmc_ecc4_lp_layout = {
  30        .eccbytes = 104,
  31        .eccpos = {  2,   3,   4,   5,   6,   7,   8,
  32                9,  10,  11,  12,  13,  14,
  33                18,  19,  20,  21,  22,  23,  24,
  34                25,  26,  27,  28,  29,  30,
  35                34,  35,  36,  37,  38,  39,  40,
  36                41,  42,  43,  44,  45,  46,
  37                50,  51,  52,  53,  54,  55,  56,
  38                57,  58,  59,  60,  61,  62,
  39                66,  67,  68,  69,  70,  71,  72,
  40                73,  74,  75,  76,  77,  78,
  41                82,  83,  84,  85,  86,  87,  88,
  42                89,  90,  91,  92,  93,  94,
  43                98,  99, 100, 101, 102, 103, 104,
  44                105, 106, 107, 108, 109, 110,
  45                114, 115, 116, 117, 118, 119, 120,
  46                121, 122, 123, 124, 125, 126
  47        },
  48        .oobfree = {
  49                {.offset = 15, .length = 3},
  50                {.offset = 31, .length = 3},
  51                {.offset = 47, .length = 3},
  52                {.offset = 63, .length = 3},
  53                {.offset = 79, .length = 3},
  54                {.offset = 95, .length = 3},
  55                {.offset = 111, .length = 3},
  56                {.offset = 127, .length = 1}
  57        }
  58};
  59
  60/*
  61 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
  62 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
  63 * bytes are free for use.
  64 */
  65static struct nand_ecclayout fsmc_ecc4_224_layout = {
  66        .eccbytes = 104,
  67        .eccpos = {  2,   3,   4,   5,   6,   7,   8,
  68                9,  10,  11,  12,  13,  14,
  69                18,  19,  20,  21,  22,  23,  24,
  70                25,  26,  27,  28,  29,  30,
  71                34,  35,  36,  37,  38,  39,  40,
  72                41,  42,  43,  44,  45,  46,
  73                50,  51,  52,  53,  54,  55,  56,
  74                57,  58,  59,  60,  61,  62,
  75                66,  67,  68,  69,  70,  71,  72,
  76                73,  74,  75,  76,  77,  78,
  77                82,  83,  84,  85,  86,  87,  88,
  78                89,  90,  91,  92,  93,  94,
  79                98,  99, 100, 101, 102, 103, 104,
  80                105, 106, 107, 108, 109, 110,
  81                114, 115, 116, 117, 118, 119, 120,
  82                121, 122, 123, 124, 125, 126
  83        },
  84        .oobfree = {
  85                {.offset = 15, .length = 3},
  86                {.offset = 31, .length = 3},
  87                {.offset = 47, .length = 3},
  88                {.offset = 63, .length = 3},
  89                {.offset = 79, .length = 3},
  90                {.offset = 95, .length = 3},
  91                {.offset = 111, .length = 3},
  92                {.offset = 127, .length = 97}
  93        }
  94};
  95
  96/*
  97 * ECC placement definitions in oobfree type format
  98 * There are 13 bytes of ecc for every 512 byte block and it has to be read
  99 * consecutively and immediately after the 512 byte data block for hardware to
 100 * generate the error bit offsets in 512 byte data
 101 * Managing the ecc bytes in the following way makes it easier for software to
 102 * read ecc bytes consecutive to data bytes. This way is similar to
 103 * oobfree structure maintained already in u-boot nand driver
 104 */
 105static struct fsmc_eccplace fsmc_eccpl_lp = {
 106        .eccplace = {
 107                {.offset = 2, .length = 13},
 108                {.offset = 18, .length = 13},
 109                {.offset = 34, .length = 13},
 110                {.offset = 50, .length = 13},
 111                {.offset = 66, .length = 13},
 112                {.offset = 82, .length = 13},
 113                {.offset = 98, .length = 13},
 114                {.offset = 114, .length = 13}
 115        }
 116};
 117
 118static struct nand_ecclayout fsmc_ecc4_sp_layout = {
 119        .eccbytes = 13,
 120        .eccpos = { 0,  1,  2,  3,  6,  7, 8,
 121                9, 10, 11, 12, 13, 14
 122        },
 123        .oobfree = {
 124                {.offset = 15, .length = 1},
 125        }
 126};
 127
 128static struct fsmc_eccplace fsmc_eccpl_sp = {
 129        .eccplace = {
 130                {.offset = 0, .length = 4},
 131                {.offset = 6, .length = 9}
 132        }
 133};
 134
 135static struct nand_ecclayout fsmc_ecc1_layout = {
 136        .eccbytes = 24,
 137        .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
 138                66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
 139        .oobfree = {
 140                {.offset = 8, .length = 8},
 141                {.offset = 24, .length = 8},
 142                {.offset = 40, .length = 8},
 143                {.offset = 56, .length = 8},
 144                {.offset = 72, .length = 8},
 145                {.offset = 88, .length = 8},
 146                {.offset = 104, .length = 8},
 147                {.offset = 120, .length = 8}
 148        }
 149};
 150
 151/* Count the number of 0's in buff upto a max of max_bits */
 152static int count_written_bits(uint8_t *buff, int size, int max_bits)
 153{
 154        int k, written_bits = 0;
 155
 156        for (k = 0; k < size; k++) {
 157                written_bits += hweight8(~buff[k]);
 158                if (written_bits > max_bits)
 159                        break;
 160        }
 161
 162        return written_bits;
 163}
 164
 165static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl)
 166{
 167        struct nand_chip *this = mtd_to_nand(mtd);
 168        ulong IO_ADDR_W;
 169
 170        if (ctrl & NAND_CTRL_CHANGE) {
 171                IO_ADDR_W = (ulong)this->IO_ADDR_W;
 172
 173                IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE);
 174                if (ctrl & NAND_CLE)
 175                        IO_ADDR_W |= CONFIG_SYS_NAND_CLE;
 176                if (ctrl & NAND_ALE)
 177                        IO_ADDR_W |= CONFIG_SYS_NAND_ALE;
 178
 179                if (ctrl & NAND_NCE) {
 180                        writel(readl(&fsmc_regs_p->pc) |
 181                                        FSMC_ENABLE, &fsmc_regs_p->pc);
 182                } else {
 183                        writel(readl(&fsmc_regs_p->pc) &
 184                                        ~FSMC_ENABLE, &fsmc_regs_p->pc);
 185                }
 186                this->IO_ADDR_W = (void *)IO_ADDR_W;
 187        }
 188
 189        if (cmd != NAND_CMD_NONE)
 190                writeb(cmd, this->IO_ADDR_W);
 191}
 192
 193static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat,
 194                u_char *read_ecc, u_char *calc_ecc)
 195{
 196        /* The calculated ecc is actually the correction index in data */
 197        u32 err_idx[8];
 198        u32 num_err, i;
 199        u32 ecc1, ecc2, ecc3, ecc4;
 200
 201        num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF;
 202
 203        if (likely(num_err == 0))
 204                return 0;
 205
 206        if (unlikely(num_err > 8)) {
 207                /*
 208                 * This is a temporary erase check. A newly erased page read
 209                 * would result in an ecc error because the oob data is also
 210                 * erased to FF and the calculated ecc for an FF data is not
 211                 * FF..FF.
 212                 * This is a workaround to skip performing correction in case
 213                 * data is FF..FF
 214                 *
 215                 * Logic:
 216                 * For every page, each bit written as 0 is counted until these
 217                 * number of bits are greater than 8 (the maximum correction
 218                 * capability of FSMC for each 512 + 13 bytes)
 219                 */
 220
 221                int bits_ecc = count_written_bits(read_ecc, 13, 8);
 222                int bits_data = count_written_bits(dat, 512, 8);
 223
 224                if ((bits_ecc + bits_data) <= 8) {
 225                        if (bits_data)
 226                                memset(dat, 0xff, 512);
 227                        return bits_data + bits_ecc;
 228                }
 229
 230                return -EBADMSG;
 231        }
 232
 233        ecc1 = readl(&fsmc_regs_p->ecc1);
 234        ecc2 = readl(&fsmc_regs_p->ecc2);
 235        ecc3 = readl(&fsmc_regs_p->ecc3);
 236        ecc4 = readl(&fsmc_regs_p->sts);
 237
 238        err_idx[0] = (ecc1 >> 0) & 0x1FFF;
 239        err_idx[1] = (ecc1 >> 13) & 0x1FFF;
 240        err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
 241        err_idx[3] = (ecc2 >> 7) & 0x1FFF;
 242        err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
 243        err_idx[5] = (ecc3 >> 1) & 0x1FFF;
 244        err_idx[6] = (ecc3 >> 14) & 0x1FFF;
 245        err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
 246
 247        i = 0;
 248        while (i < num_err) {
 249                err_idx[i] ^= 3;
 250
 251                if (err_idx[i] < 512 * 8)
 252                        __change_bit(err_idx[i], dat);
 253
 254                i++;
 255        }
 256
 257        return num_err;
 258}
 259
 260static int fsmc_read_hwecc(struct mtd_info *mtd,
 261                        const u_char *data, u_char *ecc)
 262{
 263        u_int ecc_tmp;
 264        int timeout = CONFIG_SYS_HZ;
 265        ulong start;
 266
 267        switch (fsmc_version) {
 268        case FSMC_VER8:
 269                start = get_timer(0);
 270                while (get_timer(start) < timeout) {
 271                        /*
 272                         * Busy waiting for ecc computation
 273                         * to finish for 512 bytes
 274                         */
 275                        if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY)
 276                                break;
 277                }
 278
 279                ecc_tmp = readl(&fsmc_regs_p->ecc1);
 280                ecc[0] = (u_char) (ecc_tmp >> 0);
 281                ecc[1] = (u_char) (ecc_tmp >> 8);
 282                ecc[2] = (u_char) (ecc_tmp >> 16);
 283                ecc[3] = (u_char) (ecc_tmp >> 24);
 284
 285                ecc_tmp = readl(&fsmc_regs_p->ecc2);
 286                ecc[4] = (u_char) (ecc_tmp >> 0);
 287                ecc[5] = (u_char) (ecc_tmp >> 8);
 288                ecc[6] = (u_char) (ecc_tmp >> 16);
 289                ecc[7] = (u_char) (ecc_tmp >> 24);
 290
 291                ecc_tmp = readl(&fsmc_regs_p->ecc3);
 292                ecc[8] = (u_char) (ecc_tmp >> 0);
 293                ecc[9] = (u_char) (ecc_tmp >> 8);
 294                ecc[10] = (u_char) (ecc_tmp >> 16);
 295                ecc[11] = (u_char) (ecc_tmp >> 24);
 296
 297                ecc_tmp = readl(&fsmc_regs_p->sts);
 298                ecc[12] = (u_char) (ecc_tmp >> 16);
 299                break;
 300
 301        default:
 302                ecc_tmp = readl(&fsmc_regs_p->ecc1);
 303                ecc[0] = (u_char) (ecc_tmp >> 0);
 304                ecc[1] = (u_char) (ecc_tmp >> 8);
 305                ecc[2] = (u_char) (ecc_tmp >> 16);
 306                break;
 307        }
 308
 309        return 0;
 310}
 311
 312void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
 313{
 314        writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256,
 315                        &fsmc_regs_p->pc);
 316        writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN,
 317                        &fsmc_regs_p->pc);
 318        writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN,
 319                        &fsmc_regs_p->pc);
 320}
 321
 322/*
 323 * fsmc_read_page_hwecc
 324 * @mtd:        mtd info structure
 325 * @chip:       nand chip info structure
 326 * @buf:        buffer to store read data
 327 * @oob_required:       caller expects OOB data read to chip->oob_poi
 328 * @page:       page number to read
 329 *
 330 * This routine is needed for fsmc verison 8 as reading from NAND chip has to be
 331 * performed in a strict sequence as follows:
 332 * data(512 byte) -> ecc(13 byte)
 333 * After this read, fsmc hardware generates and reports error data bits(upto a
 334 * max of 8 bits)
 335 */
 336static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
 337                                 uint8_t *buf, int oob_required, int page)
 338{
 339        struct fsmc_eccplace *fsmc_eccpl;
 340        int i, j, s, stat, eccsize = chip->ecc.size;
 341        int eccbytes = chip->ecc.bytes;
 342        int eccsteps = chip->ecc.steps;
 343        uint8_t *p = buf;
 344        uint8_t *ecc_calc = chip->buffers->ecccalc;
 345        uint8_t *ecc_code = chip->buffers->ecccode;
 346        int off, len, group = 0;
 347        uint8_t oob[13] __attribute__ ((aligned (2)));
 348
 349        /* Differentiate between small and large page ecc place definitions */
 350        if (mtd->writesize == 512)
 351                fsmc_eccpl = &fsmc_eccpl_sp;
 352        else
 353                fsmc_eccpl = &fsmc_eccpl_lp;
 354
 355        for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
 356
 357                chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
 358                chip->ecc.hwctl(mtd, NAND_ECC_READ);
 359                chip->read_buf(mtd, p, eccsize);
 360
 361                for (j = 0; j < eccbytes;) {
 362                        off = fsmc_eccpl->eccplace[group].offset;
 363                        len = fsmc_eccpl->eccplace[group].length;
 364                        group++;
 365
 366                        /*
 367                         * length is intentionally kept a higher multiple of 2
 368                         * to read at least 13 bytes even in case of 16 bit NAND
 369                         * devices
 370                         */
 371                        if (chip->options & NAND_BUSWIDTH_16)
 372                                len = roundup(len, 2);
 373                        chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
 374                        chip->read_buf(mtd, oob + j, len);
 375                        j += len;
 376                }
 377
 378                memcpy(&ecc_code[i], oob, 13);
 379                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 380
 381                stat = chip->ecc.correct(mtd, p, &ecc_code[i],
 382                                &ecc_calc[i]);
 383                if (stat < 0)
 384                        mtd->ecc_stats.failed++;
 385                else
 386                        mtd->ecc_stats.corrected += stat;
 387        }
 388
 389        return 0;
 390}
 391
 392#ifndef CONFIG_SPL_BUILD
 393/*
 394 * fsmc_nand_switch_ecc - switch the ECC operation between different engines
 395 *
 396 * @eccstrength         - the number of bits that could be corrected
 397 *                        (1 - HW, 4 - SW BCH4)
 398 */
 399int fsmc_nand_switch_ecc(uint32_t eccstrength)
 400{
 401        struct nand_chip *nand;
 402        struct mtd_info *mtd;
 403        int err;
 404
 405        /*
 406         * This functions is only called on SPEAr600 platforms, supporting
 407         * 1 bit HW ECC. The BCH8 HW ECC (FSMC_VER8) from the ST-Ericsson
 408         * Nomadik SoC is currently supporting this fsmc_nand_switch_ecc()
 409         * function, as it doesn't need to switch to a different ECC layout.
 410         */
 411        mtd = get_nand_dev_by_index(nand_curr_device);
 412        nand = mtd_to_nand(mtd);
 413
 414        /* Setup the ecc configurations again */
 415        if (eccstrength == 1) {
 416                nand->ecc.mode = NAND_ECC_HW;
 417                nand->ecc.bytes = 3;
 418                nand->ecc.strength = 1;
 419                nand->ecc.layout = &fsmc_ecc1_layout;
 420                nand->ecc.calculate = fsmc_read_hwecc;
 421                nand->ecc.correct = nand_correct_data;
 422        } else if (eccstrength == 4) {
 423                /*
 424                 * .calculate .correct and .bytes will be set in
 425                 * nand_scan_tail()
 426                 */
 427                nand->ecc.mode = NAND_ECC_SOFT_BCH;
 428                nand->ecc.strength = 4;
 429                nand->ecc.layout = NULL;
 430        } else {
 431                printf("Error: ECC strength %d not supported!\n", eccstrength);
 432        }
 433
 434        /* Update NAND handling after ECC mode switch */
 435        err = nand_scan_tail(mtd);
 436
 437        return err;
 438}
 439#endif /* CONFIG_SPL_BUILD */
 440
 441int fsmc_nand_init(struct nand_chip *nand)
 442{
 443        static int chip_nr;
 444        struct mtd_info *mtd;
 445        u32 peripid2 = readl(&fsmc_regs_p->peripid2);
 446
 447        fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) &
 448                FSMC_REVISION_MSK;
 449
 450        writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl);
 451
 452#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
 453        writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
 454                        &fsmc_regs_p->pc);
 455#elif defined(CONFIG_SYS_FSMC_NAND_8BIT)
 456        writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
 457                        &fsmc_regs_p->pc);
 458#else
 459#error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT
 460#endif
 461        writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1,
 462                        &fsmc_regs_p->pc);
 463        writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
 464                        &fsmc_regs_p->comm);
 465        writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
 466                        &fsmc_regs_p->attrib);
 467
 468        nand->options = 0;
 469#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
 470        nand->options |= NAND_BUSWIDTH_16;
 471#endif
 472        nand->ecc.mode = NAND_ECC_HW;
 473        nand->ecc.size = 512;
 474        nand->ecc.calculate = fsmc_read_hwecc;
 475        nand->ecc.hwctl = fsmc_enable_hwecc;
 476        nand->cmd_ctrl = fsmc_nand_hwcontrol;
 477        nand->IO_ADDR_R = nand->IO_ADDR_W =
 478                (void  __iomem *)CONFIG_SYS_NAND_BASE;
 479        nand->badblockbits = 7;
 480
 481        mtd = nand_to_mtd(nand);
 482
 483        switch (fsmc_version) {
 484        case FSMC_VER8:
 485                nand->ecc.bytes = 13;
 486                nand->ecc.strength = 8;
 487                nand->ecc.correct = fsmc_bch8_correct_data;
 488                nand->ecc.read_page = fsmc_read_page_hwecc;
 489                if (mtd->writesize == 512)
 490                        nand->ecc.layout = &fsmc_ecc4_sp_layout;
 491                else {
 492                        if (mtd->oobsize == 224)
 493                                nand->ecc.layout = &fsmc_ecc4_224_layout;
 494                        else
 495                                nand->ecc.layout = &fsmc_ecc4_lp_layout;
 496                }
 497
 498                break;
 499        default:
 500                nand->ecc.bytes = 3;
 501                nand->ecc.strength = 1;
 502                nand->ecc.layout = &fsmc_ecc1_layout;
 503                nand->ecc.correct = nand_correct_data;
 504                break;
 505        }
 506
 507        /* Detect NAND chips */
 508        if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
 509                return -ENXIO;
 510
 511        if (nand_scan_tail(mtd))
 512                return -ENXIO;
 513
 514        if (nand_register(chip_nr++, mtd))
 515                return -ENXIO;
 516
 517        return 0;
 518}
 519